1
|
Jamshidi M, Cairns C, Huan Khieu N, Chan K, St. Michael F, Cox A, Sauvageau J. Optimization of the Synthesis and Conjugation of the Methyl Rhamnan Tip of Pseudomonas aeruginosa A-Band Polysaccharide and Immunogenicity Evaluation for the Continued Development of a Potential Glycoconjugate Vaccine. ACS Infect Dis 2024; 10:1361-1369. [PMID: 38447154 PMCID: PMC11019553 DOI: 10.1021/acsinfecdis.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Pseudomonas aeruginosa is an antimicrobial-resistant bacterium that has no vaccine approved for human use. Additionally, it has been identified by the World Health Organization as a priority pathogen for novel vaccines and therapeutic development. We previously developed a synthetic mimic of the A-band polysaccharide tip that showed promise in terms of immunogenicity for use as a glycoconjugate vaccine. In this current manuscript, we improve upon the previous work to continue the development of this glycoconjugate vaccine. Herein, we report a higher-yielding synthesis of mimics containing a handle and a spacer that improved conjugation efficiency, resulting in better carbohydrate-to-protein ratios and also good immunogenicity of these conjugates in mice and rabbits. The data suggested that perhaps only a tetrasaccharide was required to induce an immune response capable of recognizing whole cells of P. aeruginosa.
Collapse
Affiliation(s)
- Mohammad
P. Jamshidi
- Vaccine and Emerging Infections
Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Chantelle Cairns
- Vaccine and Emerging Infections
Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Nam Huan Khieu
- Vaccine and Emerging Infections
Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Kenneth Chan
- Vaccine and Emerging Infections
Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Frank St. Michael
- Vaccine and Emerging Infections
Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Andrew Cox
- Vaccine and Emerging Infections
Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Janelle Sauvageau
- Vaccine and Emerging Infections
Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
2
|
Nalpe SS, Jana S, Kulkarni SS. Total Synthesis of a Trehalose-Containing Lipooligosaccharide Analogue from Mycobacterium linda. Org Lett 2023; 25:1717-1721. [PMID: 36867005 DOI: 10.1021/acs.orglett.3c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A short and efficient methodology has been developed to synthesize an analogue of a lipooligosaccharide from Mycobacterium linda isolated from Crohn's disease. The total synthesis of the tetrasaccharide was achieved via a convergent [2 + 2] glycosylation approach. The key features of the synthesis involve the selective functionalization of a trehalose core via highly regioselective acylations and regioselective glycosylations. The synthesis was completed via a longest linear sequence of 14 steps in a 14.2% overall yield.
Collapse
Affiliation(s)
- Sudhakar S Nalpe
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Santanu Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
3
|
Laverde D, Romero-Saavedra F, Argunov DA, Enotarpi J, Krylov VB, Kalfopoulou E, Martini C, Torelli R, van der Marel GA, Sanguinetti M, Codée JDC, Nifantiev NE, Huebner J. Synthetic Oligomers Mimicking Capsular Polysaccharide Diheteroglycan are Potential Vaccine Candidates against Encapsulated Enterococcal Infections. ACS Infect Dis 2020; 6:1816-1826. [PMID: 32364376 DOI: 10.1021/acsinfecdis.0c00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infections caused by Enterococcus spp. are a major concern in the clinical setting. In Enterococcus faecalis, the capsular polysaccharide diheteroglycan (DHG), composed of ß-d-galactofuranose-(1 → 3)-ß-d-glucopyranose repeats, has been described as an important virulence factor and as a potential vaccine candidate against encapsulated strains. Synthetic structures emulating immunogenic polysaccharides present many advantages over native polysaccharides for vaccine development. In this work, we described the synthesis of a library of DHG oligomers, differing in length and order of the monosaccharide constituents. Using suitably protected thioglycoside building blocks, oligosaccharides up to 8-mer in length built up from either Galf-Glcp or Glcp-Galf dimers were generated, and we evaluated their immunoreactivity with antibodies raised against DHG. After the screening, we selected two octasaccharides, having either a galactofuranose or glucopyranose terminus, which were conjugated to a carrier protein for the production of polyclonal antibodies. The resulting antibodies were specific toward the synthetic structures and mediated in vitro opsonophagocytic killing of different encapsulated E. feacalis strains. The evaluated oligosaccharides are the first synthetic structures described to elicit antibodies that target encapsulated E. faecalis strains and are, therefore, promising candidates for the development of a well-defined enterococcal glycoconjugate vaccine.
Collapse
Affiliation(s)
- D. Laverde
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich 80337, Germany
| | - F. Romero-Saavedra
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich 80337, Germany
| | - D. A. Argunov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - J. Enotarpi
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - V. B. Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - E. Kalfopoulou
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich 80337, Germany
| | - C. Martini
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - R. Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome 00168, Italy
| | - G. A. van der Marel
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - M. Sanguinetti
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome 00168, Italy
| | - J. D. C. Codée
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - N. E. Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - J. Huebner
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich 80337, Germany
| |
Collapse
|
4
|
Barel LA, Mulard LA. Classical and novel strategies to develop a Shigella glycoconjugate vaccine: from concept to efficacy in human. Hum Vaccin Immunother 2020; 15:1338-1356. [PMID: 31158047 PMCID: PMC6663142 DOI: 10.1080/21645515.2019.1606972] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Shigella are gram-negative bacteria that cause severe diarrhea and dysentery, with a high level of antimicrobial resistance. Disease-induced protection against reinfection in Shigella-endemic areas provides convincing evidence on the feasibility of a vaccine and on the importance of Shigella lipopolysaccharides as targets of the host humoral protective immune response against disease. This article provides an overview of the original and current strategies toward the development of a Shigella glycan-protein conjugate vaccine that would cover the most commonly detected strains. Going beyond pioneering “lattice”-type polysaccharide-protein conjugates, progress, and challenges are addressed with focus on promising alternatives, which have reached phases I and II clinical trial. Glycoengineered bioconjugates and “sun”-type conjugates featuring well-defined synthetic carbohydrate antigens are discussed with insights on the molecular parameters governing the rational design of a cost-effective glycoconjugate vaccine efficacious in preventing diseases caused by Shigella in the most at risk populations, young children living in endemic areas.
Collapse
Affiliation(s)
- Louis-Antoine Barel
- a Chemistry of Biomolecules Unit, Department of Structural Biology and Chemistry , Institut Pasteur, UMR3523, CNRS , Paris , France.,b Université Paris Descartes , Paris , France
| | - Laurence A Mulard
- a Chemistry of Biomolecules Unit, Department of Structural Biology and Chemistry , Institut Pasteur, UMR3523, CNRS , Paris , France
| |
Collapse
|
5
|
Straightforward sequential and one-pot synthesis of a pentasaccharide repeating unit corresponding to the cell wall O-antigen of Shigella boydii type 18. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Zhao Y, Wang S, Wang G, Li H, Guo Z, Gu G. Synthesis and immunological studies of group AStreptococcuscell-wall oligosaccharide–streptococcal C5a peptidase conjugates as bivalent vaccines. Org Chem Front 2019. [DOI: 10.1039/c9qo00651f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convergent synthesis of GAS cell-wall oligosaccharides and their efficient conjugation with the ScpA193 carrier protein to generate glycoconjugates as potential bivalent vaccines were reported.
Collapse
Affiliation(s)
- Yisheng Zhao
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao 266237
- China
| | - Subo Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao 266237
- China
| | - Guirong Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao 266237
- China
| | - Hui Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao 266237
- China
| | - Zhongwu Guo
- Department of Chemistry
- University of Florida
- Gainesville
- USA
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao 266237
- China
| |
Collapse
|
7
|
Colombo C, Pitirollo O, Lay L. Recent Advances in the Synthesis of Glycoconjugates for Vaccine Development. Molecules 2018; 23:molecules23071712. [PMID: 30011851 PMCID: PMC6099631 DOI: 10.3390/molecules23071712] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
During the last decade there has been a growing interest in glycoimmunology, a relatively new research field dealing with the specific interactions of carbohydrates with the immune system. Pathogens’ cell surfaces are covered by a thick layer of oligo- and polysaccharides that are crucial virulence factors, as they mediate receptors binding on host cells for initial adhesion and organism invasion. Since in most cases these saccharide structures are uniquely exposed on the pathogen surface, they represent attractive targets for vaccine design. Polysaccharides isolated from cell walls of microorganisms and chemically conjugated to immunogenic proteins have been used as antigens for vaccine development for a range of infectious diseases. However, several challenges are associated with carbohydrate antigens purified from natural sources, such as their difficult characterization and heterogeneous composition. Consequently, glycoconjugates with chemically well-defined structures, that are able to confer highly reproducible biological properties and a better safety profile, are at the forefront of vaccine development. Following on from our previous review on the subject, in the present account we specifically focus on the most recent advances in the synthesis and preliminary immunological evaluation of next generation glycoconjugate vaccines designed to target bacterial and fungal infections that have been reported in the literature since 2011.
Collapse
Affiliation(s)
- Cinzia Colombo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Olimpia Pitirollo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Luigi Lay
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
8
|
Vartak A, Hefny FM, Sucheck SJ. Synthesis of Oligosaccharide Components of the Outer Core Domain of P. aeruginosa Lipopolysaccharide Using a Multifunctional Hydroquinone-Derived Reducing-End Capping Group. Org Lett 2018; 20:353-356. [PMID: 29285926 PMCID: PMC6169316 DOI: 10.1021/acs.orglett.7b03590] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of a trisaccharide (common to glycoform I and II) and a tetrasaccharide (common to glycoform I) from the outer core domain of Pseudomonas aeruginosa lipopolysaccharide (LPS) using a novel hydroquinone-based reducing-end capping group is reported. This multifunctional capping group was utilized as purification handle and was stable toward many common transformations in oligosaccharide synthesis. The access to outer-core LPS antigens with a TBDPS-protected hydroquinone (TPH) at the reducing end will be useful for glycan array and therapeutic glycoconjugate synthesis.
Collapse
Affiliation(s)
- Abhishek Vartak
- Department of Chemistry and Biochemistry, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Fatma M. Hefny
- Department of Chemistry and Biochemistry, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Steven J. Sucheck
- Department of Chemistry and Biochemistry, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
9
|
Zhang X, Wang D, Jin G, Wang L, Guo Z, Gu G. Synthesis of a tetrasaccharide repeating unit of the exopolysaccharide from Burkholderia multivorans. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1391275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xin Zhang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan, PR China
| | - Dongyue Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan, PR China
| | - Guoxia Jin
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, 88 Wenhua Dong Lu, Jinan, PR China
| | - Lizhen Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan, PR China
| | - Zhongwu Guo
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan, PR China
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida, United States
| | - Guofeng Gu
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan, PR China
| |
Collapse
|
10
|
Geert Volbeda A, Reintjens NRM, Overkleeft HS, van der Marel GA, Codée JDC. The Cyanopivaloyl Ester: A Protecting Group in the Assembly of Oligorhamnans. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600956] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anne Geert Volbeda
- BioOrganic Synthesis, Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Niels R. M. Reintjens
- BioOrganic Synthesis, Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Herman S. Overkleeft
- BioOrganic Synthesis, Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijsbert A. van der Marel
- BioOrganic Synthesis, Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jeroen D. C. Codée
- BioOrganic Synthesis, Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
11
|
Chaube MA, Kulkarni SS. First Total Synthesis of Trehalose-Containing Branched Oligosaccharide OSE-1 ofMycobacterium gordonae(Strain 990). Chemistry 2015; 21:13544-8. [DOI: 10.1002/chem.201502521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 01/31/2023]
|
12
|
Zhou J, Yang L, Hu W. Stereoselective synthesis of a sulfated tetrasaccharide corresponding to a rare sequence in the galactofucan isolated from Sargassum polycystum. J Org Chem 2014; 79:4718-26. [PMID: 24766314 DOI: 10.1021/jo500503r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first chemical synthesis of a highly sulfated tetrasaccharide 1, as the rare sequence in the galactofucan isolated from the brown alga Sargassum polycystum, was achieved in a convergent and stereoselective manner. The key features of the synthetic strategy include construction of multiple contiguous 1,2-cis glycosidic bonds and [2 + 2] assembly based on the rationally developed d-galactose building block 6. The synthesized oligosaccharides were fully characterized using a combination of coupled-HSQC and other 2D NMR techniques.
Collapse
Affiliation(s)
- Jun Zhou
- Shanghai Engineering Research Centre of Molecular Therapeutics and New Drug Development, and Department of Chemistry, East China Normal University , Shanghai, 200062, PR China
| | | | | |
Collapse
|
13
|
Basu N, Mukherjee MM, Ghosh R. Synthetic routes toward the trisaccharide related to the lipopolysaccharide of Burkholderia sp. HKI-402 (B4). RSC Adv 2014. [DOI: 10.1039/c4ra03954h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A stepwise and one-pot sequential synthesis of the trisaccharide are reported, using trichloroacetimidate and thioglycosyl donors and a 3-(N-benzyloxycarbonyl) propyl glycoside acceptor.
Collapse
Affiliation(s)
- Nabamita Basu
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032, India
| | | | - Rina Ghosh
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032, India
| |
Collapse
|
14
|
Pozsgay V, Kubler-Kielb J, Coxon B, Santacroce P, Robbins JB, Schneerson R. Synthetic oligosaccharides as tools to demonstrate cross-reactivity between polysaccharide antigens. J Org Chem 2012; 77:5922-41. [PMID: 22713129 PMCID: PMC3746347 DOI: 10.1021/jo300299p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli O148 is a nonencapsulated enterotoxigenic (ETEC) Gram negative bacterium that can cause diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome in humans. The surface-exposed O-specific polysaccharide (O-SP) of the lipopolysaccharide of this bacterium is considered both a virulence factor and a protective antigen. It is built up of the linear tetrasaccharide repeating unit [3)-α-L-Rhap-(1→2)-α-D-Glcp-(1→3)-α-D-GlcNAcp-(1→3)-α-L-Rhap-(1→] differing from that of the O-SP of Shigella dysenteriae type 1 (SD) only in that the latter contains a D-Galp residue in place of the glucose moiety of the former. The close similarity of the O-SPs of these bacteria indicated a possible cross-reactivity. To answer this question we synthesized several oligosaccharide fragments of E. coli O148 O-SP, up to a dodecasaccharide, as well as their bovine serum albumin or recombinant diphtheria toxin conjugates. Immunization of mice with these conjugates induced anti-O-SP-specific serum IgG antibody responses. The antisera reacted equally well with the LPSs of both bacteria, indicating cross-reactivity between the SD and E. coli O148 O-SPs that was further supported by Western-blot and dot-blot analyses, as well as by inhibition of binding between the antisera and the O-SPs of both bacteria.
Collapse
Affiliation(s)
- Vince Pozsgay
- Program on Developmental and Molecular Immunity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2423, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Recent advances in developing synthetic carbohydrate-based vaccines for cancer immunotherapies. Future Med Chem 2012; 4:545-84. [DOI: 10.4155/fmc.11.193] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer cells can often be distinguished from healthy cells by the expression of unique carbohydrate sequences decorating the cell surface as a result of aberrant glycosyltransferase activity occurring within the cell; these unusual carbohydrates can be used as valuable immunological targets in modern vaccine designs to raise carbohydrate-specific antibodies. Many tumor antigens (e.g., GM2, Ley, globo H, sialyl Tn and TF) have been identified to date in a variety of cancers. Unfortunately, carbohydrates alone evoke poor immunogenicity, owing to their lack of ability in inducing T-cell-dependent immune responses. In order to enhance their immunogenicity and promote long-lasting immune responses, carbohydrates are often chemically modified to link to an immunogenic protein or peptide fragment for eliciting T-cell-dependent responses. This review will present a summary of efforts and advancements made to date on creating carbohydrate-based anticancer vaccines, and will include novel approaches to overcoming the poor immunogenicity of carbohydrate-based vaccines.
Collapse
|
16
|
Morelli L, Poletti L, Lay L. Carbohydrates and Immunology: Synthetic Oligosaccharide Antigens for Vaccine Formulation. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100296] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Laura Morelli
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Laura Poletti
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Luigi Lay
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
17
|
Santra A, Misra AK. Synthesis of tri- and pentasaccharide fragments corresponding to the O-antigen of Shigella boydii type 6. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.tetasy.2010.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Jahouh F, Saksena R, Aiello D, Napoli A, Sindona G, Kováč P, Banoub JH. Glycation sites in neoglycoglycoconjugates from the terminal monosaccharide antigen of the O-PS of Vibrio cholerae O1, serotype Ogawa, and BSA revealed by matrix-assisted laser desorption-ionization tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:1148-1159. [PMID: 20860010 DOI: 10.1002/jms.1796] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We present the MALDI-TOF/TOF-MS analyses of various hapten-bovine serum albumin (BSA) neoglycoconjugates obtained by squaric acid chemistry coupling of the spacer-equipped, terminal monosaccharide of the O-specific polysaccharide of Vibrio cholerae O1, serotype Ogawa, to BSA. These analyses allowed not only to calculate the molecular masses of the hapten-BSA neoglycoconjugates with different hapten-BSA ratios (4.3, 6.6 and 13.2) but, more importantly, also to localize the covalent linkages (conjugation sites) between the hapten and the carrier protein. Determination of the site of glycation was based on comparison of the MALDI-TOF/TOF-MS analysis of the peptides resulting from the digestion of BSA with similar data resulting from the digestion of BSA glycoconjugates, followed by sequencing by MALDI-TOF/TOF-MS/MS of the glycated peptides. The product-ion scans of the protonated molecules were carried out with a MALDI-TOF/TOF-MS/MS tandem mass spectrometer equipped with a high-collision energy cell. The high-energy collision-induced dissociation (CID) spectra afforded product ions formed by fragmentation of the carbohydrate hapten and amino acid sequences conjugated with fragments of the carbohydrate hapten. We were able to identify three conjugation sites on lysine residues (Lys235, Lys437 and Lys455). It was shown that these lysine residues are very reactive and bind lysine specific reagents. We presume that these Lys residues belong to those that are considered to be sterically more accessible on the surface of the tridimensional structure. The identification of the y-series product ions was very useful for the sequencing of various peptides. The series of a- and b-product ions confirmed the sequence of the conjugated peptides.
Collapse
Affiliation(s)
- Farid Jahouh
- Department of Chemistry, Memorial University of Newfoundland, Saint John's, NL, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Galan MC, Tran AT, Whitaker S. [bmim][OTf] as co-solvent/promoter in room temperature reactivity-based one-pot glycosylation reactions. Chem Commun (Camb) 2010; 46:2106-8. [DOI: 10.1039/b926177j] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
El Ashry ESH, Rashed N, Ibrahim ESI. Challenges in the stereocontrolled syntheses of β-rhamnosides. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Synthesis of C-disaccharides via a hetero-Diels–Alder reaction and further stereocontrolled transformations. Carbohydr Res 2008; 343:1754-65. [DOI: 10.1016/j.carres.2008.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/05/2008] [Accepted: 03/09/2008] [Indexed: 11/17/2022]
|
22
|
Kaeothip S, Pornsuriyasak P, Demchenko AV. Silver(I) tetrafluoroborate as a potent promoter for chemical glycosylation. Tetrahedron Lett 2008; 49:1542-1545. [PMID: 18438466 PMCID: PMC2346448 DOI: 10.1016/j.tetlet.2007.12.105] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We have identified silver tetrafluoroborate (AgBF(4)) as an excellent promoter for the activation of various glycosyl donors including glycosyl halides, trichloroacetimidates, thioimidates, etc. Easy handling and no requirement for azeotropic dehydration prior to application makes AgBF(4) especially beneficial in comparison to the commonly used AgOTf. Selective activation of glycosyl halides or thioimidates over thioglycosides or n-pentenyl glycosides, including simple sequential one-pot syntheses, has been also demonstrated. Versatility of glycosyl thioimidates was further explored by converting these intermediates into a variety of other classes of glycosyl donors.
Collapse
Affiliation(s)
- Sophon Kaeothip
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, MO 63121, USA
| | - Papapida Pornsuriyasak
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, MO 63121, USA
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, One University Boulevard, St. Louis, MO 63121, USA
| |
Collapse
|
23
|
Mukherjee C, Misra AK. Total synthesis of an antigenic heptasaccharide motif found in the cell-wall lipooligosaccharide of Mycobacterium gordonae strain 989. Glycoconj J 2008; 25:611-24. [DOI: 10.1007/s10719-008-9107-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 12/29/2007] [Accepted: 01/09/2008] [Indexed: 10/22/2022]
|
24
|
Torres-Sanchez MI, Zaccaria C, Buzzi B, Miglio G, Lombardi G, Polito L, Russo G, Lay L. Synthesis and biological evaluation of phosphono analogues of capsular polysaccharide fragments from Neisseria meningitidis A. Chemistry 2007; 13:6623-35. [PMID: 17508372 DOI: 10.1002/chem.200601743] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neisseria meningitidis type A (MenA) is a Gram-negative encapsulated bacterium that may cause explosive epidemics of meningitis, especially in the sub-Saharan region of Africa. The development and manufacture of an efficient glycoconjugate vaccine against Neisseria meningitidis A is greatly hampered by the poor hydrolytic stability of its capsular polysaccharide, which is made up of (1-->6)-linked 2-acetamido-2-deoxy-alpha-D-mannopyranosyl phosphate repeating units. Since this chemical lability is a product of the inherent instability of the phosphodiester bridges, here we report the synthesis of phosphonoester-linked oligomers of N-acetyl mannosamine as candidates for stabilised analogues of the corresponding phosphate-bridged saccharides. The installation of each interglycosidic phosphonoester linkage was achieved by Mitsunobu coupling of a glycosyl C-phosphonate building block with the 6-OH moiety of a mannosaminyl residue. Each of the synthesised compounds contains an O-linked aminopropyl spacer at its reducing end (alpha- or beta-oriented) to allow for protein conjugation. The relative affinities of the synthetic molecules were investigated by a competitive ELISA assay and showed that a human polyclonal anti-MenA serum can recognise both the phosphonoester-bridged fragments 1-3 and their monomeric subunits, glycosides 20 and 21. Moreover, the biological results suggest that the abilities of these compounds to inhibit the binding of a specific antibody to MenA polysaccharide are dependent on the chain lengths of the molecules, but independent on the orientations of the anomeric linkers.
Collapse
Affiliation(s)
- Maria I Torres-Sanchez
- Dipartimento di Chimica Organica e Industriale and Centro Interdisciplinare Studi Bio-molecolari e Applicazioni Industriali, Università degli Studi di Milano via Venezian 21, 20133 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Pozsgay V, Kubler-Kielb J, Schneerson R, Robbins JB. Effect of the nonreducing end of Shigella dysenteriae type 1 O-specific oligosaccharides on their immunogenicity as conjugates in mice. Proc Natl Acad Sci U S A 2007; 104:14478-82. [PMID: 17726093 PMCID: PMC1955462 DOI: 10.1073/pnas.0706969104] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Indexed: 11/18/2022] Open
Abstract
Endemic and epidemic shigellosis, an acute invasive disease of the lower intestines, afflicts millions of people worldwide with an estimated one million fatalities per annum at a low infectious dose. Our approach to vaccine development against Shigella is based on the hypothesis that serum IgG antibodies to the O-specific polysaccharide (O-SP) domains of the LPS of these organisms confer protection to infection. The synthetic oligosaccharides corresponding to the tetrasaccharide repeating unit of the O-SP of Shigella dysenteriae type 1 covalently linked to human serum albumin elicited O-SP-specific IgG in mice. The antibody levels were a function of both the saccharide chain length and their loading on the protein. These synthetic saccharide conjugates elicited significantly higher levels of IgG anti O-SP than conjugates prepared with the O-SP from the bacteria. Here, we evaluated the influence of the nonreducing terminal monosaccharide on the serum antibody response. To this end, we prepared synthetic oligosaccharides comprising hexa- to tridecasaccharide fragments of the native O-SP, having one of the four monosaccharide residues that constitute the repeating unit at their termini and bound them to BSA by a single-point attachment. The conjugates contained an average of 19 saccharide chains per BSA. The synthetic oligosaccharides inhibited the binding of serum raised against whole bacteria to its LPS to a similar extent but lower than the native O-SP. The highest anti-LPS levels were elicited by conjugates having N-acetylglucosamine (10-mer) or galactose residues (7- and 11-mers) at their nonreducing termini.
Collapse
Affiliation(s)
- Vince Pozsgay
- Laboratory of Developmental and Molecular Immunity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2423
| | - Joanna Kubler-Kielb
- Laboratory of Developmental and Molecular Immunity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2423
| | - Rachel Schneerson
- Laboratory of Developmental and Molecular Immunity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2423
| | - John B. Robbins
- Laboratory of Developmental and Molecular Immunity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2423
| |
Collapse
|
26
|
Crich D, Vinogradova O. Facile oxidative cleavage of 4-O-benzyl ethers with dichlorodicyanoquinone in rhamno- and mannopyranosides. J Org Chem 2007; 72:3581-4. [PMID: 17375956 PMCID: PMC2615469 DOI: 10.1021/jo062411p] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
On exposure to dichlorodicyanoquinone in wet dichloromethane at room temperature, equatorial 4-O-benzyl ethers are removed with moderate selectivity in the presence of other benzyl ethers in glycopyranosides and glycothiopyranosides.
Collapse
Affiliation(s)
- David Crich
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, USA.
| | | |
Collapse
|
27
|
Pozsgay V, Kubler-Kielb J. Synthesis of an experimental glycolipoprotein vaccine against Lyme disease. Carbohydr Res 2007; 342:621-6. [PMID: 17182019 PMCID: PMC2709212 DOI: 10.1016/j.carres.2006.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/07/2006] [Accepted: 11/08/2006] [Indexed: 11/17/2022]
Abstract
A novel glycolipid was synthesized that corresponds to cholesteryl palmitoyl-galactopyranoside 1 found in the spirochete Borrelia burgdorferi, the causative agent of Lyme disease. In order to fashion 1 in a conjugatable form, the palmitoyl residue was modified to include a terminal aldehydo moiety that anchored the glycolipid to aminooxypropylated serum albumin using oxime chemistry. The glycolipoprotein so obtained incorporates an average of 18 glycolipid moieties per albumin molecule. The novel glycolipoprotein constructs are soluble in water and are candidates toward developing a semisynthetic vaccine against Lyme disease.
Collapse
Affiliation(s)
- Vince Pozsgay
- Laboratory of Developmental and Molecular Immunity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2423, USA.
| | | |
Collapse
|
28
|
Roy S, Roy N. Synthesis of a Blocked Tetrasaccharide Related to the Repeating Unit of the Antigen from Shigella dysenteriae Type 9 in the Form of Its Methyl (R)‐Pyruvate Ester and 2‐(Trimethylsilyl)Ethyl Glycoside. J Carbohydr Chem 2007. [DOI: 10.1081/car-120026456] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Samarpita Roy
- a Department of Biological Chemistry , Indian Association for the Cultivation of Science , Jadavpur , Kolkata , 700 032 , India
| | - Nirmolendu Roy
- a Department of Biological Chemistry , Indian Association for the Cultivation of Science , Jadavpur , Kolkata , 700 032 , India
| |
Collapse
|
29
|
Mulard L. Sucres et vaccins : du polysaccharide purifié au glycoconjugué semi-synthétique. ANNALES PHARMACEUTIQUES FRANÇAISES 2007; 65:14-32. [PMID: 17299349 DOI: 10.1016/s0003-4509(07)90014-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the last decades, capsular polysaccharides have been successfully used as antibacterial vaccines. Marketing several polysaccharide-protein conjugate vaccines filled the gap in many areas of children and infant vaccination. By facilitating access to structures of increasing complexity, recent progress in glycochemistry has enabled the design of more and more precisely defined glycoconjugate vaccines using synthetic saccharide components which mimic epitopes naturally implicated in protection. This strategy was recently validated in humans. It opens the way to new perspectives in vaccine research devoted to prophylactic and/or therapeutic applications against bacterial, fungal, parasitic or viral infections, and certain cancers.
Collapse
Affiliation(s)
- L Mulard
- Unité de Chimie Organique, Ura Cnrs 2128, Institut Pasteur, 28, rue du Dr Roux F 75724 Paris Cedex 15.
| |
Collapse
|
30
|
Suzuki K, Ohtsuka I, Kanemitsu T, Ako T, Kanie O. Single‐Step Multisyntheses of Glycosyl Acceptors: Benzylation of n‐1 Hydroxyl Groups of Phenylthio Glycosides of Xylose, Mannose, Glucose, Galactose, 2‐Azido‐2‐deoxy‐glucose, and 2‐Azido‐2‐deoxy‐galactose. J Carbohydr Chem 2006. [DOI: 10.1081/car-200053712] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kaori Suzuki
- a Mitsubishi Kagaku Institute of Life Sciences (MITILS) , Tokyo, Japan
| | - Isao Ohtsuka
- a Mitsubishi Kagaku Institute of Life Sciences (MITILS) , Tokyo, Japan
| | - Takuya Kanemitsu
- a Mitsubishi Kagaku Institute of Life Sciences (MITILS) , Tokyo, Japan
| | - Takuro Ako
- a Mitsubishi Kagaku Institute of Life Sciences (MITILS) , Tokyo, Japan
| | - Osamu Kanie
- a Mitsubishi Kagaku Institute of Life Sciences (MITILS) , Tokyo, Japan
| |
Collapse
|
31
|
Pozsgay V, Ekborg G, Sampathkumar SG. Synthesis of hexa- to tridecasaccharides related to Shigella dysenteriae type 1 for incorporation in experimental vaccines. Carbohydr Res 2006; 341:1408-27. [PMID: 16650395 DOI: 10.1016/j.carres.2006.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2006] [Revised: 03/27/2006] [Accepted: 04/05/2006] [Indexed: 10/24/2022]
Abstract
Hexa- to tridecasaccharides corresponding to the O-specific polysaccharide (O-SP) of the Gram-negative bacterium Shigella dysenteriae type 1 were synthesized in solution phase. The syntheses utilized tetra-, octa-, and dodecasaccharide intermediates that represent one to three contiguous tetrasaccharide repeating units of the O-SP [Synlett2003, 743]. These compounds were glycosylated with mono-, di-, and trisaccharide trichloroacetamidates, which were synthesized in this study. The excellent stereodirecting effect of 4,6-O-benzophenone ketals in glycosylation reactions of 2-azido-2-deoxy-glucopyranosyl donors was demonstrated. The free oligosaccharides were characterized by 1H and 13C NMR spectroscopy and by high-resolution mass spectrometry. The oligosaccharides described herein contain the 5-(methoxycarbonyl)pentyl aglycon for eventual attachment to immunogenic carriers using a recently published protocol [J. Org. Chem.2005, 70, 6987].
Collapse
Affiliation(s)
- Vince Pozsgay
- Laboratory of Developmental and Molecular Immunity, National Institute of Child Health and Human Development, National Institutes of Health, 31 Center Dr. Rm. 2A29, MSC 2423, Bethesda, MD 20892-2423, USA.
| | | | | |
Collapse
|
32
|
Ohtsuka I, Ako T, Kato R, Daikoku S, Koroghi S, Kanemitsu T, Kanie O. Synthesis of a library of fucopyranosyl-galactopyranosides consisting of a complete set of anomeric configurations and linkage positions. Carbohydr Res 2006; 341:1476-87. [PMID: 16643870 DOI: 10.1016/j.carres.2006.03.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 03/13/2006] [Accepted: 03/27/2006] [Indexed: 10/24/2022]
Abstract
A library composed of a complete set of fucopyranosyl-galactopyranosides was synthesized. A perbenzylated phenylthio fucopyranoside and a series of tri-O-benzyl-galactopyranosyl fluorides having single hydroxyl groups at the 2-, 3-, 4-, and 6-positions were used as the glycosyl donor and glycosyl acceptors, respectively. The chosen set of functionalities at the anomeric centers enabled rapid access to the oligosaccharides based on chemoselective activation. The first coupling reaction was achieved by the action of dimethyl(methylthio)sulfonium trifluoromethanesulfonate (DMTST). The resulting disaccharide fluoride was readily activated by hafnocene bistrifluoromethanesulfonate [Cp2Hf(OTf)2] and glycosidated with n-octanol.
Collapse
Affiliation(s)
- Isao Ohtsuka
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida-shi, Tokyo 194-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Manimala JC, Li Z, Jain A, VedBrat S, Gildersleeve JC. Carbohydrate Array Analysis of Anti-Tn Antibodies and Lectins Reveals Unexpected Specificities: Implications for Diagnostic and Vaccine Development. Chembiochem 2005; 6:2229-41. [PMID: 16252298 DOI: 10.1002/cbic.200500165] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The Tn antigen is a carbohydrate antigen expressed in most carcinomas, during embryogenesis, on pathogenic parasites, and on HIV. It has been evaluated extensively as a potential diagnostic marker and several Tn-based vaccines are in clinical trials. Based on discrepancies in the literature regarding Tn expression, we began to question whether antibodies and lectins used routinely to detect the Tn antigen were providing accurate information. To investigate this possibility, a carbohydrate microarray and a highly sensitive assay were developed and three frequently used Tn receptors (HBTn1, Bric111, and VVL-B4) were evaluated. Carbohydrate-array analysis revealed unexpected cross-reactivity with other human carbohydrate epitopes. VVL-B4 bound the Tn antigen, GalNAcalpha1-6Gal, and GalNAcalpha1-3Gal. Bric111 bound the Tn antigen, blood group A, GalNAcalpha1-6Gal, and GalNAcalpha1-3Gal. HBTn1 showed the best selectivity, but still displayed moderate binding to blood group A. Implications for the development of Tn-based diagnostics and vaccines are discussed.
Collapse
Affiliation(s)
- Joseph C Manimala
- Laboratory of Medicinal Chemistry, Center for Cancer Research, NCI-Frederick, 376 Boyles Street, Building 376, Room109, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
34
|
Kubler-Kielb J, Pozsgay V. A New Method for Conjugation of Carbohydrates to Proteins Using an Aminooxy-Thiol Heterobifunctional Linker. J Org Chem 2005; 70:6987-90. [PMID: 16095333 DOI: 10.1021/jo050934b] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new, efficient, and mild protocol is presented for the coupling of saccharides to proteins. First, a heterobifunctional aminooxy-thiol linker is coupled to the bromoacylated protein to introduce aminooxy groups through thioether linkages. Condensation of the aminooxylated protein and aldehydo/keto-derivatized carbohydrates affords covalent saccharide-protein constructs. Uncoupled saccharide can be recovered in its original form. The scope of our protocol is exemplified by the coupling of neutral mono- and tetrasaccharides and a negatively charged ribitol-phosphate construct to BSA.
Collapse
Affiliation(s)
- Joanna Kubler-Kielb
- National Institute of Child Health and Human Development, National Institutes of Health, 31 Center Drive, MSC 2423, Bethesda, MD 20892-2423, USA
| | | |
Collapse
|
35
|
Madhusudan SK, Agnihotri G, Negi DS, Misra AK. Direct one-pot conversion of acylated carbohydrates into their alkylated derivatives under heterogeneous reaction conditions using solid NaOH and a phase transfer catalyst. Carbohydr Res 2005; 340:1373-7. [PMID: 15854608 DOI: 10.1016/j.carres.2005.03.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 03/17/2005] [Accepted: 03/28/2005] [Indexed: 11/17/2022]
Abstract
A convenient one-pot protocol for the direct conversion of acyl-protected carbohydrates into their alkylated counterparts has been developed by using alkyl halides in the presence of solid sodium hydroxide and a phase transfer catalyst. These economically convenient, mild, two-phase reaction conditions allow the preparation of a variety of monosaccharide intermediates for use in the synthesis of complex oligosaccharides.
Collapse
Affiliation(s)
- Soni Kamlesh Madhusudan
- Medicinal and Process Chemistry Division, Central Drug Research Institute (CDRI), Chattar Manzil Palace, Lucknow 226 001, UP, India
| | | | | | | |
Collapse
|
36
|
Crich D, Vinod AU, Picione J. The 3,4-O-Carbonate Protecting Group as a β-Directing Group in Rhamnopyranosylation in Both Homogeneous and Heterogeneous Glycosylations As Compared to the Chameleon-like 2,3-O-Carbonates. J Org Chem 2003; 68:8453-8. [PMID: 14575470 DOI: 10.1021/jo035003j] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is demonstrated that the beta-selectivity observed in the insoluble silver salt mediated couplings of 2,3-O-carbonate-protected rhamnosyl bromides is uniquely due to the heterogeneous nature of the reaction. In homogeneous solution these same donors are alpha-selective, a fact that is attributed to the half-chair conformation of these substances which reduces the energy barrier to oxacarbenium ion formation. It is suggested that the 2,3-O-carbonate group be dubbed torsionally arming in the manno- and rhamnopyranose series. When the carbonate group is removed to the 3,4-O-position a beta-selective system is formed, in both homogeneous and heterogeneous conditions, and it is demonstrated that this selectivity arises from the combination of the electron-withdrawing nature of the carbonate and its inability to take part in neighboring participation.
Collapse
Affiliation(s)
- David Crich
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, USA.
| | | | | |
Collapse
|
37
|
Mukhopadhyay B, Roy N. Synthesis of the pentasaccharide related to the repeating unit of the antigen from Shigella dysenteriae type 4 in the form of its methyl ester 2-(trimethylsilyl)ethyl glycoside. Carbohydr Res 2003; 338:589-96. [PMID: 12644371 DOI: 10.1016/s0008-6215(02)00499-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Starting from D-mannose, D-glucose and L-fucose, the pentasaccharide derivative methyl 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl-(1-->3)-2-O-acetyl-4,6-O-benzylidene-alpha-D-mannopyranosyl-(1-->3)-2-O-acetyl-6-O-benzyl-4-O-(2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl)-alpha-D-mannopyranosyl-(1-->4)-[2-(trimethylsilyl)ethyl 2,3-di-O-benzyl-beta-D-glucopyranosid]uronate was synthesized. This compound with two alpha-mannopyranosyl units was transformed, via Walden inversion and subsequent deprotection, into the alpha-D-glucosamine-type target compound, namely methyl alpha-L-fucopyranosyl-(1-->3)-2-acetamido-2-deoxy-alpha-D-glucopyranosyl-(1-->3)-2-acetamido-2-deoxy-4-O-(alpha-L-fucopyranosyl)-alpha-D-glucopyranosyl-(1-->4)-[2-(trimethylsilyl)ethyl beta-D-glucopyranosid]uronate which is related to the repeating unit of the O-antigen from Shigella dysenteriae type 4.
Collapse
Affiliation(s)
- Balaram Mukhopadhyay
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, 700 032, Calcutta, India
| | | |
Collapse
|
38
|
Cipolla L, Rescigno M, Leone A, Peri F, La Ferla B, Nicotra F. Novel Tn antigen-containing neoglycopeptides: synthesis and evaluation as anti tumor vaccines. Bioorg Med Chem 2002; 10:1639-46. [PMID: 11886825 DOI: 10.1016/s0968-0896(01)00433-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The fully unprotected alpha-C-glycosyl analogue of N-acetylgalactosamine 9 was conjugated by a non-natural oxime bond to the segment peptides (328--340)OVA and (327--339)OVA, affording neoglycopeptides 1--2 and 3, having one or two sugar units, respectively. The three neoglycopeptides were tested in vitro in an antigen presentation assay as antitumor vaccines. Neoglycopeptides 1--3 could be presented to and recognized by the T cell receptor; neoglycopeptide 3, bearing two B-epitopes, was presented to the TCR with higher efficiency, compared to neoglycopeptide 2, having only one B-epitope.
Collapse
MESH Headings
- Animals
- Antigens, CD/drug effects
- Antigens, CD/metabolism
- Antigens, Tumor-Associated, Carbohydrate/chemistry
- Antigens, Tumor-Associated, Carbohydrate/immunology
- B7-2 Antigen
- Cancer Vaccines/chemical synthesis
- Cancer Vaccines/chemistry
- Cancer Vaccines/immunology
- Dendritic Cells/drug effects
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/immunology
- Glycoproteins/chemical synthesis
- Glycoproteins/immunology
- Glycoproteins/therapeutic use
- Humans
- Lymphocyte Activation/drug effects
- Membrane Glycoproteins/drug effects
- Membrane Glycoproteins/metabolism
- Mice
- Oligopeptides/chemistry
- Oligopeptides/immunology
- Oligopeptides/therapeutic use
- Receptors, Antigen, T-Cell/immunology
- Structure-Activity Relationship
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Tumor Cells, Cultured/drug effects
Collapse
Affiliation(s)
- Laura Cipolla
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, P.za della Scienza 2, 20126, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
39
|
Pozsgay V. Oligosaccharide-protein conjugates as vaccine candidates against bacteria. Adv Carbohydr Chem Biochem 2001; 56:153-99. [PMID: 11039111 DOI: 10.1016/s0065-2318(01)56004-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- V Pozsgay
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2720, USA
| |
Collapse
|
40
|
Mukherjee I, Das SK, Mukherjee A, Roy N. Synthesis of the tetrasaccharide related to the repeating unit of the antigen from Shigella dysenteriae type 5. Carbohydr Res 2000; 325:245-52. [PMID: 10839118 DOI: 10.1016/s0008-6215(00)00011-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Starting from L-rhamnose, D-mannose and 2-amino-2-deoxy-D-glucose hydrochloride, two disaccharide blocks, namely, ethyl 2,4-di-O-benzyl-3-O-[(R)-1-(methoxycarbonyl)ethyl]-alpha-L-rhamnopyranos yl-(1-->3)-2-O-acetyl-4,6-di-O-benzyl-1-thio-alpha-D-mannopyranoside and 2-(trimethylsilyl)ethyl 2-O-acetyl-3,6-di-O-benzyl-alpha-D-mannopyranosyl-(1-->3)-4,6-di-O-benzy l-2-deoxy-2-phthalimido-beta-D-glucopyranoside, were synthesised and then allowed to react in the presence of N-iodosuccinimide and trifluoromethane sulfonic acid to give a tetrasaccharide derivative. This compound was converted into 2-(trimethylsilyl)ethyl 2,4-di-O-benzyl-3-O-[(R)-1-(methoxycarbonyl)ethyl]-alpha-L-rhamno- pyranosyl-(1-->3)-2-O-acetyl-4,6-di-O-benzyl-alpha-D-mannopyranosyl-(1-- >4)-2-O-acetyl-3,6-di-O-benzyl-alpha-D-mannopyranosyl-(1-->3)-2-acetamid o-4,6-di-O-benzyl-2-deoxy-beta-D-glucopyranoside, which on hydrogenolysis, afforded the methyl ester 2-(trimethylsilyl)ethyl glycoside of the tetrasaccharide related to the repeating unit of the O-antigen from Shigella dysenteriae type 5.
Collapse
Affiliation(s)
- I Mukherjee
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta
| | | | | | | |
Collapse
|
41
|
Coxon B, Sari N, Batta G, Pozsgay V. NMR spectroscopy, molecular dynamics, and conformation of a synthetic octasaccharide fragment of the O-specific polysaccharide of Shigella dysenteriae type 1. Carbohydr Res 2000; 324:53-65. [PMID: 10723612 DOI: 10.1016/s0008-6215(99)00278-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A synthetic octasaccharide fragment (2) of the O-specific polysaccharide (1) of Shigella dysenteriae type 1 has been studied as its methyl glycoside by one- and two-dimensional homo- and heteronuclear NMR spectroscopy. Complete 1H and 13C NMR assignments have been generated, and the 13C spin-lattice relaxation times have been measured for the octasaccharide 2. A congener (6) of this octasaccharide containing one D-galactose residue with a specific 13C label at C-1 has been synthesized and used to measure interglycosidic 13C-1H coupling by the 2D J-resolved 1H NMR method. From the NMR data, three types of conformational restraints were developed: (a) 29 inter-residue, distance restraints; (b) 48 intra-residue, ring atom dihedral angle restraints, and (c) one heteronuclear, inter-residue dihedral angle restraint. The use of these restraints in a restrained molecular dynamics computation with simulated annealing yielded a conformation resembling a short, irregular spiral, with methyl substituents on the exterior.
Collapse
Affiliation(s)
- B Coxon
- Biotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8311, USA.
| | | | | | | |
Collapse
|
42
|
Tóth A, Medgyes A, Bajza I, Lipták A, Batta G, Kontrohr T, Péterffy K, Pozsgay V. Synthesis of the repeating unit of the O-specific polysaccharide of Shigella sonnei and quantitation of its serologic activity. Bioorg Med Chem Lett 2000; 10:19-21. [PMID: 10636234 DOI: 10.1016/s0960-894x(99)00585-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chemical synthesis of the zwitterionic disaccharide 2 is described that corresponds to the repeating unit of the O-specific polysaccharide (1) of the gram-negative human pathogen Shigella sonnei. Passive hemolysis inhibition tests using a hyperimmune rabbit serum raised against S. sonnei showed that the serologic activity of the disaccharide 2 is nearly 2- to 3-fold higher than those of its component monosaccharides. NMR data of 2 are in support of the proposed structure of the O-specific polysaccharide.
Collapse
Affiliation(s)
- A Tóth
- Research Group for Carbohydrates of the Hungarian Academy of Sciences and Institute of Biochemistry, Lajos Kossuth University, Debrecen
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Bacterial infections of the small and large intestine are widespread and continue to be topics of active research. Surveys document the importance of diarrheal disease in many settings. Major breakthroughs in the understanding of pathogenic mechanisms (especially the interactions of bacteria and intestinal cells) continue, particularly with respect to shigella, salmonella, Yersinia species, and enteropathogenic Escherichia coli. Pathogenic mechanisms of other bacteria, such as campylobacter and entero-aggregative E. coli, are not well defined. Vaccines for cholera and typhoid fever are available, and new vaccines are in various stages of development ranging from synthesis of novel constructs to large-scale field trials. Several candidate vaccines are being exploited as carriers of antigens from other pathogens. Extraintestinal complications from salmonella, shigella, campylobacter, Yersinia species, and Shiga toxin-expressing E. coli are receiving much attention. Genomic sequencing of several of these pathogens is underway. The impact of this work is hard to predict, but expectations are high.
Collapse
Affiliation(s)
- M K Wolf
- Walter Reed Army Institute of Research, Department of Enteric Infections, Washington, DC 20307, USA.
| |
Collapse
|
44
|
Mulard LA, Ughetto-Monfrin J. First Synthesis of A Branched Pentasaccharide Representative of The Repeating Unit of TheShigella FlexneriSerotype 5AO-Antigen. J Carbohydr Chem 2000. [DOI: 10.1080/07328300008544074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Pozsgay V. A new strategy in oligosaccharide synthesis using lipophilic protecting groups: synthesis of a tetracosasaccharide. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0957-4166(99)00553-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Pozsgay V. A Practical Route to Multifunctional 2-Azido-2-deoxy-d-glucopyranosyl Donors. J Org Chem 1999. [DOI: 10.1021/jo990811p] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vince Pozsgay
- National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Drive, MSC 2720, Bethesda, Maryland 20892-2720
| |
Collapse
|
47
|
Gomez AM, Danelón GO, Valverde S, López JC. Regio- and Stereocontrolled 6-Endo-Trig Radical Cyclization of Vinyl Radicals: A Novel Entry to Carbasugars from Carbohydrates. J Org Chem 1999. [DOI: 10.1021/jo994005u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Pozsgay V, Chu C, Pannell L, Wolfe J, Robbins JB, Schneerson R. Protein conjugates of synthetic saccharides elicit higher levels of serum IgG lipopolysaccharide antibodies in mice than do those of the O-specific polysaccharide from Shigella dysenteriae type 1. Proc Natl Acad Sci U S A 1999; 96:5194-7. [PMID: 10220442 PMCID: PMC21840 DOI: 10.1073/pnas.96.9.5194] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Our development of vaccines to prevent shigellosis is based on the hypothesis that a critical (protective) level of serum IgG to the O-specific polysaccharide (O-SP) domain of Shigella lipopolysaccharide (LPS) confers immunity. The O-SP is a hapten and must be conjugated to a protein to induce serum antibodies. The O-SP of Shigella dysenteriae type 1 (approximately 27 tetrasaccharide repeat units), prepared by acid hydrolysis of the LPS, was bound to human serum albumin (HSA) by multiple point attachment (O-SP-HSA): The molar ratio of HSA to O-SP was 1.0. Synthetic saccharides, composed of one or multiples of the O-SP tetrasaccharide, equipped with a spacer at their reducing end, were bound to HSA by a single point attachment: The average molar ratios of the saccharides to HSA ranged from 4 to 24. Serum IgG anti-LPS, elicited in mice by O-SP-HSA or synthetic tetra-, octa-, dodeca-, and hexadecasaccharide fragments, was measured by ELISA. Outbred 6-week-old female mice were injected s.c. three times at biweekly intervals with 2.5 micrograms of saccharide as a conjugate and were bled 7 days after the second and third injections. Excepting the tetramer, conjugates of the octamer, dodecamer and hexadecamer elicited IgG LPS antibodies after the second injection, a statistically significant rise (booster) after the third injection, and higher levels than those vaccinated with O-SP-HSA (P = 0.0001). The highest geometric mean levels of IgG anti-LPS were elicited by the hexadecamer with 9 chains or 9 moles of saccharide/HSA (15.5 ELISA units) followed by the octamer with 20 chains (11.1 ELISA units) and the dodecamer with 10 chains (9.52 ELISA units). Clinical evaluation of these synthetic saccharides bound to a medically useful carrier is planned.
Collapse
Affiliation(s)
- V Pozsgay
- Laboratory of Developmental and Molecular Immunity, National Institute of Child Health and Human Development, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-2720, USA
| | | | | | | | | | | |
Collapse
|