1
|
Hervin V, Roy V, Agrofoglio LA. Antibiotics and Antibiotic Resistance-Mur Ligases as an Antibacterial Target. Molecules 2023; 28:8076. [PMID: 38138566 PMCID: PMC10745416 DOI: 10.3390/molecules28248076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence of Multidrug Resistance (MDR) strains of bacteria has accelerated the search for new antibacterials. The specific bacterial peptidoglycan biosynthetic pathway represents opportunities for the development of novel antibacterial agents. Among the enzymes involved, Mur ligases, described herein, and especially the amide ligases MurC-F are key targets for the discovery of multi-inhibitors, as they share common active sites and structural features.
Collapse
Affiliation(s)
| | - Vincent Roy
- ICOA UMR CNRS 7311, Université d’Orléans et CNRS, Rue de Chartres, 45067 Orléans, France;
| | - Luigi A. Agrofoglio
- ICOA UMR CNRS 7311, Université d’Orléans et CNRS, Rue de Chartres, 45067 Orléans, France;
| |
Collapse
|
2
|
Haque MA, Singh M, Tripathi MK, Ethayathulla AS, Kaur P. Identification of natural small molecule modulators of MurB from Salmonella enterica serovar Typhi Ty2 strain using computational and biophysical approaches. Proteins 2023; 91:363-379. [PMID: 36193975 DOI: 10.1002/prot.26435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 08/02/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
The increase of antibiotic-resistant bacterial pathogens has created challenges in treatment and warranted the design of antibiotics against comparatively less exploited targets. The peptidoglycan (PG) biosynthesis delineates unique pathways for the design and development of a novel class of drugs. Mur ligases are an essential component of bacterial cell wall synthesis that play a pivotal role in PG biosynthesis to maintain internal osmotic pressure and cell shape. Inhibition of these enzymes can interrupt bacterial replication and hence, form attractive targets for drug discovery. In the present work, we focused on the PG biosynthesis pathway enzyme, UDP-N-acetylpyruvylglucosamine reductase, from Salmonella enterica serovar Typhi (stMurB). Biophysical characterization of purified StMurB was performed to gauge the molecular interactions and estimate thermodynamic stability for determination of attributes for possible therapeutic intervention. The thermal melting profile of MurB was monitored by circular dichroism and validated through differential scanning calorimetry experiment. Frequently used chemical denaturants, GdmCl and urea, were employed to study the chemical-induced denaturation of stMurB. In the search for natural compound-based inhibitors, against this important drug target, an in silico virtual screening based investigation was conducted with modeled stMurB structure. The three top hits (quercetin, berberine, and scopoletin) returned were validated for complex stability through molecular dynamics simulation. Further, fluorescence binding studies were undertaken for the selected natural compounds with stMurB alone and with NADPH bound form. The compounds scopoletin and berberine, displayed lesser binding to stMurB whereas quercetin exhibited stronger binding affinity than NADPH. This study suggests that quercetin can be evolved as an inhibitor of stMurB enzyme.
Collapse
Affiliation(s)
- Md Anzarul Haque
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Mandeep Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Anti-Tuberculosis Mur Inhibitors: Structural Insights and the Way Ahead for Development of Novel Agents. Pharmaceuticals (Basel) 2023; 16:ph16030377. [PMID: 36986477 PMCID: PMC10058398 DOI: 10.3390/ph16030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Mur enzymes serve as critical molecular devices for the synthesis of UDP-MurNAc-pentapeptide, the main building block of bacterial peptidoglycan polymer. These enzymes have been extensively studied for bacterial pathogens such as Escherichia coli and Staphylococcus aureus. Various selective and mixed Mur inhibitors have been designed and synthesized in the past few years. However, this class of enzymes remains relatively unexplored for Mycobacterium tuberculosis (Mtb), and thus offers a promising approach for drug design to overcome the challenges of battling this global pandemic. This review aims to explore the potential of Mur enzymes of Mtb by systematically scrutinizing the structural aspects of various reported bacterial inhibitors and implications concerning their activity. Diverse chemical scaffolds such as thiazolidinones, pyrazole, thiazole, etc., as well as natural compounds and repurposed compounds, have been reviewed to understand their in silico interactions with the receptor or their enzyme inhibition potential. The structural diversity and wide array of substituents indicate the scope of the research into developing varied analogs and providing valuable information for the purpose of modifying reported inhibitors of other multidrug-resistant microorganisms. Therefore, this provides an opportunity to expand the arsenal against Mtb and overcome multidrug-resistant tuberculosis.
Collapse
|
4
|
Zhuang Z, Cummings SW, Roll-Mecak A, Tanner ME. Phosphinic acid-based inhibitors of tubulin polyglycylation. Chem Commun (Camb) 2022; 58:6530-6533. [PMID: 35579270 DOI: 10.1039/d2cc01783k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tubulin polyglycylation is a posttranslational modification that occurs primarily on the axonemes of flagella and cilia and has been shown to be essential for proper sperm motility. Inhibitors of both the initiase and elongase ligases (TTLL8 and TTLL10) are shown to inhibit tubulin glycylation in the low micromolar range.
Collapse
Affiliation(s)
- Zaile Zhuang
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
| | - Steven W Cummings
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, and Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, 20892, USA.
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, and Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, 20892, USA.
| | - Martin E Tanner
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
5
|
Diaminopimelic acid and its analogues: Synthesis and biological perspective. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Cao H, Li J, Zhang F, Cahard D, Ma J. Asymmetric Synthesis of Chiral Amino Carboxylic‐Phosphonic Acid Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001345] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hao‐Qiang Cao
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
| | - Jun‐Kuan Li
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
| | - Fa‐Guang Zhang
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 People's Republic of China
| | - Dominique Cahard
- CNRS UMR 6014 COBRA Normandie Université 76821 Mont Saint Aignan France
| | - Jun‐An Ma
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 People's Republic of China
| |
Collapse
|
7
|
MurE inhibitors as antibacterial agents: a review. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-01018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Shan L, Wenling Q, Mauro P, Stefano B. Antibacterial Agents Targeting the Bacterial Cell Wall. Curr Med Chem 2020; 27:2902-2926. [PMID: 32003656 DOI: 10.2174/0929867327666200128103653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 11/22/2022]
Abstract
The introduction of antibiotics to treat bacterial infections either by killing or blocking their growth has been accompanied by the studies of mechanism that allows the drugs to kill the bacteria or to stop their proliferation. In such a scenario, the emergence of antibacterial agents active on the bacterial cell wall has been of fundamental importance in the fight against bacterial agents responsible for severe diseases. As a matter of fact, the cell wall, which plays many roles during the lifecycle, is an essential constituent of most bacteria. This overview focuses on the intracellular steps of peptidoglycan biosynthesis and the research of new antibacterial agents based on the enzymes involved in these early steps of the formation of cell membrane components.
Collapse
Affiliation(s)
- Li Shan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, China
| | - Qin Wenling
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, China
| | - Panunzio Mauro
- Isof-CNR Chemistry Department, Via Selmi, 2, 40126 Bologna, Italy
| | - Biondi Stefano
- BioVersys AG, C/o Technologiepark Basel, Hochbergerstrasse 60c, CH- 4057 Basel, Switzerland
| |
Collapse
|
9
|
Azam MA, Saha N, Jupudi S. An explorative study on Staphylococcus aureus MurE inhibitor: induced fit docking, binding free energy calculation, and molecular dynamics. J Recept Signal Transduct Res 2019; 39:45-54. [PMID: 31162992 DOI: 10.1080/10799893.2019.1605528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Staphylococcus aureus MurE enzyme catalyzes the addition of l-lysine as third residue of the peptidoglycan peptide moiety. Due to the high substrate specificity and its ubiquitous nature among bacteria, MurE enzyme is considered as one of the potential target for the development of new therapeutic agents. In the present work, induced fit docking (IFD), binding free energy calculation, and molecular dynamics (MD) simulation were carried out to elucidate the inhibition potential of 2-thioxothiazolidin-4-one based inhibitor 1 against S. aureus MurE enzyme. The inhibitor 1 formed majority of hydrogen bonds with the central domain residues Asn151, Thr152, Ser180, Arg187, and Lys219. Binding free-energy calculation by MM-GBSA approach showed that van der Waals (ΔGvdW, -57.30 kcal/mol) and electrostatic solvation (ΔGsolv, -36.86 kcal/mol) energy terms are major contributors for the inhibitor binding. Further, 30-ns MD simulation was performed to validate the stability of ligand-protein complex and also to get structural insight into mode of binding. Based on the IFD and MD simulation results, we designed four new compounds D1-D4 with promising binding affinity for the S. aureus MurE enzyme. The designed compounds were subjected to the extra-precision docking and binding free energy was calculated for complexes. Further, a 30-ns MD simulation was performed for D1/4C13 complex.
Collapse
Affiliation(s)
- Mohammed Afzal Azam
- a Department of Pharmaceutical Chemistry, JSS College of Pharmacy , Ooty , Tamil Nadu , India
| | - Niladri Saha
- a Department of Pharmaceutical Chemistry, JSS College of Pharmacy , Ooty , Tamil Nadu , India
| | - Srikanth Jupudi
- a Department of Pharmaceutical Chemistry, JSS College of Pharmacy , Ooty , Tamil Nadu , India
| |
Collapse
|
10
|
Bansal R, Haque MA, Yadav P, Gupta D, Ethayathulla AS, Hassan MI, Kaur P. Estimation of structure and stability of MurE ligase from Salmonella enterica serovar Typhi. Int J Biol Macromol 2018; 109:375-382. [DOI: 10.1016/j.ijbiomac.2017.12.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 11/29/2022]
|
11
|
Liang H, DeMeester KE, Hou CW, Parent MA, Caplan JL, Grimes CL. Metabolic labelling of the carbohydrate core in bacterial peptidoglycan and its applications. Nat Commun 2017; 8:15015. [PMID: 28425464 PMCID: PMC5411481 DOI: 10.1038/ncomms15015] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023] Open
Abstract
Bacterial cells are surrounded by a polymer known as peptidoglycan (PG), which protects the cell from changes in osmotic pressure and small molecule insults. A component of this material, N-acetyl-muramic acid (NAM), serves as a core structural element for innate immune recognition of PG fragments. We report the synthesis of modifiable NAM carbohydrate derivatives and the installation of these building blocks into the backbone of Gram-positive and Gram-negative bacterial PG utilizing metabolic cell wall recycling and biosynthetic machineries. Whole cells are labelled via click chemistry and visualized using super-resolution microscopy, revealing higher resolution PG structural details and allowing the cell wall biosynthesis, as well as its destruction in immune cells, to be tracked. This study will assist in the future identification of mechanisms that the immune system uses to recognize bacteria, glean information about fundamental cell wall architecture and aid in the design of novel antibiotics. N-acetyl-muramic acid (NAM) is a core component of the bacterial peptidoglycan (PG) cell wall, and is recognised by the innate immune system. Here the authors engineer Gram-negative and Gram-positive bacteria to incorporate a modified NAM into the backbone of PG, which can be labelled with click chemistry for imaging and tracking.
Collapse
Affiliation(s)
- Hai Liang
- Department of Chemistry and Biochemistry, University of Delaware, 134 Brown Lab, Newark, Delaware 19716, USA
| | - Kristen E DeMeester
- Department of Chemistry and Biochemistry, University of Delaware, 134 Brown Lab, Newark, Delaware 19716, USA
| | - Ching-Wen Hou
- Department of Chemistry and Biochemistry, University of Delaware, 134 Brown Lab, Newark, Delaware 19716, USA
| | - Michelle A Parent
- Department of Medical Laboratory Sciences, University of Delaware, Newark, Delaware 19716, USA.,Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Jeffrey L Caplan
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA.,Bioimaging Center, Delaware Biotechnology Institute, Newark, Delaware 19716, USA
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry, University of Delaware, 134 Brown Lab, Newark, Delaware 19716, USA.,Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
12
|
Liu Y, Frirdich E, Taylor JA, Chan ACK, Blair KM, Vermeulen J, Ha R, Murphy MEP, Salama NR, Gaynor EC, Tanner ME. A Bacterial Cell Shape-Determining Inhibitor. ACS Chem Biol 2016; 11:981-91. [PMID: 26735022 DOI: 10.1021/acschembio.5b01039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Helicobacter pylori and Campylobacter jejuni are human pathogens and causative agents of gastric ulcers/cancer and gastroenteritis, respectively. Recent studies have uncovered a series of proteases that are responsible for maintaining the helical shape of these organisms. The H. pylori metalloprotease Csd4 and its C. jejuni homologue Pgp1 cleave the amide bond between meso-diaminopimelate and iso-d-glutamic acid in truncated peptidoglycan side chains. Deletion of either csd4 or pgp1 results in bacteria with a straight rod phenotype, a reduced ability to move in viscous media, and reduced pathogenicity. In this work, a phosphinic acid-based pseudodipeptide inhibitor was designed to act as a tetrahedral intermediate analog against the Csd4 enzyme. The phosphinic acid was shown to inhibit the cleavage of the alternate substrate, Ac-l-Ala-iso-d-Glu-meso-Dap, with a Ki value of 1.5 μM. Structural analysis of the Csd4-inhibitor complex shows that the phosphinic acid displaces the zinc-bound water and chelates the metal in a bidentate fashion. The phosphinate oxygens also interact with the key acid/base residue, Glu222, and the oxyanion-stabilizing residue, Arg86. The results are consistent with the "promoted-water pathway" mechanism for carboxypeptidase A catalysis. Studies on cultured bacteria showed that the inhibitor causes significant cell straightening when incubated with H. pylori at millimolar concentrations. A diminished, yet observable, effect on the morphology of C. jejuni was also apparent. Cell straightening was more pronounced with an acapsular C. jejuni mutant strain compared to the wild type, suggesting that the capsule impaired inhibitor accessibility. These studies demonstrate that a highly polar compound is capable of crossing the outer membrane and altering cell shape, presumably by inhibiting cell shape determinant proteases. Peptidoglycan proteases acting as cell shape determinants represent novel targets for the development of antimicrobials against these human pathogens.
Collapse
Affiliation(s)
- Yanjie Liu
- Contribution
from the Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Emilisa Frirdich
- Department
of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jennifer A. Taylor
- Division
of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
- Department
of Microbiology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Anson C. K. Chan
- Department
of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Kris M. Blair
- Division
of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
- Program
in Molecular and Cellular Biology, University of Washington, Seattle, Washington 98195, United States
| | - Jenny Vermeulen
- Department
of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Reuben Ha
- Department
of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Michael E. P. Murphy
- Department
of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nina R. Salama
- Division
of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
- Department
of Microbiology, University of Washington School of Medicine, Seattle, Washington 98195, United States
- Program
in Molecular and Cellular Biology, University of Washington, Seattle, Washington 98195, United States
| | - Erin C. Gaynor
- Department
of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Martin E. Tanner
- Contribution
from the Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
13
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Hrast M, Sosič I, Sink R, Gobec S. Inhibitors of the peptidoglycan biosynthesis enzymes MurA-F. Bioorg Chem 2014; 55:2-15. [PMID: 24755374 DOI: 10.1016/j.bioorg.2014.03.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 01/12/2023]
Abstract
The widespread emergence of resistant bacterial strains is becoming a serious threat to public health. This thus signifies the need for the development of new antibacterial agents with novel mechanisms of action. Continuous efforts in the design of novel antibacterials remain one of the biggest challenges in drug development. In this respect, the Mur enzymes, MurA-F, that are involved in the formation of UDP-N-acetylmuramyl-pentapeptide can be genuinely considered as promising antibacterial targets. This review provides an in-depth insight into the recent developments in the field of inhibitors of the MurA-F enzymes. Special attention is also given to compounds that act as multiple inhibitors of two, three or more of the Mur enzymes. Moreover, the reasons for the lack of preclinically successful inhibitors and the challenges to overcome these hurdles in the next years are also debated.
Collapse
Affiliation(s)
- Martina Hrast
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Roman Sink
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
15
|
Hao G, Kumar A, Dobin T, Oz OK, Hsieh JT, Sun X. A multivalent approach of imaging probe design to overcome an endogenous anion binding competition for noninvasive assessment of prostate specific membrane antigen. Mol Pharm 2013; 10:2975-85. [PMID: 23768233 DOI: 10.1021/mp4000844] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2[(3-Amino-3-carboxypropyl)(hydroxy)(phosphinyl)methyl]pentane-1,5-dioic acid) (GPI) is a highly potent inhibitor of prostate specific membrane antigen (PSMA) with a rapid in vivo clearance profile from nontarget organs including kidneys, but its use for imaging of PSMA is impeded by an endogenous anion (serum phosphate) competition, which compromises its specific binding to the antigen. Multipresentation of a targeting molecule on a single entity has been recognized as a practical way for imaging sensitivity enhancement. Herein, we demonstrate a multivalent approach based on a (64)Cu-specific bifunctional chelator scaffold to overcome the endogenous phosphate competition thus enabling the utility of GPI conjugates for in vivo detection of PSMA and imaging quantification. Both monomeric (H2CBT1G) and dimeric (H2CBT2G) conjugates were synthesized and labeled with (64)Cu for in vitro and in vivo evaluations. A 4-fold enhancement of PSMA binding affinity was observed for H2CBT2G as compared to H2CBT1G from the PSMA competitive binding assays performed on LNCaP cells. In vivo PET imaging studies were conducted on mouse xenograft models established with a PSMA(+) cell line, LNCaP, and PSMA(-) PC3 and H2009 cell lines. (64)Cu-CBT2G showed significantly higher LNCaP tumor uptake than (64)Cu-CBT1G at 1, 4, and 24 h postinjection (p.i.) (p < 0.05). In addition, tumor uptake of (64)Cu-CBT2G remained steady out to 24 h p.i. (1.46 ± 0.54, 1.12 ± 0.56, and 1.00 ± 0.50% ID/g at 1, 4, and 24 h p.i., respectively), while (64)Cu-CBT1G showed a great decrease from 1 to 4 h p.i. The PSMA imaging specificity of both H2CBT1G and H2CBT2G was demonstrated by their low uptake in PSMA(-) tumors (PC3 and H2009) and further confirmed by a significant signal reduction in PSMA(+) LNCaP tumors in the blockade study. In addition, the LNCaP tumor uptake (% ID/g) of (64)Cu-CBT2G was found to be in a positive linear correlation with the tumor size (R(2) = 0.92, 0.94, and 0.93 for 1 h, 4 h, and 24 h p.i.). This may render the probe with potential application in the management of patients with prostate cancer.
Collapse
Affiliation(s)
- Guiyang Hao
- Department of Radiology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | | | | | | | | | | |
Collapse
|
16
|
Liu Y, Garnham CP, Roll-Mecak A, Tanner ME. Phosphinic acid-based inhibitors of tubulin polyglutamylases. Bioorg Med Chem Lett 2013; 23:4408-12. [PMID: 23777780 DOI: 10.1016/j.bmcl.2013.05.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
Tubulin is subject to a reversible post-translational modification involving polyglutamylation and deglutamylation of glutamate residues in its C-terminal tail. This process plays key roles in regulating the function of microtubule associated proteins, neuronal development, and metastatic progression. This study describes the synthesis and testing of three phosphinic acid-based inhibitors that have been designed to inhibit both the glutamylating and deglutamylating enzymes. The compounds were tested against the polyglutamylase TTLL7 using tail peptides as substrates (100 μM) and the most potent inhibitor displayed an IC₅₀ value of 150 μM. The incorporation of these compounds into tubulin C-terminal tail peptides may lead to more potent TTLL inhibitors.
Collapse
Affiliation(s)
- Yanjie Liu
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | | | | | | |
Collapse
|
17
|
Abstract
The synthesis of the bacterial peptidoglycan has been recognized for over 50 years as fertile ground for antibacterial discovery. Initially, empirical screening of natural products for inhibition of bacterial growth detected many chemical classes of antibiotics whose specific mechanisms of action were eventually dissected and defined. Of the nontoxic antibiotics discovered, most were found to be inhibitors of either protein synthesis or cell wall synthesis, which led to more directed screening for inhibitors of these pathways. Directed screening and design programs for cell wall inhibitors have been undertaken since the 1960s. In that time it has become clear that, while certain steps and intermediates have yielded selective inhibitors and are established targets, other potential targets have not yielded inhibitors whose antibacterial activity is proven to be solely due to that inhibition. Why has this search been so problematic? Are the established targets still worth pursuing? This review will attempt to answer these and other questions and evaluate the viability of targets related to peptidoglycan synthesis.
Collapse
Affiliation(s)
- Lynn L Silver
- LL Silver Consulting, LLC, Springfield, New Jersey 07081, USA.
| |
Collapse
|
18
|
Anusuya S, Natarajan J. Multi-targeted therapy for leprosy: insilico strategy to overcome multi drug resistance and to improve therapeutic efficacy. INFECTION GENETICS AND EVOLUTION 2012; 12:1899-910. [PMID: 22981928 DOI: 10.1016/j.meegid.2012.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 08/01/2012] [Accepted: 08/17/2012] [Indexed: 02/02/2023]
Abstract
Leprosy remains a major public health problem, since single and multi-drug resistance has been reported worldwide over the last two decades. In the present study, we report the novel multi-targeted therapy for leprosy to overcome multi drug resistance and to improve therapeutic efficacy. If multiple enzymes of an essential metabolic pathway of a bacterium were targeted, then the therapy would become more effective and can prevent the occurrence of drug resistance. The MurC, MurD, MurE and MurF enzymes of peptidoglycan biosynthetic pathway were selected for multi targeted therapy. The conserved or class specific active site residues important for function or stability were predicted using evolutionary trace analysis and site directed mutagenesis studies. Ten such residues which were present in at least any three of the four Mur enzymes (MurC, MurD, MurE and MurF) were identified. Among the ten residues G125, K126, T127 and G293 (numbered based on their position in MurC) were found to be conserved in all the four Mur enzymes of the entire bacterial kingdom. In addition K143, T144, T166, G168, H234 and Y329 (numbered based on their position in MurE) were significant in binding substrates and/co-factors needed for the functional events in any three of the Mur enzymes. These are the probable residues for designing newer anti-leprosy drugs in an attempt to reduce drug resistance.
Collapse
Affiliation(s)
- Shanmugam Anusuya
- Department of Bioinformatics, VMKV Engineering College, Vinayaka Missions University, Salem 636 308, India.
| | | |
Collapse
|
19
|
Virtual screening of phenylsulfonamido-3-morpholinopropan-2-yl dihydrogen phosphate derivatives as novel inhibitors of MurC–MurF ligases from Mycobacterium leprae. Med Chem Res 2012. [DOI: 10.1007/s00044-011-9958-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Abstract
The discovery of novel small-molecule antibacterial drugs has been stalled for many years. The purpose of this review is to underscore and illustrate those scientific problems unique to the discovery and optimization of novel antibacterial agents that have adversely affected the output of the effort. The major challenges fall into two areas: (i) proper target selection, particularly the necessity of pursuing molecular targets that are not prone to rapid resistance development, and (ii) improvement of chemical libraries to overcome limitations of diversity, especially that which is necessary to overcome barriers to bacterial entry and proclivity to be effluxed, especially in Gram-negative organisms. Failure to address these problems has led to a great deal of misdirected effort.
Collapse
Affiliation(s)
- Lynn L Silver
- LL Silver Consulting, LLC, 955 S. Springfield Ave., Unit C403, Springfield, NJ 07081, USA.
| |
Collapse
|
21
|
Gautam A, Vyas R, Tewari R. Peptidoglycan biosynthesis machinery: a rich source of drug targets. Crit Rev Biotechnol 2010; 31:295-336. [PMID: 21091161 DOI: 10.3109/07388551.2010.525498] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The range of antibiotic therapy for the control of bacterial infections is becoming increasingly limited because of the rapid rise in multidrug resistance in clinical bacterial isolates. A few diseases, such as tuberculosis, which were once thought to be under control, have re-emerged as serious health threats. These problems have resulted in intensified research to look for new inhibitors for bacterial pathogens. Of late, the peptidoglycan (PG) layer, the most important component of the bacterial cell wall has been the subject of drug targeting because, first, it is essential for the survivability of eubacteria and secondly, it is absent in humans. The last decade has seen tremendous inputs in deciphering the 3-D structures of the PG biosynthetic enzymes. Many inhibitors against these enzymes have been developed using virtual and high throughput screening techniques. This review discusses the mechanistic and structural properties of the PG biosynthetic enzymes and inhibitors developed in the last decade.
Collapse
Affiliation(s)
- Ankur Gautam
- Department of Biotechnology, Panjab University, Chandigarh, India
| | | | | |
Collapse
|
22
|
Sova M, Kovac A, Turk S, Hrast M, Blanot D, Gobec S. Phosphorylated hydroxyethylamines as novel inhibitors of the bacterial cell wall biosynthesis enzymes MurC to MurF. Bioorg Chem 2009; 37:217-22. [PMID: 19804894 DOI: 10.1016/j.bioorg.2009.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/03/2009] [Accepted: 09/04/2009] [Indexed: 10/20/2022]
Abstract
Enzymes involved in the biosynthesis of bacterial peptidoglycan represent important targets for development of new antibacterial drugs. Among them, Mur ligases (MurC to MurF) catalyze the formation of the final cytoplasmic precursor UDP-N-acetylmuramyl-pentapeptide from UDP-N-acetylmuramic acid. We present the design, synthesis and biological evaluation of a series of phosphorylated hydroxyethylamines as new type of small-molecule inhibitors of Mur ligases. We show that the phosphate group attached to the hydroxyl moiety of the hydroxyethylamine core is essential for good inhibitory activity. The IC(50) values of these inhibitors were in the micromolar range, which makes them a promising starting point for the development of multiple inhibitors of Mur ligases as potential antibacterial agents. In addition, 1-(4-methoxyphenylsulfonamido)-3-morpholinopropan-2-yl dihydrogen phosphate 7a was discovered as one of the best inhibitors of MurE described so far.
Collapse
Affiliation(s)
- Matej Sova
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The enzyme kinetics of the amide ligase MurE, a cell wall biosynthesis enzyme, from Pseudomonas aeruginosa were determined using the synthesized nucleotide substrate UDP-MurNAc-Ala-Glu (uridine 5'-diphosphoryl N-acetylmuramoyl-L-alanyl-D-glutamate). When coupled to a competitive bio-panning technique using a M13 phage display library encoding approximately 2.7 x 10(9) random peptide permutations and the specific substrates meso-A2pm (meso-diaminopimelic acid) and ATP, a peptide inhibitor of MurE was identified. The MurEp1 dodecamer selected and synthesized inhibited MurE ATPase activity with an IC(50) value of 500 microM. The inhibition was shown to be time-dependent and was reversed by the addition of meso-A2pm or UDP-MurNAc-Ala-Glu during the pre-incubation step. Kinetic analysis defined MurEp1 as a mixed inhibitor against both substrates with K(i) values of 160 and 80 microM respectively. MurEp1 was found to interfere in meso-A2pm and UDP-MurNAc-Ala-Glu binding necessary for amide bond formation. Modelling of Ps. aeruginosa MurE and docking of MurEp1 on the Ps. aeruginosa MurE surface indicated that MurEp1 binds at the juxtaposition of both meso-A2pm- and UDP-MurNAc-Ala-Glu-binding sites in the closed conformational state of the enzyme. Identification of the MurEp1 residues involved in MurE binding and inhibition will allow the development of a novel class of inhibitors having a novel mode of action against MurE.
Collapse
|
24
|
Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 2008; 32:168-207. [PMID: 18266853 DOI: 10.1111/j.1574-6976.2008.00104.x] [Citation(s) in RCA: 482] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The biosynthesis of bacterial cell wall peptidoglycan is a complex process that involves enzyme reactions that take place in the cytoplasm (synthesis of the nucleotide precursors) and on the inner side (synthesis of lipid-linked intermediates) and outer side (polymerization reactions) of the cytoplasmic membrane. This review deals with the cytoplasmic steps of peptidoglycan biosynthesis, which can be divided into four sets of reactions that lead to the syntheses of (1) UDP-N-acetylglucosamine from fructose 6-phosphate, (2) UDP-N-acetylmuramic acid from UDP-N-acetylglucosamine, (3) UDP-N-acetylmuramyl-pentapeptide from UDP-N-acetylmuramic acid and (4) D-glutamic acid and dipeptide D-alanyl-D-alanine. Recent data concerning the different enzymes involved are presented. Moreover, special attention is given to (1) the chemical and enzymatic synthesis of the nucleotide precursor substrates that are not commercially available and (2) the search for specific inhibitors that could act as antibacterial compounds.
Collapse
Affiliation(s)
- Hélène Barreteau
- Laboratoire des Enveloppes Bactériennes et Antibiotiques, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Univ Paris-Sud, Orsay, France
| | | | | | | | | | | |
Collapse
|
25
|
Ragulin VV. Synthesis of phosphinic acids on the basis of hypophosphites: VI. General methods for synthesis of pseudo-γ-glutamylpeptides. RUSS J GEN CHEM+ 2007. [DOI: 10.1134/s1070363207050076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Strancar K, Boniface A, Blanot D, Gobec S. Phosphinate Inhibitors of UDP-N-Acetylmuramoyl-L-Alanyl-D-Glutamate:L-Lysine Ligase (MurE). Arch Pharm (Weinheim) 2007; 340:127-34. [PMID: 17335103 DOI: 10.1002/ardp.200600191] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The increasing emergence of pathogenic bacterial strains with high resistance to antibiotic therapy has created an urgent need for the development of new antibacterial agents that are directed towards novel targets. We have focused our attention on the Mur ligases (MurC-F), which catalyze the early steps of bacterial peptidoglycan biosynthesis, and which to date represent under-exploited targets for antibacterial drug design. We show that some of our phosphinate inhibitors of UDP-N-acetylmuramoyl-L-alanyl:D-glutamate ligase (MurD) also inhibits UDP-N-acetylmuramoyl-L-alanyl-D-glutamate:L-lysine ligase (MurE). To obtain new information on their structure-activity relationships, three new, structurally related phosphinates were synthesized and evaluated for inhibition of MurD and MurE.
Collapse
Affiliation(s)
- Katja Strancar
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
27
|
Lukáš M, Vojtíšek P, Hermann P, Rohovec J, Lukeš I. SYNTHESIS OF PHOSPHINIC ACID ANALOGUES OF GLYCYL–GLYCINE AND CRYSTAL STRUCTURE OF N-GLYCYL-AMINOMETHYL-(PHENYLPHOSPHINIC) ACID. SYNTHETIC COMMUN 2006. [DOI: 10.1081/scc-120001512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Michal Lukáš
- a Department of Inorganic Chemistry, Faculty of Sciences, Universita Karlova , Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Pavel Vojtíšek
- a Department of Inorganic Chemistry, Faculty of Sciences, Universita Karlova , Hlavova 2030, 128 40 Prague 2, Czech Republic
| | | | - Jan Rohovec
- a Department of Inorganic Chemistry, Faculty of Sciences, Universita Karlova , Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Ivan Lukeš
- a Department of Inorganic Chemistry, Faculty of Sciences, Universita Karlova , Hlavova 2030, 128 40 Prague 2, Czech Republic
| |
Collapse
|
28
|
Silver LL. Does the cell wall of bacteria remain a viable source of targets for novel antibiotics? Biochem Pharmacol 2005; 71:996-1005. [PMID: 16290173 DOI: 10.1016/j.bcp.2005.10.029] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2005] [Revised: 10/13/2005] [Accepted: 10/17/2005] [Indexed: 11/19/2022]
Abstract
Whether the bacterial cell wall remains a viable source of novel antibacterials is addressed here by reviewing screen and design strategies for discovery of antibacterials with a focus on their output. Inhibitors for which antibacterial activity has been shown to be due to specific inhibition of a reaction (antibacterially validated inhibitors) are known for 8 of the 14 conserved essential steps of the pathway. Antibacterially validated enzyme inhibitors exist for six of these steps. The possible obstacles to finding validated inhibitors of the remaining enzymes are discussed and some strategies are suggested.
Collapse
Affiliation(s)
- Lynn L Silver
- LL Silver Consulting (LLC), 3403 Park Place, Springfield, NJ 07081, USA.
| |
Collapse
|
29
|
Hiratake J. Enzyme inhibitors as chemical tools to study enzyme catalysis: rational design, synthesis, and applications. CHEM REC 2005; 5:209-28. [PMID: 16041744 DOI: 10.1002/tcr.20045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Carefully designed molecules that are intimately related to the reaction mechanism of enzymes are often highly selective and potent inhibitors that serve as extremely useful chemical probes for understanding the reaction mechanism and structure of enzymes. This article describes the design, synthesis, and applications of specific inhibitors of two mechanistically distinct groups of enzymes, ATP-dependent amide ligases and Ser- and Thr-hydrolases. Our strategy is based on the premise that stable analogues of the transition state (transition-state analogues) are highly potent inhibitors that serve as good mechanistic probes, and that a key structure of a good inhibitor of one enzyme is also utilized for the inhibitors of other enzymes that share the same chemistry in their catalyzed reactions, irrespective of the degree of structural similarity and evolutionary link between the enzymes. According to these principles, we designed and synthesized a series of phosphinate- and sulfoximine-based transition-state analogue inhibitors of glutathione synthetase, gamma-glutamylcysteine synthetase and asparagine synthetase. For the second group of enzymes, we synthesized a gamma-monofluorophosphono glutamate analogue for mechanism-based affinity labeling of gamma-glutamyltranspeptidase and fluorescent phosphonic acid esters for the active-site titration of lipase. These inhibitors were used successfully as ligands for detailed kinetic analyses, X-ray crystallography, and mass analysis of the enzymes to identify the key amino acid residues responsible for catalysis and substrate recognition in the transition state.
Collapse
Affiliation(s)
- Jun Hiratake
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
30
|
Rozhko LF, Ragulin VV. Method for the synthesis of phosphinic acids from hypophosphites V. The synthesis of pseudo-α,α-dipeptides. Amino Acids 2005; 29:139-43. [PMID: 15880266 DOI: 10.1007/s00726-005-0194-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 02/21/2005] [Indexed: 10/25/2022]
Abstract
The method for the synthesis of 2-substituted 2-hydroxycarbonylethyl-1-aminoalkylphosphinic acids (I) (pseudo-alpha,alpha-dipeptides) from ammonium and potassium hypophosphites (II) is described. The proposed route to the synthesis of pseudo-alpha,alpha-dipeptides consists in addition hypophosphite to acrylic compounds and formation of the first phosphorus-carbon bond with following addition of aminoacid fragment and formation of the second phosphorus-carbon bond. The key intermediates of the synthesis - phosphonous acids (III) and their silylic esters (IV) were obtained at the first stage of the process as the result of the addition of the bis(trimethylsilyl)hypophosphite in situ to suitably substituted acrylates. The modificated procedure for the Kabachnik-Fields reaction of 2-substituted 2-alkoxycarbonylethyl phosphonous acids (III), acetamide, benzaldehyde in acetic anhydride with following hydrolysis results in 2-substituted 2-hydroxycarbonylethyl-alpha-aminobenzyl phosphinic acids (Ia-c) (pseudo-phenylglycylpeptides). Bis(trimethylsilyl) 2-substituted 2-alkoxycarbonylethylphosphonites (IV) in situ were added to N-tritylmethanimine and following alcoholysis and acid hydrolysis of addition products gave 2-substituted 2-hydroxycarbonylethyl-aminomethylphosphinic acids (Id-f) (pseudo-glycylpeptides).
Collapse
Affiliation(s)
- L F Rozhko
- Laboratory of Organic Phosphorus Compounds, Institute of Physiologically Active Compounds of Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | | |
Collapse
|
31
|
Synthesis of phosphinic acids on the basis of hypophosphites: IV. Synthesis of pseudo-γ-glutamylglycine and its enantiomers. RUSS J GEN CHEM+ 2004. [DOI: 10.1007/s11176-005-0133-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Abstract
Over the past forty years, efforts to discover antibacterials have yielded a wide variety of chemical structures, almost exclusively natural products, which inhibit many steps in cell wall synthesis. Although screening for new cell wall inhibitors has been continuous during that period, there have been few reports of new drugs. With the advent of genomics, high resolution X-ray crystallography and the recognition of the need for new antibiotics to combat resistant organisms, there has been a resurgence in interest in this validated target area.
Collapse
Affiliation(s)
- Lynn L Silver
- Department of Human and Animal Infectious Diseases, Merck & Co., Rahway, NJ 07065, USA.
| |
Collapse
|
33
|
El Zoeiby A, Beaumont M, Dubuc E, Sanschagrin F, Voyer N, Levesque RC. Combinatorial enzymatic assay for the screening of a new class of bacterial cell wall inhibitors. Bioorg Med Chem 2003; 11:1583-92. [PMID: 12628682 DOI: 10.1016/s0968-0896(02)00447-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have developed a screening assay by thin-layer chromatography (TLC) to identify inhibitors for the bacterial essential enzymes MurA, -B, and -C. Libraries of compounds were synthesized using the mix-and-split combinatorial chemistry approach. Screening of the pooled compounds using the developed assay revealed the presence of many pools active in vitro. Pools of interest were tested for antibacterial activity. Individual molecules in the active pools were synthesized and retested with the TLC assay and with bacteria. We focused on the best five compounds for further analysis. They were tested for inhibition on each of the three enzymes separately, and showed no inhibition of MurA or MurB activity but were all inhibitors of MurC enzyme. This approach yielded interesting lead compounds for the development of novel antibacterial agents.
Collapse
Affiliation(s)
- Ahmed El Zoeiby
- Centre de recherche sur la fonction, structure et ingénierie des protéines, Faculté de médecine, pavillon Charles-Eugène-Marchand, Université Laval, Sainte-Foy, Québec, G1K 7P4, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Bouhss A, Dementin S, van Heijenoort J, Parquet C, Blanot D. MurC and MurD synthetases of peptidoglycan biosynthesis: borohydride trapping of acyl-phosphate intermediates. Methods Enzymol 2003; 354:189-96. [PMID: 12418226 DOI: 10.1016/s0076-6879(02)54015-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ahmed Bouhss
- UMR 8619 CNRS, Université de Paris-Sud, 91405 Orsay, France
| | | | | | | | | |
Collapse
|
35
|
El Zoeiby A, Sanschagrin F, Levesque RC. Structure and function of the Mur enzymes: development of novel inhibitors. Mol Microbiol 2003; 47:1-12. [PMID: 12492849 DOI: 10.1046/j.1365-2958.2003.03289.x] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One of the biggest challenges for recent medical research is the continuous development of new antibiotics interacting with bacterial essential mechanisms. The machinery for peptidoglycan biosynthesis is a rich source of crucial targets for antibacterial chemotherapy. The cytoplasmic steps of the biosynthesis of peptidoglycan precursor, catalysed by a series of Mur enzymes, are excellent candidates for drug development. There has been growing interest in these bacterial enzymes over the last decade. Many studies attempted to understand the detailed mechanisms and structural features of the key enzymes MurA to MurF. Only MurA is inhibited by a known antibiotic, fosfomycin. Several attempts made to develop novel inhibitors of this pathway are discussed in this review. Three novel inhibitors of MurA were identified recently. 4-Thiazolidinone compounds were designed as MurB inhibitors. Many phosphinic acid derivatives and substrate analogues were identified as inhibitors of the MurC to MurF amino acid ligases.
Collapse
Affiliation(s)
- Ahmed El Zoeiby
- Centre de Recherche sur la Fonction, Structure et Ingénierie des Protéines, Faculté de Médecine, Pavillon Charles-Eugène Marchand, Université Laval, Ste-Foy, Québec, Canada, G1K 7P4
| | | | | |
Collapse
|
36
|
Winqvist A, Strömberg R. Reactions of 3′-C-Halomethyl and 3′-C-Sulfonylmethyl Uridines with Phosphinic Acid Derivatives − Synthesis of Building Blocks for Oligonucleotides Containing 3′-C-Methylenephosphonate Linkages. European J Org Chem 2002. [DOI: 10.1002/1099-0690(200205)2002:9<1509::aid-ejoc1509>3.0.co;2-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Abstract
This review focuses on target-based approaches for developing new chemical classes of antibacterial agents aimed at the bacterial cell wall. The clinical success of antibiotics such as beta-lactams and glycopeptides validates this chemotherapeutic strategy and emerging resistance to these agents warrants the development of new antibacterial drugs. Understanding the mechanism of action and resistance to beta-lactams and glycopeptides at a molecular level has supported the development of new agents that prevent transpeptidation and transglycosylation reactions of peptidoglycan polymerisation. The enzymes involved in the synthesis of the peptidoglycan structural unit have also been targeted for antibacterial discovery. The influence of bacterial genetics and genomics, structural biology, assay development and the properties of known inhibitors on these approaches will be discussed in the context of drug discovery.
Collapse
Affiliation(s)
- David W Green
- Cubist Pharmaceuticals, Inc., 65 Hayden Ave., Lexington, MA 02421, USA.
| |
Collapse
|
38
|
Reck F, Marmor S, Fisher S, Wuonola MA. Inhibitors of the bacterial cell wall biosynthesis enzyme MurC. Bioorg Med Chem Lett 2001; 11:1451-4. [PMID: 11378375 DOI: 10.1016/s0960-894x(01)00251-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of phosphinate transition-state analogues of the L-alanine adding enzyme (MurC) of bacterial peptidoglycan biosynthesis was prepared and tested as inhibitors of the Escherichia coli enzyme. Compound 4 was identified as a potent inhibitor of MurC from Escherichia coli with an IC(50) of 49nM.
Collapse
Affiliation(s)
- F Reck
- Chemistry, Infection Discovery, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | | | | | | |
Collapse
|
39
|
Valiaeva N, Bartley D, Konno T, Coward JK. Phosphinic acid pseudopeptides analogous to glutamyl-gamma-glutamate: synthesis and coupling to pteroyl azides leads to potent inhibitors of folylpoly-gamma-glutamate synthetase. J Org Chem 2001; 66:5146-54. [PMID: 11463268 DOI: 10.1021/jo010283t] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several routes to a complex phosphinate phosphapeptide analogous to the gamma-glutamyl peptide Glu-gamma-Glu have been investigated. Formation of gamma-phosphono glutamate derivatives via addition of a phosphorus-based radical to protected vinylglycine was found to be of limited value because of the elevated temperatures required. Alkylation and conjugate addition reactions of trivalent phosphorus (P(III)) species were investigated. In situ generation of bis-trimethylsilyl esters of phosphinous acids proved to be an effective route to phosphinates of modest structural complexity. However, this chemistry could not be extended to the incorporation of an amino acid moiety at the N-terminal side of the desired phosphinate. A successful synthesis of the target phosphinate phosphapeptide was effected using P(III) chemistry and dehydrohalogenation to yield an alpha,beta-unsaturated phosphinic acid ester, following which conjugate addition of diethylacetamido malonate and acid-mediated hydrolysis afforded the desired phosphinate phosphapeptide. Coupling of the unprotected phosphinate phosphapeptide with two acyl azides derived from folic acid and methotrexate led to the corresponding pteroylphosphapeptides of interest as possible mimics of tetrahedral intermediates in the reaction catalyzed by folylpolyglutamate synthetase.
Collapse
Affiliation(s)
- N Valiaeva
- Departments of Medicinal Chemistry and Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | |
Collapse
|
40
|
VanNieuwenhze MS, Mauldin SC, Zia-Ebrahimi M, Aikins JA, Blaszczak LC. The total synthesis of lipid I. J Am Chem Soc 2001; 123:6983-8. [PMID: 11459476 DOI: 10.1021/ja016082o] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A total synthesis of lipid I (4), a membrane-associated intermediate in the bacterial cell wall (peptidoglycan) biosynthesis pathway, is reported. This highly convergent synthesis will enable further studies on bacterial resistance mechanisms and may provide insight toward the development of new chemotherapeutic agents with novel modes of action.
Collapse
Affiliation(s)
- M S VanNieuwenhze
- Discovery Chemistry Research and Chemical Process Research and Development, Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, USA
| | | | | | | | | |
Collapse
|
41
|
El Zoeiby A, Sanschagrin F, Havugimana PC, Garnier A, Levesque RC. In vitro reconstruction of the biosynthetic pathway of peptidoglycan cytoplasmic precursor in Pseudomonas aeruginosa. FEMS Microbiol Lett 2001; 201:229-35. [PMID: 11470366 DOI: 10.1111/j.1574-6968.2001.tb10761.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Bacterial peptidoglycan is the cell wall component responsible for maintaining cell integrity against osmotic pressure. Biosynthesis of the cytoplasmic precursor UDP-N-acetylmuramyl pentapeptide is catalyzed by the Mur enzymes. Genomic analysis of the three regions encoding Mur proteins was achieved. We have cloned and over-expressed the murA, -B, -D, -E and -F genes of Pseudomonas aeruginosa in pET expression system by adding a His-Tag to the C-termini of the proteins. Mur proteins were purified to homogeneity by a single chromatographic step on affinity nickel columns. Protein identities were verified through N-terminal sequencing. Enzyme activity was proved by the identification of the pathway's final product.
Collapse
Affiliation(s)
- A El Zoeiby
- Centre de Recherche sur la Fonction, Structure et Ingénierie des Protéines, Faculté de Médecine, Ste-Foy, QC, Canada
| | | | | | | | | |
Collapse
|