1
|
Catalysis on Nanostructured Indium Tin Oxide Surface for Fast and Inexpensive Probing of Antibodies during Pandemics. Catalysts 2021. [DOI: 10.3390/catal11020191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global threat to human health and the economy. Society needs inexpensive, fast, and accurate quantitative diagnostic tools. Here, we report a new approach using a solid-state biosensor to measure antibodies, which does not require functionalization, unlike conventional biosensors. A nanostructured semiconductor surface with catalytic properties was used as a transducer for rapid immobilization and measurement of the antibody. The transducer response was based on solid-state electronics properties. The changes on the surface of the semiconductor induced changes in the direct current (DC) surface resistivity. This was a result of a catalytic chemical reaction on that surface. This new low-cost approach reduced the response time of the measurement significantly, and it required only a very small amount of sample on the microliter scale.
Collapse
|
2
|
Amit M, Yuran S, Gazit E, Reches M, Ashkenasy N. Tailor-Made Functional Peptide Self-Assembling Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707083. [PMID: 29989255 PMCID: PMC7616936 DOI: 10.1002/adma.201707083] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/05/2018] [Indexed: 05/08/2023]
Abstract
Noncovalent interactions are the main driving force in the folding of proteins into a 3D functional structure. Motivated by the wish to reveal the mechanisms of the associated self-assembly processes, scientists are focusing on studying self-assembly processes of short protein segments (peptides). While this research has led to major advances in the understanding of biological and pathological process, only in recent years has the applicative potential of the resulting self-assembled peptide assemblies started to be explored. Here, major advances in the development of biomimetic supramolecular peptide assemblies as coatings, gels, and as electroactive materials, are highlighted. The guiding lines for the design of helical peptides, β strand peptides, as well as surface binding monolayer-forming peptides that can be utilized for a specific function are highlighted. Examples of their applications in diverse immerging applications in, e.g., ecology, biomedicine, and electronics, are described. Taking into account that, in addition to extraordinary design flexibility, these materials are naturally biocompatible and ecologically friendly, and their production is cost effective, the emergence of devices incorporating these biomimetic materials in the market is envisioned in the near future.
Collapse
Affiliation(s)
- Moran Amit
- Department of Materials Engineering Ben Gurion University of the Negev Beer-Sheva 84105, Israel; Department of Electrical and Computer Engineering, UC San Diego, La Jolla, CA 92093-0407, USA
| | - Sivan Yuran
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nurit Ashkenasy
- Department of Materials Engineering Ben Gurion University of the Negev Beer-Sheva 84105, Israel
| |
Collapse
|
3
|
Han P, Guo R, Wang Y, Yao L, Liu C. Bidirectional Electron-Transfer in Polypeptides with Various Secondary Structures. Sci Rep 2017; 7:16445. [PMID: 29180651 PMCID: PMC5703997 DOI: 10.1038/s41598-017-16678-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/16/2017] [Indexed: 12/25/2022] Open
Abstract
The protein-mediated bidirectional electron transfer (ET) is the foundation of protein molecular wire, and plays an important role in the rapid detection of oxo-guanine-adenine DNA mismatches by MutY glycosylase. However, the influences of structural transitions on bidirectional ET are still not clear. In this work, the modified through-bond coupling (MTBC) model was further refined to correlate the structural transition and ET rate more quantitatively. With this model, various polyglycine structures (310-helix, α-helix, β-sheets, linear, polyproline helical I and II) were studied to explore the influences of structural transitions on bidirectional ET. It was found that the HOMO-LUMO gaps (ΔE) in CN (from the carboxyl to amino terminus) direction are much lower than that in opposite direction, except for polypro I. However, with the equal tunneling energy, the differences between bidirectional ET rates are slight for all structures. In structural transitions, we found that the ET rates are not only affected by the Ramachandran angles, but also correlated to the alignment of C = O vectors, the alignment of peptide planes and the rearrangement of other structure factors. The detailed information can be used to rationalize the inhomogeneous ET across different protein structures and design more efficient protein molecular wires.
Collapse
Affiliation(s)
- Ping Han
- Department of Neurology, Haici Hospital Affiliated to Medical College of Qingdao University, Qingdao, 266033, Shandong, P.R. China
| | - Ruiyou Guo
- Department of Neurology, Haici Hospital Affiliated to Medical College of Qingdao University, Qingdao, 266033, Shandong, P.R. China
| | - Yefei Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, P.R. China.
| | - Lishan Yao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, P.R. China
| | - Chengbu Liu
- Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, Shandong, China
| |
Collapse
|
4
|
Rawtani D, Kuntmal B, Agrawal Y. Charge transfer in DNA and its diverse modelling approaches. FRONTIERS IN LIFE SCIENCE 2016. [DOI: 10.1080/21553769.2016.1207570] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Deepak Rawtani
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhi Nagar, Gujarat, India
| | - Binal Kuntmal
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhi Nagar, Gujarat, India
| | - Y. Agrawal
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhi Nagar, Gujarat, India
| |
Collapse
|
5
|
Donoli A, Marcuzzo V, Moretto A, Crisma M, Toniolo C, Cardena R, Bisello A, Santi S. New bis-ferrocenyl end-capped peptides: synthesis and charge transfer properties. Biopolymers 2016; 100:14-24. [PMID: 23335164 DOI: 10.1002/bip.22197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/26/2012] [Accepted: 10/30/2012] [Indexed: 01/19/2023]
Abstract
In this article, the successful preparation of a new series of 3(10) -helical peptides of different length containing two terminal ferrocenyl (Fc) units and based on the strongly foldameric α-aminoisobutyric (Aib) acid is reported. The synthesis of the Fc-CO-(Aib)(n) -NH-Fc (n = 1-5) homo-peptides was performed by solution methods. Moderate to good yields (26-85%) were obtained in each of the difficult coupling steps of Fc-COOH and the corresponding H-(Aib)(n)-NH-Fc compounds by C-activation with the 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide/7-aza-1-hydroxy-1,2,3-benzotriazole method. Information on the C=O···H-N intramolecularly hydrogen-bonded networks was initially obtained from FT-IR absorption measurements. The N-H stretching (amide A) region allowed us to distinguish which amide protons are involved in intramolecular hydrogen bonds and indicates the formation of an incipient 3(10) -helix structure for peptides containing at least two Aib residues. This conclusion was confirmed by (1)H NMR titrations of the N-H groups of the peptides in CDCl(3) with dimethylsulfoxide and by crystallographic analysis of the N(α) -acylated Fc-CO-(Aib)(5)-NH-Fc pentapeptide amide. The two redox-active Fc groups covalently bound to the termini of the foldameric peptide architectures were used as electrochemical probes. The end-to-end effects of electron holes generated by single and double oxidations were analyzed by means of electrochemical and spectroelectrochemical techniques. The results of these studies indicate that charge transfer across the peptide main chain does occur in the five peptides. In particular, in the pentapeptide 5, charge is transferred through an intramolecular Fe···Fe separation of 14 Å.
Collapse
Affiliation(s)
- Alessandro Donoli
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Kavitha L, Priya R, Ayyappan N, Gopi D, Jayanthi S. Energy transport mechanism in the form of proton soliton in a one-dimensional hydrogen-bonded polypeptide chain. J Biol Phys 2015. [PMID: 26198375 DOI: 10.1007/s10867-015-9389-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The dynamics of protons in a one-dimensional hydrogen-bonded (HB) polypeptide chain (PC) is investigated theoretically. A new Hamiltonian is formulated with the inclusion of higher-order molecular interactions between peptide groups (PGs). The wave function of the excitation state of a single particle is replaced by a new wave function of a two-quanta quasi-coherent state. The dynamics is governed by a higher-order nonlinear Schrödinger equation and the energy transport is performed by the proton soliton. A nonlinear multiple-scale perturbation analysis has been performed and the evolution of soliton parameters such as velocity and amplitude is explored numerically. The proton soliton is thermally stable and very robust against these perturbations. The energy transport by the proton soliton is more appropriate to understand the mechanism of energy transfer in biological processes such as muscle contraction, DNA replication, and neuro-electric pulse transfer on biomembranes.
Collapse
Affiliation(s)
- L Kavitha
- Department of Physics, School of Basic and Applied Sciences, Central University of Tamilnadu, Thiruvarur, 610 101, Tamilnadu, India. .,The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.
| | - R Priya
- Department of Physics, Periyar University, Salem, 636 011, Tamilnadu, India
| | - N Ayyappan
- Department of Physics, School of Basic and Applied Sciences, Central University of Tamilnadu, Thiruvarur, 610 101, Tamilnadu, India
| | - D Gopi
- Center for Nanoscience and Nanotechnology, Periyar University, Salem, 636 011, Tamilnadu, India.,Department of Chemistry, Periyar University, Salem, 636 011, Tamilnadu, India
| | - S Jayanthi
- Department of Physics, Periyar University, Salem, 636 011, Tamilnadu, India
| |
Collapse
|
7
|
|
8
|
Kuleff AI, Lünnemann S, Cederbaum LS. Electron-correlation-driven charge migration in oligopeptides. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2012.02.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Wang YF, Yu ZY, Wu J, Liu CB. Electron delocalization and charge transfer in polypeptide chains. J Phys Chem A 2010; 113:10521-6. [PMID: 19731905 DOI: 10.1021/jp9020036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, the electron structure and charge-transfer mechanism in polypeptide chains are investigated according to natural bond orbitals (NBO) analysis at the level of B3LYP/6-311++G**. The results indicate that the delocalization of electrons between neighboring peptide subgroups can occur in two opposite directions, and the delocalization effect in the direction from the carboxyl end to the amino end has an obvious advantage. As a result of a strong hyperconjugative interaction, the lowest unoccupied NBO of the peptide subgroup, pi*C-O, has significant delocalization to neighboring subgroups, and the energies of these NBOs decrease from the carboxyl end to the amino end. The formation of intramolecular O...H-N type hydrogen bonds also helps to delocalize the electron from the carboxyl end to the amino end. Thus, the electron will flow to the amino end. The superexchange mechanism is suggested in the electron-transfer process.
Collapse
Affiliation(s)
- Ye-Fei Wang
- Institute of Theoretical Chemistry, Shandong University, Jinan 250100 Shandong, China
| | | | | | | |
Collapse
|
10
|
Gil A, Sodupe M, Bertran J. Influence of ionization on the conformational preferences of peptide models. Ramachandran surfaces of N-formyl-glycine amide and N-formyl-alanine amide radical cations. J Comput Chem 2009; 30:1771-84. [PMID: 19090571 DOI: 10.1002/jcc.21178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ramachandran maps of neutral and ionized HCO-Gly-NH2 and HCO-Ala-NH2 peptide models have been built at the B3LYP/6-31++G(d,p) level of calculation. Direct optimizations using B3LYP and the recently developed MPWB1K functional have also been carried out, as well as single-point calculations at the CCSD(T) level of theory with the 6-311++G(2df,2p) basis set. Results indicate that for both peptide models ionization can cause drastic changes in the shape of the PES in such a way that highly disallowed regions in neutral PES become low-energy regions in the radical cation surface. The structures localized in such regions, epsilonL+* and epsilonD+* are highly stabilized due to the formation of 2-centre-3-electron interactions between the two carbonyl oxygens. Inclusion of solvent effects by the conductor-like polarizable continuum model (CPCM) shows that the solute-solvent interaction energy plays an important role in determining the stability order.
Collapse
Affiliation(s)
- Adrià Gil
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
11
|
Abstract
A pump–probe experiment that can examine a pure charge migration on a time scale short compared to the onset of nuclear motion is discussed. The mass spectrometric studies of Schlag et al. suggest that short peptide terminated by an aromatic amino acid are particularly suitable test compounds. The pump pulse needs to ionize the molecule on a time scale short compared to the period of the electronic motion, typically sub-fs. However, ionization occurs preferentially when the electrical field of the light is maximal so that the duration of the pulse envelope can be somewhat longer. Detection by photoelectron spectrometry of the peptide cation, to produce a dication, is shown to be able to probe the electronic rearrangement.
Collapse
|
12
|
Wang YF, Yang G, Liu CB. Electron transfers in proteins: investigations with a modified through-bond coupling model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:021927. [PMID: 19792171 DOI: 10.1103/physreve.80.021927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 07/15/2009] [Indexed: 05/28/2023]
Abstract
By integrating the merits of previous models, a modified through-bond coupling (MTBC) model is proposed in this work and shows obvious improvement compared with previous models. With the MTBC model, the dominant electron coupling pathways in the polypeptide chains were identified, where the N-H bonds were found to be essential to the electron couplings. The local structures of peptides and proteins were finely characterized by the electron couplings and decay factors since they are structure sensitive. The neighboring carbonyl O-O distances are qualitatively correlated with the decay factors, and the deviations from the transconfigurations will weaken the coupling interactions. When the two amino acids being studied are not close in sequence, the couplings through hydrogen bonds are probably the main pathway because the electron transfers in this way save many steps, albeit the decay factor is less than that of per bond, consistent with the classical electron-tunneling model developed by Beratan [Science 252, 1285 (1991)]. It was found that the MTBC model can be effectively extended to study the electron transfers in complex biological systems with the combination of the fragment approach, which takes into account the contributions of key hydrogen bonds.
Collapse
Affiliation(s)
- Ye-Fei Wang
- Institute of Theoretical Chemistry, Shandong University, Jinan, 250100 Shandong, People's Republic of China
| | | | | |
Collapse
|
13
|
Santhanamoorthi N, Kolandaivel P, Senthilkumar K. Effect of conformational degrees of freedom on the charge transfer in model tripeptide. J Mol Graph Model 2009; 27:784-91. [DOI: 10.1016/j.jmgm.2008.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 11/18/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
|
14
|
Chen X, Zhang L, Wang Z, Li J, Wang W, Bu Y. Relay Stations for Electron Hole Migration in Peptides: Possibility for Formation of Three-Electron Bonds along Peptide Chains. J Phys Chem B 2008; 112:14302-11. [DOI: 10.1021/jp805910x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiaohua Chen
- The Center for Modeling and Simulation Chemistry, Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
| | - Liang Zhang
- The Center for Modeling and Simulation Chemistry, Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
| | - Zhiping Wang
- The Center for Modeling and Simulation Chemistry, Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
| | - Jilai Li
- The Center for Modeling and Simulation Chemistry, Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
| | - Wen Wang
- The Center for Modeling and Simulation Chemistry, Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
| | - Yuxiang Bu
- The Center for Modeling and Simulation Chemistry, Institute of Theoretical Chemistry, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
15
|
Takeda K, Morita T, Kimura S. Effects of Monolayer Structures on Long-Range Electron Transfer in Helical Peptide Monolayer. J Phys Chem B 2008; 112:12840-50. [DOI: 10.1021/jp805711v] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Kazuki Takeda
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoyuki Morita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsaku Kimura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
16
|
Alfinito E, Pennetta C, Reggiani L. A network model to correlate conformational change and the impedance spectrum of single proteins. NANOTECHNOLOGY 2008; 19:065202. [PMID: 21730695 DOI: 10.1088/0957-4484/19/6/065202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Integrated nanodevices based on proteins or biomolecules are attracting increasing interest in today's research. In fact, it has been shown that proteins such as azurin and bacteriorhodopsin manifest some electrical properties that are promising for the development of active components of molecular electronic devices. Here we focus on two relevant kinds of protein: bovine rhodopsin, prototype of G-protein-coupled-receptor (GPCR) proteins, and the enzyme acetylcholinesterase (AChE), whose inhibition is one of the most qualified treatments of Alzheimer's disease. Both these proteins exert their function starting with a conformational change of their native structure. Our guess is that such a change should be accompanied with a detectable variation of their electrical properties. To investigate this conjecture, we present an impedance network model of proteins, able to estimate the different impedance spectra associated with the different configurations. The distinct types of conformational change of rhodopsin and AChE agree with their dissimilar electrical responses. In particular, for rhodopsin the model predicts variations of the impedance spectra up to about 30%, while for AChE the same variations are limited to about 10%, which supports the existence of a dynamical equilibrium between its native and complexed states.
Collapse
Affiliation(s)
- Eleonora Alfinito
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Via Arnesano, Lecce, Italy. Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Italy
| | | | | |
Collapse
|
17
|
Schlag EW, Sheu SY, Yang DY, Selzle HL, Lin SH. Distal charge transport in peptides. Angew Chem Int Ed Engl 2007; 46:3196-210. [PMID: 17372995 DOI: 10.1002/anie.200601623] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Biological systems often transport charges and reactive processes over substantial distances. Traditional models of chemical kinetics generally do not describe such extreme distal processes. In this Review, an atomistic model for a distal transport of information, which was specifically developed for peptides, is considered. Chemical reactivity is taken as the result of distal effects based on two-step bifunctional kinetics involving unique, very rapid motional properties of peptides in the subpicosecond regime. The bifunctional model suggests highly efficient transport of charge and reactivity in an isolated peptide over a substantial distance; conversely, a very low efficiency in a water environment was found. The model suggests ultrafast transport of charge and reactivity over substantial molecular distances in a peptide environment. Many such domains can be active in a protein.
Collapse
Affiliation(s)
- Edward W Schlag
- Institut für Physikalische und Theoretische Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.
| | | | | | | | | |
Collapse
|
18
|
Schlag E, Sheu SY, Yang DY, Selzle H, Lin S. Distaler Ladungstransport in Peptiden. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200601623] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Maul R, Ortmann F, Preuss M, Hannewald K, Bechstedt F. DFT studies using supercells and projector-augmented waves for structure, energetics, and dynamics of glycine, alanine, and cysteine. J Comput Chem 2007; 28:1817-33. [PMID: 17394241 DOI: 10.1002/jcc.20683] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A large variety of gas phase conformations of the amino acids glycine, alanine, and cysteine is studied by numerically efficient semi-local gradient-corrected density functional theory calculations using a projector-augmented wave scheme and periodic boundary conditions. Equilibrium geometries, conformational energies, dipole moments, vibrational modes, and IR optical spectra are calculated from first principles. A comparison of our results with values obtained from quantum-chemistry methods with localized basis sets and nonlocal exchange-correlation functionals as well as with experimental data is made. For conformations containing strong intramolecular hydrogen bonds deviations in their energetic ordering occur, which are traced back to different treatments of spatial nonlocality in the exchange-correlation functional. However, even for these structures, the comparison of calculated and measured vibrational frequencies shows satisfying agreement.
Collapse
Affiliation(s)
- R Maul
- Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität, Max-Wien-Platz 1, 07743 Jena, Germany
| | | | | | | | | |
Collapse
|
20
|
Dehareng D, Dive G. Charge Transfer Study through the Determination of the Ionization Energies of Tetrapeptides X3-Tyr, X = Gly, Ala, or Leu. Influence of the Inclusion of One Glycine in Alanine and Leucine Containing Peptides. J Phys Chem A 2006; 110:11975-87. [PMID: 17064186 DOI: 10.1021/jp064255w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The energies of the fundamental and several excited states of tetrapeptide radical cations were determined at the outer valence Green's function (OVGF) level, at three geometries corresponding to the lowest energy conformations: two for the neutral and one for the cation. The conformations were optimized at the density functional theory level within the B3LYP framework. It was found that, from a purely energetic point of view, a charge initially created on the tyrosine chromophore could migrate without any geometrical change and without further activation once the excited electronic state of the ionized chromophore was formed. This migration could reach the NH(2) terminus for the neutral conformations but should stop at the adjacent peptide link for the cation conformation. These results stress the probable influence of the electronic coupling between the states rather than the existence of a barrier on the charge pathway to explain the difference between the peptides in the charge-transfer process leading to the loss of an iminium [NH(2)=CHR](+) cation. The dissociation energy of the asymptote related to the formation of this NH(2) terminus iminium cation was calculated for few species and it appears that the excess energy available for dissociation is significant when starting from the lowest energy conformations of the neutral or the cation, provided that the charge transfer is effective. It was also found that the amino acids did not conserve their energetic properties and their zero order energy levels turned to a complete new energetic scheme corresponding to the conformation of the peptide.
Collapse
Affiliation(s)
- Dominique Dehareng
- Centre d'Ingéniérie des Protéines, Institut de Chimie B6a, Sart Tilman, B4000, Liège, Belgium.
| | | |
Collapse
|
21
|
Santhanamoorthi N, Kolandaivel P, Senthilkumar K. Charge Transfer in Polypeptides: Effect of Secondary Structures on Charge-Transfer Integral and Site Energies. J Phys Chem A 2006; 110:11551-6. [PMID: 17020269 DOI: 10.1021/jp063069n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have theoretically studied the charge transfer in glycine polypeptide using quantum mechanical models based on a tight-binding Hamiltonian approach. The charge-transfer integrals and site energies involved in the transport of positive charge through the peptide bond in glycine polypeptide have been calculated. The charge-transfer integrals and site energies have been calculated directly from the matrix elements of the Kohn-Sham Hamiltonian defined in terms of the molecular orbitals of the individual fragments of the glycine polypeptide. In addition to this, we have calculated the rate of charge transfer between a neighboring amino acid subgroup through the Marcus rate equation. These calculations have been performed for the different secondary structures of the glycine model peptide such as linear, alpha-helix, 3(10)-helix, and antiparallel beta-sheet by varying the dihedral angles omega, varphi, and psi along the Calpha-carbon of amino acid subgroup. Present theoretical results confirm that the charge transfer through the peptide bond is strongly affected by the conformations of the oligopeptide.
Collapse
Affiliation(s)
- N Santhanamoorthi
- Department of Physics, Bharathiar University, Coimbatore, India-641 046
| | | | | |
Collapse
|
22
|
Abstract
Nature has specifically designed proteins, as opposed to DNA, for electron transfer. There is no doubt about the electron transfer within proteins compared with the uncertain and continuing debate about charge transfer through DNA. However, the exact mechanism of electron transfer within peptide systems has been a source of controversy. Two different mechanisms for electron transfer between a donor and an acceptor, electron hopping and bridge-assisted superexchange, have been proposed, and are supported by experimental evidence and theoretical calculations. Several factors were found to affect the kinetics of this process, including peptide chain length, secondary structure and hydrogen bonding. Electrochemical measurements of surface-supported peptides have contributed significantly to the debate. Here we summarize the current approaches to the study of electron transfer in peptides with a focus on surface measurements and comment on these results in light of the current and often controversial debate on electron transfer mechanisms in peptides.
Collapse
Affiliation(s)
- Yi-Tao Long
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada
| | | | | |
Collapse
|
23
|
Wagenknecht HA. Electron transfer processes in DNA: mechanisms, biological relevance and applications in DNA analytics. Nat Prod Rep 2006; 23:973-1006. [PMID: 17119642 DOI: 10.1039/b504754b] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In principle, DNA-mediated charge transfer processes can be categorized as oxidative hole transfer and reductive electron transfer. With respect to the routes of DNA damage most of the past research has been focused on the investigation of oxidative hole transfer or transport. On the other hand, the transport or transfer of excess electrons has a large potential for biomedical applications, mainly for DNA chip technology.
Collapse
Affiliation(s)
- Hans-Achim Wagenknecht
- University of Regensburg, Institute for Organic Chemistry, D-93040, Regensburg, Germany.
| |
Collapse
|
24
|
Lehr L, Horneff T, Weinkauf R, Schlag EW. Femtosecond Dynamics after Ionization: 2-Phenylethyl-N,N-dimethylamine as a Model System for Nonresonant Downhill Charge Transfer in Peptides. J Phys Chem A 2005; 109:8074-80. [PMID: 16834192 DOI: 10.1021/jp0210935] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cation of 2-phenylethyl-N,N-dimethylamine (PENNA) offers two local sites for the charge: the amine group and 0.7 eV higher in energy the phenyl chromophore. In this paper, we investigate the dynamics of the charge transfer (CT) from the phenyl to the amine site. We present a femtosecond resonant two-color photoionization spectrum which shows that the femtosecond pump laser pulse is resonant in the phenyl chromophore. As shown previously with resonant wavelengths the aromatic phenyl chromophore can be then selectively ionized. Because the state "charge in the phenyl chromophore" is the first excited state in the PENNA cation, it can relax to the lower-energetic state "charge in the amine site". To follow this CT dynamics, femtosecond probe photoabsorption of green light (vis) is used. The vis light is absorbed by the charged phenyl chromophore, but not by the neutral phenyl and the neutral or cationic amine group. Thus, the absorption of vis photons of the probe laser pulse is switched off by the CT process. For detection of the resonant absorption of two or more vis photons in the cation the intensity of a fragmentation channel is monitored which opens only at high internal energy. The CT dynamics in PENNA cations has a time constant of 80 +/- 28 fs and is therefore not a purely electronic process. Because of its structural similarity to phenylalanine, PENNA is a model system for a downhill charge transfer in peptide cations.
Collapse
Affiliation(s)
- L Lehr
- Institut für Physikalische und Theoretische Chemie, TU München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | |
Collapse
|
25
|
Rahman OA, Grotemeyer J. Formation and reactions of clusters in the gas phase: small peptides and carboxylic acids. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2005; 11:295-307. [PMID: 16107744 DOI: 10.1255/ejms.752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The cluster formation of seventeen small dipeptides with different primary structures and vanillic acid was investigated by means of a neutral laser desorption and supersonic beam expansion followed by multi photon ionization time of flight mass spectrometry. The structures of these clusters have been characterized by mass spectrometric methods as well as by DFT calculations. It is shown that the structure of the cluster from a dipeptide and vanillic acid is described by a hydrogen bond between the phenolic group of the vanillic acid and the N-terminal amino function of the dipeptide. The intensity of the cluster ion and the main fragmentation product, the protonated peptide ion, can be linked to the proton affinity of the peptide. Furthermore the fragmentation reactions of the protonated peptide are accompanied by extensive hydrogen rearrangements yielding both a and y fragments. The intensities of these fragments follow the proton affinity of the dipeptide.
Collapse
Affiliation(s)
- Osama Abdul Rahman
- Institute of Physical Chemistry; Christian Albrechts University at Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | | |
Collapse
|
26
|
Polo F, Antonello S, Formaggio F, Toniolo C, Maran F. Evidence Against the Hopping Mechanism as an Important Electron Transfer Pathway for Conformationally Constrained Oligopeptides. J Am Chem Soc 2004; 127:492-3. [PMID: 15643851 DOI: 10.1021/ja043607e] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rate constant of intramolecular electron transfer through oligopeptides based on the alpha-aminoisobutyric acid residue was determined as a function of the peptide length and found to depend weakly on the donor-acceptor separation. By measuring the electron-transfer activation energy and estimating the energy gap between donor and bridge, we were able to discard the electron hopping mechanism.
Collapse
Affiliation(s)
- Federico Polo
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| | | | | | | | | |
Collapse
|
27
|
Improta R, Antonello S, Formaggio F, Maran F, Rega N, Barone V. Understanding Electron Transfer across Negatively-Charged Aib Oligopeptides. J Phys Chem B 2004; 109:1023-33. [PMID: 16866475 DOI: 10.1021/jp045797l] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The physicochemical effects modulating the conformational behavior and the rate of intramolecular dissociative electron transfer in phthalimide-Aibn-peroxide peptides (n = 0-3) have been studied by an integrated density functional/continuum solvent model. We found that three different orientations of the phthalimide ring are possible, labeled Phihel, PhiC7, and PhipII. In the condensed phase, they are very close in energy when the system is neutral and short. When the peptide chain length increases and the system is negatively charged, Phihel becomes instead the most stable conformer. Our calculations confirm that the 3(10)-helix is the most stable secondary structure for the peptide bridge. However, upon charge injection in the phthalimide end of the phthalimide-Aib3-peroxide, the peptide bridge can adopt an alpha-helix conformation as well. The study of the dependence of the frontier orbitals on the length and on the conformation of the peptide bridge (in agreement with experimental indications) suggests that for n = 3 the process could be influenced by a 3(10) --> alpha-helix conformational transition of the peptide chain.
Collapse
Affiliation(s)
- Roberto Improta
- Dipartimento di Chimica, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Sheu SY, Yang DY, Selzle HL, Schlag EW. Efficiency of Charge Transport in a Polypeptide Chain: The Hydrated System. J Phys Chem A 2002. [DOI: 10.1021/jp020799w] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sheh-Yi Sheu
- Department of Life Science, National Yang-Ming University, Taipei 112, Taiwan, Institute of Atomic and Molecular Science, Academia Sinica, Taipei 106, Taiwan, and Institut fuer Physikalische und Theoretische Chemie, TU-Muenchen, 85747 Garching, Lichtenbergstrasse 4, Germany
| | - Dah-Yen Yang
- Department of Life Science, National Yang-Ming University, Taipei 112, Taiwan, Institute of Atomic and Molecular Science, Academia Sinica, Taipei 106, Taiwan, and Institut fuer Physikalische und Theoretische Chemie, TU-Muenchen, 85747 Garching, Lichtenbergstrasse 4, Germany
| | - H. L. Selzle
- Department of Life Science, National Yang-Ming University, Taipei 112, Taiwan, Institute of Atomic and Molecular Science, Academia Sinica, Taipei 106, Taiwan, and Institut fuer Physikalische und Theoretische Chemie, TU-Muenchen, 85747 Garching, Lichtenbergstrasse 4, Germany
| | - E. W. Schlag
- Department of Life Science, National Yang-Ming University, Taipei 112, Taiwan, Institute of Atomic and Molecular Science, Academia Sinica, Taipei 106, Taiwan, and Institut fuer Physikalische und Theoretische Chemie, TU-Muenchen, 85747 Garching, Lichtenbergstrasse 4, Germany
| |
Collapse
|
29
|
Sheu SY, Schlag EW, Yang DY, Selzle HL. Efficiency of Charge Transport in a Polypeptide Chain: The Isolated System. J Phys Chem A 2001. [DOI: 10.1021/jp010603c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sheh-Yi Sheu
- Department of Life Science, National Yang-Ming University, Taipei 112, Taiwan, Institute fuer Physikalische und Theoretische Chemie, Technische Universitaet Muenchen, Lichtenbergstrasse 4, D-85748 Garching, Germany, and Institute of Atomic and Molecular Science, Academia Sinica, Taipei 106, Taiwan
| | - E. W. Schlag
- Department of Life Science, National Yang-Ming University, Taipei 112, Taiwan, Institute fuer Physikalische und Theoretische Chemie, Technische Universitaet Muenchen, Lichtenbergstrasse 4, D-85748 Garching, Germany, and Institute of Atomic and Molecular Science, Academia Sinica, Taipei 106, Taiwan
| | - Dah-Yen Yang
- Department of Life Science, National Yang-Ming University, Taipei 112, Taiwan, Institute fuer Physikalische und Theoretische Chemie, Technische Universitaet Muenchen, Lichtenbergstrasse 4, D-85748 Garching, Germany, and Institute of Atomic and Molecular Science, Academia Sinica, Taipei 106, Taiwan
| | - H. L. Selzle
- Department of Life Science, National Yang-Ming University, Taipei 112, Taiwan, Institute fuer Physikalische und Theoretische Chemie, Technische Universitaet Muenchen, Lichtenbergstrasse 4, D-85748 Garching, Germany, and Institute of Atomic and Molecular Science, Academia Sinica, Taipei 106, Taiwan
| |
Collapse
|