1
|
Bohinc K, Bossa GV, May S. Incorporation of ion and solvent structure into mean-field modeling of the electric double layer. Adv Colloid Interface Sci 2017; 249:220-233. [PMID: 28571611 DOI: 10.1016/j.cis.2017.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 01/13/2023]
Abstract
An electric double layer forms when the small mobile ions of an electrolyte interact with an extended charged object, a macroion. The competition between electrostatic attraction and translational entropy loss of the small ions results in a diffuse layer of partially immobilized ions in the vicinity of the macroion. Modeling structure and energy of the electric double layer has a long history that has lead to the classical Poisson-Boltzmann theory and numerous extensions that account for ion-ion correlations and structural ion and solvent properties. The present review focuses on approaches that instead of going beyond the mean-field character of Poisson-Boltzmann theory introduce structural details of the ions and the solvent into the Poisson-Boltzmann modeling framework. The former include not only excluded volume effects but also the presence of charge distributions on individual ions, spatially extended ions, and internal ionic degrees of freedom. The latter treat the solvent either explicitly as interacting Langevin dipoles or in the form of effective non-electrostatic interactions, in particular Yukawa interactions, that are added to the Coulomb potential. We discuss how various theoretical models predict structural properties of the electric double layer such as the differential capacitance and compare some of these predictions with computer simulations.
Collapse
Affiliation(s)
- Klemen Bohinc
- Faculty of Health Sciences, University of Ljubljana, Ljubljana SI-1000, Slovenia.
| | | | - Sylvio May
- Department of Physics, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
2
|
Korolev N, Yu H, Lyubartsev AP, Nordenskiöld L. Molecular dynamics simulations demonstrate the regulation of DNA-DNA attraction by H4 histone tail acetylations and mutations. Biopolymers 2016; 101:1051-64. [PMID: 24740714 DOI: 10.1002/bip.22499] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/08/2023]
Abstract
The positively charged N-terminal histone tails play a crucial role in chromatin compaction and are important modulators of DNA transcription, recombination, and repair. The detailed mechanism of the interaction of histone tails with DNA remains elusive. To model the unspecific interaction of histone tails with DNA, all-atom molecular dynamics (MD) simulations were carried out for systems of four DNA 22-mers in the presence of 20 or 16 short fragments of the H4 histone tail (variations of the 16-23 a. a. KRHRKVLR sequence, as well as the unmodified fragment a. a.13-20, GGAKRHRK). This setup with high DNA concentration, explicit presence of DNA-DNA contacts, presence of unstructured cationic peptides (histone tails) and K(+) mimics the conditions of eukaryotic chromatin. A detailed account of the DNA interactions with the histone tail fragments, K(+) and water is presented. Furthermore, DNA structure and dynamics and its interplay with the histone tail fragments binding are analysed. The charged side chains of the lysines and arginines play major roles in the tail-mediated DNA-DNA attraction by forming bridges and by coordinating to the phosphate groups and to the electronegative sites in the minor groove. Binding of all species to DNA is dynamic. The structure of the unmodified fully-charged H4 16-23 a.a. fragment KRHRKVLR is dominated by a stretched conformation. The H4 tail a. a. fragment GGAKRHRK as well as the H4 Lys16 acetylated fragment are highly flexible. The present work allows capturing typical features of the histone tail-counterion-DNA structure, interaction and dynamics.
Collapse
Affiliation(s)
- Nikolay Korolev
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | | | | | | |
Collapse
|
3
|
Reščič J, Kovačević D, Tomšič M, Jamnik A, Ahualli S, Bohinc K. Experimental and theoretical study of the silica particle interactions in the presence of multivalent rod-like ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9717-9725. [PMID: 25036697 DOI: 10.1021/la501683t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The silica particle interactions in the presence of spermidine were systematically investigated both from experimental and theoretical points of view. The hydrodynamic radii and the corresponding polydispersity indices of the colloidal silica particles were determined by dynamic light scattering (DLS) as a function of spermidine concentration. Whereas the effective size of the silica particles increases with increasing spermidine concentration (pointing to the particle aggregation), the polydispersity index first increases reaches a maximum and then further decreases with the increasing spermidine concentration. From the mobility measurements it was concluded that the increase in spermidine concentration causes less negative values of zeta potential, meaning that the adsorption of spermidine leads to the less negative silica surface. Moreover, Monte Carlo (MC) simulations also confirmed that the addition of spermidine reduces the repulsion between silica particles. The MC concentration profiles of spermidine close to the charged silica particle are in a very good agreement with the results obtained by theory. An important motivation for our study is the effectiveness of multivalent ions to coagulate colloidal suspensions; e.g., the multivalent ions are exploited in the water purification process.
Collapse
Affiliation(s)
- Jurij Reščič
- Faculty of Chemistry and Chemical Technology and §Faculty of Health Sciences, University of Ljubljana , Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
4
|
Interactions between charged surfaces mediated by molecules with spatially distributed charges. PURE APPL CHEM 2012. [DOI: 10.1351/pac-con-12-04-08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A short review of recent theoretical advances in studies of the interaction between highly charged systems is presented. Such a system could not be described by the mean field theory. More advanced methods have to be used in order to introduce the correlations between highly charged particles. In this work I focus on the system of highly charged surfaces, separated by a solution of molecules with spatially distributed charge. Two different representations of the molecular shape will be considered: rod-like and spherical. The system will be theoretically described by the density functional theory. For sufficiently long molecules and large surface charge densities, an attractive force between like-charged surfaces arises due to the spatially distributed charges within the molecules. The added salt has influence on the condition for the attractive force between like-charged surfaces. The theoretical results will be compared with Monte Carlo (MC) simulations. Recent measurements with multivalent rigid rod-like particles will be discussed.
Collapse
|
5
|
Golchoobi A, Khosravi A, Modarress H, Ahmadzadeh A. Effect of Charge, Size and Temperature on Stability of Charged Colloidal Nano Particles. CHINESE J CHEM PHYS 2012. [DOI: 10.1088/1674-0068/25/05/617-624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Interaction of similarly charged surfaces mediated by nanoparticles. CHINESE JOURNAL OF POLYMER SCIENCE 2011. [DOI: 10.1007/s10118-011-1053-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Condensed DNA: condensing the concepts. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 105:208-22. [PMID: 20638406 DOI: 10.1016/j.pbiomolbio.2010.07.002] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 07/11/2010] [Indexed: 01/09/2023]
Abstract
DNA is stored in vivo in a highly compact, so-called condensed phase, where gene regulatory processes are governed by the intricate interplay between different states of DNA compaction. These systems often have surprising properties, which one would not predict from classical concepts of dilute solutions. The mechanistic details of DNA packing are essential for its functioning, as revealed by the recent developments coming from biochemistry, electrostatics, statistical mechanics, and molecular and cell biology. Different aspects of condensed DNA behavior are linked to each other, but the links are often hidden in the bulk of experimental and theoretical details. Here we try to condense some of these concepts and provide interconnections between the different fields. After a brief description of main experimental features of DNA condensation inside viruses, bacteria, eukaryotes and the test tube, main theoretical approaches for the description of these systems are presented. We end up with an extended discussion of the role of DNA condensation in the context of gene regulation and mention potential applications of DNA condensation in gene therapy and biotechnology.
Collapse
|
8
|
Korolev N, Lyubartsev AP, Nordenskiöld L. Cation-induced polyelectrolyte-polyelectrolyte attraction in solutions of DNA and nucleosome core particles. Adv Colloid Interface Sci 2010; 158:32-47. [PMID: 19758583 DOI: 10.1016/j.cis.2009.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/05/2009] [Accepted: 08/15/2009] [Indexed: 12/26/2022]
Abstract
The paper reviews our current studies on the experimentally induced cation compaction and aggregation in solutions of DNA and nucleosome core particles and the theoretical modelling of these processes using coarse-grained continuum models with explicit mobile ions and with all-atom molecular dynamics (MD) simulations. Recent experimental results on DNA condensation by cationic oligopeptides and the effects of added salt are presented. The results of MD simulations modelling DNA-DNA attraction due to the presence of multivalent ions including the polyamine spermidine and fragments of histone tails, which exhibit bridging between adjacent DNA molecules, are discussed. Experimental data on NCP aggregation, using recombinantly prepared systems are summarized. Literature data and our results of studying of the NCP solutions are compared with predictions of coarse-grained MD simulations, including the important ion correlation as well as bridging mechanisms. The importance of the results to chromatin folding and aggregation is discussed.
Collapse
Affiliation(s)
- Nikolay Korolev
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | |
Collapse
|
9
|
Hatlo MM, Bohinc K, Lue L. The properties of dimers confined between two charged plates. J Chem Phys 2010; 132:114102. [DOI: 10.1063/1.3354121] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Piculell L, Norrman J, Svensson AV, Lynch I, Bernardes JS, Loh W. Ionic surfactants with polymeric counterions. Adv Colloid Interface Sci 2009; 147-148:228-36. [PMID: 18977468 DOI: 10.1016/j.cis.2008.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 09/17/2008] [Accepted: 09/22/2008] [Indexed: 11/20/2022]
Abstract
This review summarizes recent progress in our understanding of aquoeus "complex salts" of ionic surfactants with polymeric counterions. Complex salts are simplified versions of the much-studied mixtures of oppositely charged polyelectrolytes and surfactants, and are also good model systems to study the fundamentals of polyion-mediated forces in colloidal systems. Comparisons are made with conventional ionic surfactants, which have monomeric counterions, and with surfactants having oligomeric counterions containing two, three or four charged groups. Complex salts form similar aggregates as conventional ionic surfactants, but as the degree of polymerization of the counterion increases, the interaction between the surfactant aggregates becomes attractive rather than repulsive. Introducing uncharged comonomers in the polyions affects both the shape and the organization of the surfactant aggregates.
Collapse
Affiliation(s)
- Lennart Piculell
- Physical Chemistry 1, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE 221 00 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
11
|
Korolev N, Lyubartsev AP, Nordenskiöld L. Computer modeling demonstrates that electrostatic attraction of nucleosomal DNA is mediated by histone tails. Biophys J 2006; 90:4305-16. [PMID: 16565063 PMCID: PMC1471847 DOI: 10.1529/biophysj.105.080226] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We conducted molecular dynamics computer simulations of charged histone tail-DNA interactions in systems mimicking nucleosome core particles (NCP) . In a coarse-grained model, the NCP is modeled as a negatively charged spherical particle with flexible polycationic histone tails attached to it in a dielectric continuum with explicit mobile counterions and added salt. The size, charge, and distribution of the tails relative to the core were built to mimick real NCP. In this way, we incorporate attractive ion-ion correlation effects due to fluctuations in the ion cloud and the attractive entropic and energetic tail-bridging effects. In agreement with experimental data, increase of monovalent salt content from salt-free to physiological concentration leads to the formation of NCP aggregates; likewise, in the presence of MgCl2, the NCPs form condensed systems via histone-tail bridging and accumulation of counterions. More detailed mechanisms of the histone tail-DNA interactions and dynamics have been obtained from all-atom molecular dynamics simulations (including water), comprising three DNA 22-mers and 14 short fragments of the H4 histone tail (amino acids 5-12) carrying three positive charges on lysine+ interacting with DNA. We found correlation of the DNA-DNA distance with the presence and association of the histone tail between the DNA molecules.
Collapse
Affiliation(s)
- Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore
| | | | | |
Collapse
|
12
|
von Ferber C, Löwen H. Polyelectrolyte–surfactant complex: phases of self-assembled structures. Faraday Discuss 2005; 128:389-405. [PMID: 15658786 DOI: 10.1039/b404677c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We study the structure of complexes formed between ionic surfactants (SF) and a single oppositely charged polyelectrolyte (PE) chain. For our computer simulation we use the "primitive" electrolyte model: while the polyelectrolyte is modeled by a tethered chain of charged hard sphere beads, the surfactant molecules consist of a single charged head bead tethered to a tail of tethered hard spheres. A hydrophobic attraction between the tail beads is introduced by assuming a Lennard-Jones potential outside the hard-sphere diameter. As a function of the strengths of both the electrostatic and the hydrophobic interactions, we find the following scenario: switching on and increasing the electrostatic forces first leads to a stretching of the PE and then by condensation of SF to the formation of a complex. For vanishing hydrophobic forces this complex has the architecture of a molecular bottle-brush cylindrically centered around the stretched PE molecule. Upon increasing the hydrophobic attraction between the SF tails, a transition occurs inverting this structure to a spherical micelle with a neutral core of SF tails and a charged corona of SF heads with the PE molecule wrapped around. At intermediate hydrophobicity there is a competition between the two structures indicated by a non-monotonic dependence of the shape as function of the Coulomb strength, favoring the cylindrical shape for weak and the spherical micellar complex for strong interaction.
Collapse
Affiliation(s)
- C von Ferber
- Theoretical Polymer Physics, Freiburg University, Freiburg, Germany.
| | | |
Collapse
|
13
|
Rippel M, Costa C, Galembeck F. Natural rubber latex modification by sodium polyphosphate: a SPM study on the improved latex adhesion to glass sheet. POLYMER 2004. [DOI: 10.1016/j.polymer.2004.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Lobaskin V, Qamhieh K. Effective Macroion Charge and Stability of Highly Asymmetric Electrolytes at Various Salt Conditions†. J Phys Chem B 2003. [DOI: 10.1021/jp027608+] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
von Ferber C, Löwen H. Complexes of polyelectrolytes and oppositely charged ionic surfactants. J Chem Phys 2003. [DOI: 10.1063/1.1574782] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Harnau L, Hansen JP. Colloid aggregation induced by oppositely charged polyions. J Chem Phys 2002. [DOI: 10.1063/1.1471550] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
17
|
Jonsson M, Linse P. Polyelectrolyte–macroion complexation. I. Effect of linear charge density, chain length, and macroion charge. J Chem Phys 2001. [DOI: 10.1063/1.1385792] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Wu JZ, Bratko D, Blanch HW, Prausnitz JM. Interaction between oppositely charged micelles or globular proteins. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 2000; 62:5273-80. [PMID: 11089089 DOI: 10.1103/physreve.62.5273] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2000] [Indexed: 11/07/2022]
Abstract
Monte Carlo simulations and the hypernetted chain theory are used to study the interaction between spherical macroions of opposite charge immersed in a solution of monovalent or divalent simple electrolyte. These calculations represent the first step toward studying phase behavior and precipitation kinetics in solutions containing a mixture of macroions with positive and negative net charges. The potential of mean force between colloidal particles is determined as a function of colloid-colloid separation. In addition to having an opposite sign, the calculated potential of mean force is found to be stronger and longer-ranged than observed in the case of equally charged macroparticles. The difference is more pronounced in the presence of divalent counterions and is especially noticeable when we compare distinct Coulombic and hard-core collision contributions to the interaction between equally and oppositely charged colloids. The present observations suggest the dominance of attractive forces between globally neutral but electrostatically heterogeneous macroparticles. While our numerical results cannot be successfully analyzed by existing theories, they provide useful guidance and benchmark data for the development of advanced analytic descriptions.
Collapse
Affiliation(s)
- J Z Wu
- Department of Chemical Engineering, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|