1
|
Wang SC, Chen YT, Satange R, Chu JW, Hou MH. Structural basis for water modulating RNA duplex formation in the CUG repeats of myotonic dystrophy type 1. J Biol Chem 2023:104864. [PMID: 37245780 PMCID: PMC10316006 DOI: 10.1016/j.jbc.2023.104864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023] Open
Abstract
Secondary structures formed by expanded CUG RNA are involved in the pathobiology of myotonic dystrophy type 1. Understanding the molecular basis of toxic RNA structures can provide insights into the mechanism of disease pathogenesis and accelerate the drug discovery process. Here, we report the crystal structure of CUG repeat RNA containing three U-U mismatches between C-G and G-C base pairs. The CUG RNA crystallizes as an A-form duplex, with the first and third U-U mismatches adopting a water-mediated asymmetric mirror isoform geometry. We found for the first time that a symmetric, water-bridged U-H2O-U mismatch is well tolerated within the CUG RNA duplex, which was previously suspected but not observed. The new water-bridged U-U mismatch resulted in high base-pair opening and single-sided cross-strand stacking interactions, which in turn dominate the CUG RNA structure. Furthermore, we performed molecular dynamics (MD) simulations that complemented the structural findings and proposed that the first and third U-U mismatches are interchangeable conformations, while the central water-bridged U-U mismatch represents an intermediate state that modulates the RNA duplex conformation. Collectively, the new structural features provided in this work are important for understanding the recognition of U-U mismatches in CUG repeats by external ligands such as proteins or small molecules.
Collapse
Affiliation(s)
- Shun-Ching Wang
- Institute of Genomics and Bioinformatics; National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Yi-Tsao Chen
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30068 Taiwan
| | - Roshan Satange
- Institute of Genomics and Bioinformatics; National Chung Hsing University, Taichung 402, Taiwan
| | - Jhih-Wei Chu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30068 Taiwan; Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 30068 Taiwan; Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, 30068 Taiwan.
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics; National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
2
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
3
|
Amarante TD, Weber G. Evaluating Hydrogen Bonds and Base Stacking of Single, Tandem and Terminal GU Mismatches in RNA with a Mesoscopic Model. J Chem Inf Model 2015; 56:101-9. [DOI: 10.1021/acs.jcim.5b00571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tauanne D. Amarante
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo
Horizonte-MG, Brazil
| | - Gerald Weber
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo
Horizonte-MG, Brazil
| |
Collapse
|
4
|
Mládek A, Banáš P, Jurečka P, Otyepka M, Zgarbová M, Šponer J. Energies and 2'-Hydroxyl Group Orientations of RNA Backbone Conformations. Benchmark CCSD(T)/CBS Database, Electronic Analysis, and Assessment of DFT Methods and MD Simulations. J Chem Theory Comput 2013; 10:463-80. [PMID: 26579924 DOI: 10.1021/ct400837p] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sugar-phosphate backbone is an electronically complex molecular segment imparting RNA molecules high flexibility and architectonic heterogeneity necessary for their biological functions. The structural variability of RNA molecules is amplified by the presence of the 2'-hydroxyl group, capable of forming multitude of intra- and intermolecular interactions. Bioinformatics studies based on X-ray structure database revealed that RNA backbone samples at least 46 substates known as rotameric families. The present study provides a comprehensive analysis of RNA backbone conformational preferences and 2'-hydroxyl group orientations. First, we create a benchmark database of estimated CCSD(T)/CBS relative energies of all rotameric families and test performance of dispersion-corrected DFT-D3 methods and molecular mechanics in vacuum and in continuum solvent. The performance of the DFT-D3 methods is in general quite satisfactory. The B-LYP-D3 method provides the best trade-off between accuracy and computational demands. B3-LYP-D3 slightly outperforms the new PW6B95-D3 and MPW1B95-D3 and is the second most accurate density functional of the study. The best agreement with CCSD(T)/CBS is provided by DSD-B-LYP-D3 double-hybrid functional, although its large-scale applications may be limited by high computational costs. Molecular mechanics does not reproduce the fine energy differences between the RNA backbone substates. We also demonstrate that the differences in the magnitude of the hyperconjugation effect do not correlate with the energy ranking of the backbone conformations. Further, we investigated the 2'-hydroxyl group orientation preferences. For all families, we conducted a QM and MM hydroxyl group rigid scan in gas phase and solvent. We then carried out set of explicit solvent MD simulations of folded RNAs and analyze 2'-hydroxyl group orientations of different backbone families in MD. The solvent energy profiles determined primarily by the sugar pucker match well with the distribution data derived from the simulations. The QM and MM energy profiles predict the same 2'-hydroxyl group orientation preferences. Finally, we demonstrate that the high energy of unfavorable and rarely sampled 2'-hydroxyl group orientations can be attributed to clashes between occupied orbitals.
Collapse
Affiliation(s)
- Arnošt Mládek
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC, Central European Institute of Technology , Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
5
|
Chawla M, Abdel-Azeim S, Oliva R, Cavallo L. Higher order structural effects stabilizing the reverse Watson-Crick Guanine-Cytosine base pair in functional RNAs. Nucleic Acids Res 2013; 42:714-26. [PMID: 24121683 PMCID: PMC3902895 DOI: 10.1093/nar/gkt800] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The G:C reverse Watson-Crick (W:W trans) base pair, also known as Levitt base pair in the context of tRNAs, is a structurally and functionally important base pair that contributes to tertiary interactions joining distant domains in functional RNA molecules and also participates in metabolite binding in riboswitches. We previously indicated that the isolated G:C W:W trans base pair is a rather unstable geometry, and that dicationic metal binding to the Guanine base or posttranscriptional modification of the Guanine can increase its stability. Herein, we extend our survey and report on other H-bonding interactions that can increase the stability of this base pair. To this aim, we performed a bioinformatics search of the PDB to locate all the occurencies of G:C trans base pairs. Interestingly, 66% of the G:C trans base pairs in the PDB are engaged in additional H-bonding interactions with other bases, the RNA backbone or structured water molecules. High level quantum mechanical calculations on a data set of representative crystal structures were performed to shed light on the structural stability and energetics of the various crystallographic motifs. This analysis was extended to the binding of the preQ1 metabolite to a preQ1-II riboswitch.
Collapse
Affiliation(s)
- Mohit Chawla
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia and Department of Sciences and Technologies, University of Naples 'Parthenope', Centro Direzionale Isola C4, I-80143, Naples, Italy
| | | | | | | |
Collapse
|
6
|
Tschampel SM, Woods RJ. Quantifying the role of water in protein-carbohydrate interactions. J Phys Chem A 2012; 107:9175-81. [PMID: 16906231 PMCID: PMC1538976 DOI: 10.1021/jp035027u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water-mediated interactions play a key role in carbohydrate-lectin binding, where the interactions involve a conserved water that is separated from the bulk solvent and present a bridge between the side chains of the protein and the carbohydrate ligand. To apply quantum mechanical methods to examine the role of conserved waters, we present an analysis in which the relevant carbohydrate atoms are modeled by methanol, and in which the protein is replaced by a limited number of amino acid side chains. Clusters containing a conserved water and a representative amino acid fragment were also examined to determine the influence of amino acid side chains on interaction energies. To quantify the differential binding energies of methanol versus water, quantum mechanical calculations were performed at the B3LYP/6-311++G(3df,3pd)//B3LYP/6-31+G(d) level in which either a methanol molecule was bound to the conserved water (liganded state) or in which a water molecule replaces the methanol (unliganded state). Not surprisingly, the binding of a water to clusters containing charged amino acid side chains was more favorable by 1.55 to 7.23 kcal/mol than that for the binding of a water to the corresponding pure water clusters. In contrast, the binding energy of water to clusters containing polar-uncharged amino acid side chains ranged from 4.35 kcal/mol less favorable to 4.72 kcal/mol more favorable than for binding to the analogous pure water clusters. The overall trend for the binding of methanol versus water, in any of the clusters, favored methanol by an average value of 1.05 kcal/mol. To extend these studies to a complex between a protein (Concanavalin A) and its carbohydrate ligand, a cluster was examined that contained the side chains of three key amino acids, namely asparagine, aspartate, and arginine, as well as a key water molecule, arranged as in the X-ray diffraction structure of Con A. Again, using methanol as a model for the endogenous carbohydrate ligand, energies of -5.94 kcal/mol and -5.70 kcal/mol were obtained for the binding of methanol and water, respectively, to the Con A-water cluster. The extent to which cooperativity enhanced the binding energies has been quantified in terms of nonadditive three-body contributions. In general, the binding of water or methanol to neutral dimers formed cooperative clusters; in contrast, the cooperativity in charged clusters depended on the overall geometry as well as the charge.
Collapse
Affiliation(s)
| | - Robert J. Woods
- * Corresponding author. Phone: 706-542-4454. Fax: 706-542-4412. E-mail:
| |
Collapse
|
7
|
Sharma P, Chawla M, Sharma S, Mitra A. On the role of Hoogsteen:Hoogsteen interactions in RNA: ab initio investigations of structures and energies. RNA (NEW YORK, N.Y.) 2010; 16:942-957. [PMID: 20354152 PMCID: PMC2856888 DOI: 10.1261/rna.1919010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 01/27/2010] [Indexed: 05/28/2023]
Abstract
We use a combination of database analysis and quantum chemical studies to investigate the role of cis and trans Hoogsteen:Hoogsteen (H:H) base pairs and associated higher-order structures in RNA. We add three new examples to the list of previously identified base-pair combinations belonging to these families and, in addition to contextual classification and characterization of their structural and energetic features, we compare their interbase interaction energies and propensities toward participation in triplets and quartets. We find that some base pairs, which are nonplanar in their isolated minimum energy geometries, attain planarity and stability upon triplet formation. A:A H:H trans is the most frequent H:H combination in RNA structures. This base pair occurs at many distinct positions in known rRNA structures, where it helps in the interaction of ribosomal domains in the 50S subunit. It is also present as a part of tertiary interaction in tRNA structures. Although quantum chemical studies suggest an intrinsically nonplanar geometry for this base pair in isolated form, it has the tendency to attain planar geometry in RNA crystal structures by forming higher-order tertiary interactions or in the presence of additional base-phosphate interactions. The tendency of this base pair to form such additional interactions may be helpful in bringing together different segments of RNA, thus making it suitable for the role of facilitator for RNA folding. This also explains the high occurrence frequency of this base pair among all H:H interactions.
Collapse
Affiliation(s)
- Purshotam Sharma
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, India
| | | | | | | |
Collapse
|
8
|
Šponer J, Zgarbová M, Jurečka P, Riley KE, Šponer JE, Hobza P. Reference Quantum Chemical Calculations on RNA Base Pairs Directly Involving the 2′-OH Group of Ribose. J Chem Theory Comput 2009; 5:1166-79. [DOI: 10.1021/ct800547k] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| | - Marie Zgarbová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| | - Petr Jurečka
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| | - Kevin E. Riley
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| | - Judit E. Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| | - Pavel Hobza
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| |
Collapse
|
9
|
Das G, Lyngdoh RD. Can configuration of solitary wobble base pairs determine the specificity and degeneracy of the genetic code? Clues from molecular orbital modelling studies. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.theochem.2007.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Vokacova Z, Sponer J, Sponer JE, Sychrovský V. Theoretical study of the scalar coupling constants across the noncovalent contacts in RNA base pairs: the cis- and trans-watson-crick/sugar edge base pair family. J Phys Chem B 2007; 111:10813-24. [PMID: 17713941 DOI: 10.1021/jp072822p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The structure and function of RNA molecules are substantially affected by non-Watson-Crick base pairs actively utilizing the 2'-hydroxyl group of ribose. Here we correlate scalar coupling constants across the noncovalent contacts calculated for the cis- and trans-WC/SE (Watson-Crick/sugar edge) RNA base pairs with the geometry of base to base and sugar to base hydrogen bond(s). 23 RNA base pairs from the 32 investigated were found in RNA crystal structures, and the calculated scalar couplings are therefore experimentally relevant with regard to the binding patterns occurring in this class of RNA base pairs. The intermolecular scalar couplings 1hJ(N,H), 2hJ(N,N), 2hJ(C,H), and 3hJ(C,N) were calculated for the N-H...N and N-H...O=C base to base contacts and various noncovalent links between the sugar hydroxyl and RNA base. Also, the intramolecular 1J(N,H) and 2J(C,H) couplings were calculated for the amino or imino group of RNA base and the ribose 2'-hydroxyl group involved in the noncovalent interactions. The calculated scalar couplings have implications for validation of local geometry, show specificity for the amino and imino groups of RNA base involved in the linkage, and can be used for discrimination between the cis- and trans-WC/SE base pairs. The RNA base pairs within an isosteric subclass of the WC/SE binding patterns can be further sorted according to the scalar couplings calculated across different local noncovalent contacts. The effect of explicit water inserted in the RNA base pairs on the magnitude of the scalar couplings was calculated, and the data for discrimination between the water-inserted and direct RNA base pairs are presented. The calculated NMR data are significant for structural interpretation of the scalar couplings in the noncanonical RNA base pairs.
Collapse
Affiliation(s)
- Zuzana Vokacova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo Square 2, 166 10 Prague 6, Czech Republic
| | | | | | | |
Collapse
|
11
|
Sponer JE, Spacková N, Kulhanek P, Leszczynski J, Sponer J. Non-Watson-Crick base pairing in RNA. quantum chemical analysis of the cis Watson-Crick/sugar edge base pair family. J Phys Chem A 2007; 109:2292-301. [PMID: 16838999 DOI: 10.1021/jp050132k] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Large RNA molecules exhibit an astonishing variability of base-pairing patterns, while many of the RNA base-pairing families have no counterparts in DNA. The cis Watson-Crick/sugar edge (cis WC/SE) RNA base pairing is investigated by ab initio quantum chemical calculations. A detailed structural and energetic characterization of all 13 crystallographically detected members of this family is provided by means of B3LYP/6-31G and RIMP2/aug-cc-pVDZ calculations. Further, a prediction is made for the remaining 3 cis WC/SE base pairs which are yet to be seen in the experiments. The interaction energy calculations point at the key role of the 2'-OH group in stabilizing the sugar-base contact and predict all 16 cis WC/SE base-pairing patterns to be nearly isoenergetic. The perfect correlation of the main geometrical parameters in the gas-phase optimized and X-ray structures shows that the principle of isosteric substitutions in RNA is rooted from the intrinsic structural similarity of the isolated base pairs. The present quantum chemical calculations for the first time analyze base pairs involving the ribose 2'-OH group and unambiguously correlate the structural information known from experiments with the energetics of interactions. The calculations further show that the relative importance and absolute value of the dispersion energy in the cis WC/SE base pairs are enhanced compared to the standard base pairs. This may by an important factor contributing to the strength of such interactions when RNA folds in its polar environment. The calculations further demonstrate that the Cornell et al. force field commonly used in molecular modeling and simulations provides satisfactory performance for this type of RNA interactions.
Collapse
Affiliation(s)
- Judit E Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
12
|
Sponer JE, Réblova K, Mokdad A, Sychrovský V, Leszczynski J, Sponer J. Leading RNA tertiary interactions: structures, energies, and water insertion of A-minor and P-interactions. A quantum chemical view. J Phys Chem B 2007; 111:9153-64. [PMID: 17602515 DOI: 10.1021/jp0704261] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Complex molecular shapes of ribosomal RNA molecules are stabilized by recurrent types of tertiary interactions involving highly specific and conserved non-Watson-Crick base pairs, triplets, and quartets. We analyzed the intrinsic structure and stability of the P-motif and the four basic types of A-minor interactions (types I, II, III, and 0), which represent the most prominent RNA tertiary interaction patterns refined in the course of evolution. In the studied interactions, the electron correlation component of the stabilization usually exceeds the Hartree-Fock (HF) term, leading to a strikingly different balance of forces as compared to standard base pairing stabilized primarily by the HF term. In other words, the A-minor and P-interactions are considerably more influenced by the dispersion energy as compared to canonical base pairs, which makes them particularly suitable to zip the folded RNA structures that are substantially hydrated even in their interior. Continuum solvent COSMO calculations confirm that the stability of the canonical GC base pair is affected (reduced) by the continuum solvent screening considerably more than the stability of the A-minor interaction. Among the studied systems, the strong A-minor II and weak A-minor III interactions require water molecules to stabilize the experimental geometry. Gas-phase optimization of the canonical A-minor II A/CG triplet without water results in a geometry that is clearly inconsistent with the RNA structure. The gas-phase structure of the P-interaction and the most stable A-minor I interaction nicely agrees with the geometries occurring in the ribosome. A-minor I can also adopt an alternative water-mediated substate rather often observed in X-ray and molecular dynamics studies. The A-minor I water bridge, however, does not appear to stabilize the tertiary contact, and its role is to provide structural flexibility to this binding pattern within the context of the RNA structure. Interestingly, the insertion of a polar water molecule in the A-minor I A/CG tertiary contact occurring in the A/C tertiary pair is stabilized primarily by the HF (electrostatic) interaction energy, while the dispersion-controlled A/G contact remains firmly bound. Thus, the intrinsic balance of forces as revealed by quantum mechanics (QM) calculations nicely correlates with many behavioral aspects of the studied interactions inside RNA. The comparison of interaction energies computed using quantum chemistry and an AMBER force field reveals that common molecular mechanics calculations perform rather well, except that the strength of the P-interaction is modestly overestimated. We also briefly discuss the non-negligible methodological differences when evaluating simple base-base nucleic acids base pairs and the complex RNA tertiary base pairing patterns using QM procedures.
Collapse
Affiliation(s)
- Judit E Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
13
|
Sponer JE, Leszczynski J, Sychrovský V, Sponer J. Sugar edge/sugar edge base pairs in RNA: stabilities and structures from quantum chemical calculations. J Phys Chem B 2007; 109:18680-9. [PMID: 16853403 DOI: 10.1021/jp053379q] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cis and trans sugar edge/sugar edge (SE/SE) binding patterns are essential building units of RNAs. For example, SE/SE interactions form the A-minor motifs, the most important tertiary interaction type in functional RNAs. This study provides an in-depth structure and stability analysis for these two base pair families. Gas-phase-optimized geometries are reported for 12 cis and 7 trans SE/SE base pairs and contrasted to their X-ray counterparts. Interaction energies are computed at the RIMP2 level of theory using the density-functional-theory-optimized geometries. There is a good overall agreement between the optimized and X-ray geometries of the cis SE/SE base pairs. In contrast, only three of the seven trans SE/SE binding patterns could be optimized without a significant distortion of the X-ray geometry. Note, however, that many SE/SE base pairs participate in broader networks of interactions; thus it is not surprising to see some of them to deviate from the X-ray geometry in a complete isolation. Computed interaction energies reveal that all 12 known cis SE/SE binding patterns are very stable. Among the trans SE/SE binding patterns, only the rG/rG, rG/rC, and rA/rG base pairs are sufficiently stable in the crystal geometry. Prediction has been made for some structures not yet detected by crystallography, namely, cis rC/rC, rG/rC, rG/rU, and rU/rU and trans rG/rA base pairs. Interestingly, the new cis SE/SE binding patterns are not necessarily isosteric with the remaining 12 members of this family. The trans rG/rA base pair represents a viable option for base pairing in RNA to be identified by future X-ray studies. In a complete lack of structural information, prediction of other unknown members of the trans SE/SE family was not attempted. Analysis of the interaction energies shows a very large electron correlation component of the interaction energy, pointing at the elevated role of dispersion energy as compared to other types of base pairs. This likely is profitable for stabilization of SE/SE binding patterns in polar environments and could be one of the reasons why the A-minor motif is the leading type of tertiary interactions in RNAs.
Collapse
Affiliation(s)
- Judit E Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic.
| | | | | | | |
Collapse
|
14
|
Sponer JE, Spackova N, Leszczynski J, Sponer J. Principles of RNA base pairing: structures and energies of the trans Watson-Crick/sugar edge base pairs. J Phys Chem B 2007; 109:11399-410. [PMID: 16852393 DOI: 10.1021/jp051126r] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to the presence of the 2'-OH hydroxyl group of ribose, RNA molecules utilize an astonishing variability of base pairing patterns to build up their structures and perform the biological functions. Many of the key RNA base pairing families have no counterparts in DNA. In this study, the trans Watson-Crick/sugar edge (trans WC/SE) RNA base pair family has been characterized using quantum chemical and molecular mechanics calculations. Gas-phase optimized geometries from density functional theory (DFT) calculations and RIMP2 interaction energies are reported for the 10 crystallographically identified trans WC/SE base pairing patterns. Further, stable structures are predicted for all of the remaining six possible members of this family not seen in RNAs so far. Among these novel six base pairs, the computations substantially refine two structures suggested earlier based on simple isosteric considerations. For two additional trans WC/SE base pairs predicted in this study, no arrangement was suggested before. Thus, our study brings a complete set of trans WC/SE base pairing patterns. The present results are also contrasted with calculations reported recently for the cis WC/SE base pair family. The computed base pair sizes are in sound correlation with the X-ray data for all WC/SE pairing patterns including both their cis and trans isomers. This confirms that the isostericity of RNA base pairs, which is one of the key factors determining the RNA sequence conservation patterns, originates in the properties of the isolated base pairs. In contrast to the cis structures, however, the isosteric subgroups of the trans WC/SE family differ not only in their H-bonding patterns and steric dimensions but also in the intrinsic strength of the intermolecular interactions. The distribution of the total interaction energy over the sugar-base and base-base contributions is controlled by the cis-trans isomerism.
Collapse
Affiliation(s)
- Judit E Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic.
| | | | | | | |
Collapse
|
15
|
Abstract
Empirical, quantum chemical calculations and molecular dynamics simulations of the role of a solvent on tautomerism of nucleic acid bases and structure and properties of nucleic acid base pairs are summarized. Attention was paid to microhydrated (by one and two water molecules) complexes, for which structures found by scanning of empirical potential surfaces were recalculated at a correlated ab initio level. Additionally, isolated as well as mono- and dihydrated H-bonded, T-shaped and stacked structures of all possible nucleic acid base pairs were studied at the same theoretical levels. We demonstrate the strong influence of a solvent on the tautomeric equilibrium between the tautomers of bases and on the spatial arrangement of the bases in a base pair. The results provide clear evidence that the prevalence of either the stacked or hydrogen-bonded structures of the base pairs in the solvent is not determined only by its bulk properties, but rather by specific hydrophilic interactions of the base pair with a small number of solvent molecules.
Collapse
Affiliation(s)
- Martin Kabelác
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo, Prague, Czech Republic
| | | |
Collapse
|
16
|
Abstract
Water molecules are often found at the binding interface of biomolecular complexes mediating the interaction between polar groups via hydrogen bonds, or simply filling space providing van der Waals interactions. Recent studies have demonstrated the importance of taking such water molecules into account in docking and binding affinity prediction. Here, we review the recent experimental and theoretical work aimed at quantifying the influence of interfacial water on the thermodynamic properties of binding. We highlight especially our recent results obtained by inhomogeneous fluid solvation theory in several systems and the prediction of the thermodynamic consequences of displacement of the bound water molecule by ligand modification. Finally, we discuss possible directions for further progress in this field.
Collapse
Affiliation(s)
- Zheng Li
- Department of Chemistry, City College of New York/CUNY, New York, NY 10031, USA
| | | |
Collapse
|
17
|
Krasovska MV, Sefcikova J, Réblová K, Schneider B, Walter NG, Sponer J. Cations and hydration in catalytic RNA: molecular dynamics of the hepatitis delta virus ribozyme. Biophys J 2006; 91:626-38. [PMID: 16617077 PMCID: PMC1483112 DOI: 10.1529/biophysj.105.079368] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hepatitis delta virus (HDV) ribozyme is an RNA enzyme from the human pathogenic HDV. Cations play a crucial role in self-cleavage of the HDV ribozyme, by promoting both folding and chemistry. Experimental studies have revealed limited but intriguing details on the location and structural and catalytic functions of metal ions. Here, we analyze a total of approximately 200 ns of explicit-solvent molecular dynamics simulations to provide a complementary atomistic view of the binding of monovalent and divalent cations as well as water molecules to reaction precursor and product forms of the HDV ribozyme. Our simulations find that an Mg2+ cation binds stably, by both inner- and outer-sphere contacts, to the electronegative catalytic pocket of the reaction precursor, in a position to potentially support chemistry. In contrast, protonation of the catalytically involved C75 in the precursor or artificial placement of this Mg2+ into the product structure result in its swift expulsion from the active site. These findings are consistent with a concerted reaction mechanism in which C75 and hydrated Mg2+ act as general base and acid, respectively. Monovalent cations bind to the active site and elsewhere assisted by structurally bridging long-residency water molecules, but are generally delocalized.
Collapse
Affiliation(s)
- Maryna V Krasovska
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
18
|
Giese TJ, Sherer EC, Cramer CJ, York DM. A Semiempirical Quantum Model for Hydrogen-Bonded Nucleic Acid Base Pairs. J Chem Theory Comput 2005; 1:1275-85. [DOI: 10.1021/ct050102l] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Golebiowski J, Antonczak S, Fernandez-Carmona J, Condom R, Cabrol-Bass D. Closing loop base pairs in RNA loop-loop complexes: structural behavior, interaction energy and solvation analysis through molecular dynamics simulations. J Mol Model 2004; 10:408-17. [PMID: 15597210 DOI: 10.1007/s00894-004-0216-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
Nanosecond molecular dynamics using the Ewald summation method have been performed to elucidate the structural and energetic role of the closing base pair in loop-loop RNA duplexes neutralized by Mg2+ counterions in aqueous phases. Mismatches GA, CU and Watson-Crick GC base pairs have been considered for closing the loop of an RNA in complementary interaction with HIV-1 TAR. The simulations reveal that the mismatch GA base, mediated by a water molecule, leads to a complex that presents the best compromise between flexibility and energetic contributions. The mismatch CU base pair, in spite of the presence of an inserted water molecule, is too short to achieve a tight interaction at the closing-loop junction and seems to force TAR to reorganize upon binding. An energetic analysis has allowed us to quantify the strength of the interactions of the closing and the loop-loop pairs throughout the simulations. Although the water-mediated GA closing base pair presents an interaction energy similar to that found on fully geometry-optimized structure, the water-mediated CU closing base pair energy interaction reaches less than half the optimal value.
Collapse
Affiliation(s)
- Jérôme Golebiowski
- Laboratoire Arômes, Synthèses, Interactions, Faculté des sciences, Université de Nice-Sophia Antipolis, Nice Cedex 2, 06108, France.
| | | | | | | | | |
Collapse
|
20
|
Réblová K, Spacková N, Koca J, Leontis NB, Sponer J. Long-residency hydration, cation binding, and dynamics of loop E/helix IV rRNA-L25 protein complex. Biophys J 2004; 87:3397-412. [PMID: 15339800 PMCID: PMC1304806 DOI: 10.1529/biophysj.104.047126] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular dynamics simulations of RNA-protein complex between Escherichia coli loop E/helix IV (LE/HeIV) rRNA and L25 protein reveal a qualitative agreement between the experimental and simulated structures. The major groove of LE is a prominent rRNA cation-binding site. Divalent cations rigidify the LE major groove geometry whereas in the absence of divalent cations LE extensively interacts with monovalent cations via inner-shell binding. The HeIV region shows bistability of its major groove explaining the observed differences between x-ray and NMR structures. In agreement with the experiments, the simulations suggest that helix-alpha1 of L25 is the least stable part of the protein. Inclusion of Mg2+ cations into the simulations causes perturbation of basepairing at the LE/HeIV junction, which does not, however, affect the protein binding. The rRNA-protein complex is mediated by a number of highly specific hydration sites with long-residing water molecules and two of them are bound throughout the entire 24-ns simulation. Long-residing water molecules are seen also outside the RNA-protein contact areas with water-binding times substantially enhanced compared to simulations of free RNA. Long-residency hydration sites thus represent important elements of the three-dimensional structure of rRNA.
Collapse
Affiliation(s)
- Kamila Réblová
- National Centre for Biomolecular Research, Faculty of Sciences, Masaryk University, Kotlárská 2, 61137 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
21
|
Réblová K, Spacková N, Stefl R, Csaszar K, Koca J, Leontis NB, Sponer J. Non-Watson-Crick basepairing and hydration in RNA motifs: molecular dynamics of 5S rRNA loop E. Biophys J 2003; 84:3564-82. [PMID: 12770867 PMCID: PMC1302943 DOI: 10.1016/s0006-3495(03)75089-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Explicit solvent and counterion molecular dynamics simulations have been carried out for a total of >80 ns on the bacterial and spinach chloroplast 5S rRNA Loop E motifs. The Loop E sequences form unique duplex architectures composed of seven consecutive non-Watson-Crick basepairs. The starting structure of spinach chloroplast Loop E was modeled using isostericity principles, and the simulations refined the geometries of the three non-Watson-Crick basepairs that differ from the consensus bacterial sequence. The deep groove of Loop E motifs provides unique sites for cation binding. Binding of Mg(2+) rigidifies Loop E and stabilizes its major groove at an intermediate width. In the absence of Mg(2+), the Loop E motifs show an unprecedented degree of inner-shell binding of monovalent cations that, in contrast to Mg(2+), penetrate into the most negative regions inside the deep groove. The spinach chloroplast Loop E shows a marked tendency to compress its deep groove compared with the bacterial consensus. Structures with a narrow deep groove essentially collapse around a string of Na(+) cations with long coordination times. The Loop E non-Watson-Crick basepairing is complemented by highly specific hydration sites ranging from water bridges to hydration pockets hosting 2 to 3 long-residing waters. The ordered hydration is intimately connected with RNA local conformational variations.
Collapse
Affiliation(s)
- Kamila Réblová
- National Center for Biomolecular Research, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Sherer EC, Cramer CJ. Internal Loop−Helix Coupling in the Dynamics of the RNA Duplex (GC*C*AGUUCGCUGGC)2. J Phys Chem B 2002. [DOI: 10.1021/jp014494d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Edward C. Sherer
- Department of Chemistry and Supercomputer Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431
| | - Christopher J. Cramer
- Department of Chemistry and Supercomputer Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431
| |
Collapse
|
24
|
Abstract
This review summarizes results concerning molecular interactions of nucleic acid bases as revealed by advanced ab initio quantum chemical (QM) calculations published in last few years. We first explain advantages and limitations of modern QM calculations of nucleobases and provide a brief history of this still rather new field. Then we provide an overview of key electronic properties of standard and selected modified nucleobases, such as their charge distributions, dipole moments, polarizabilities, proton affinities, tautomeric equilibria, and amino group hybridization. Then we continue with hydrogen bonding of nucleobases, by analyzing energetics of standard base pairs, mismatched base pairs, thio-base pairs, and others. After this, the nature of aromatic stacking interactions is explained. Also, nonclassical interactions in nucleic acids such as interstrand bifurcated hydrogen bonds, interstrand close amino group contacts, C [bond] H...O interbase contacts, sugar-base stacking, intrinsically nonplanar base pairs, out-of-plane hydrogen bonds, and amino-acceptor interactions are commented on. Finally, we overview recent calculations on interactions between nucleic acid bases and metal cations. These studies deal with effects of cation binding on the strength of base pairs, analysis of specific differences among cations, such as the difference between zinc and magnesium, the influence of metalation on protonation and tautomeric equlibria of bases, and cation-pi interactions involving nucleobases. In this review, we do not provide methodological details, as these can be found in our preceding reviews. The interrelation between advanced QM approaches and classical molecular dynamics simulations is briefly discussed.
Collapse
Affiliation(s)
- J Sponer
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic and Center for Complex Molecular Systems and Biomolecules, Dolejskova 3, 182 23 Prague, Czech Republic.
| | | | | |
Collapse
|
25
|
Abstract
Hydrogen-bonded base pairs are an important determinant of nucleic acid structure and function. However, other interactions such as base-base stacking, base-backbone, and backbone-backbone interactions as well as effects exerted by the solvent and by metal or NH(4)(+) ions also have to be taken into account. In addition, hydrogen-bonded base complexes involving more than two bases can occur. With the rapidly increasing number and structural diversity of nucleic acid structures known at atomic detail higher-order hydrogen-bonded base complexes, base polyads, have attracted much interest. This review provides an overview on the occurrence of base polyads in nucleic acid structures and describes computational studies on these nucleic acid building blocks.
Collapse
Affiliation(s)
- J Sühnel
- Biocomputing Group, Institut für Molekulare Biotechnologie, Postfach 100813, D-07708 Jena, Germany
| |
Collapse
|
26
|
Meyer M, Schneider C, Brandl M, Sühnel J. Cyclic Adenine-, Cytosine-, Thymine-, and Mixed Guanine−Cytosine-Base Tetrads in Nucleic Acids Viewed from a Quantum-Chemical and Force Field Perspective. J Phys Chem A 2001. [DOI: 10.1021/jp012546t] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Michael Meyer
- Revotar Biopharmaceuticals AG, Neuendorfstrasse 24b, D-16761 Hennigsdorf, Germany, Accelrys Incorporated, Inselkammerstrasse 1, D-82008 Unterhaching, Germany, and Institut für Molekulare Biotechnologie, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Christoph Schneider
- Revotar Biopharmaceuticals AG, Neuendorfstrasse 24b, D-16761 Hennigsdorf, Germany, Accelrys Incorporated, Inselkammerstrasse 1, D-82008 Unterhaching, Germany, and Institut für Molekulare Biotechnologie, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Maria Brandl
- Revotar Biopharmaceuticals AG, Neuendorfstrasse 24b, D-16761 Hennigsdorf, Germany, Accelrys Incorporated, Inselkammerstrasse 1, D-82008 Unterhaching, Germany, and Institut für Molekulare Biotechnologie, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Jürgen Sühnel
- Revotar Biopharmaceuticals AG, Neuendorfstrasse 24b, D-16761 Hennigsdorf, Germany, Accelrys Incorporated, Inselkammerstrasse 1, D-82008 Unterhaching, Germany, and Institut für Molekulare Biotechnologie, Beutenbergstrasse 11, D-07745 Jena, Germany
| |
Collapse
|
27
|
Csaszar K, Spacková N, Stefl R, Sponer J, Leontis NB. Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: the role of non-Watson-Crick base-pairing, ordered hydration, cation binding and base mutations on stability and unfolding. J Mol Biol 2001; 313:1073-91. [PMID: 11700064 DOI: 10.1006/jmbi.2001.5100] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular dynamics simulations of the frame-shifting pseudoknot from beet western yellows virus (BWYV, NDB file UR0004) were performed with explicit inclusion of solvent and counterions. In all, 33 ns of simulation were carried out, including 10 ns of the native structure with protonation of the crucial cytosine residue, C8(N3+). The native structure exhibited stable trajectories retaining all Watson-Crick and tertiary base-pairs, except for fluctuations or transient disruptions at specific sites. The most significant fluctuations involved the change or disruption of hydrogen-bonding between C8(N3+) and bases G12, A25, and C26, as well as disruption of the water bridges linking C8(N3+) with A25 and C26. To increase sampling of rare events, the native simulation was continued at 400 K. A partial, irreversible unfolding of the molecule was initiated by slippage of C8(N3+) relative to G12 and continued by sudden concerted changes in hydrogen-bonding involving A23, A24, and A25. These events were followed by a gradual loss of stacking interactions in loop 2. Of the Watson-Crick base-pairs, only the 5'-terminal pair of stem 1 dissociated at 400 K, while the trans sugar-edge/sugar-edge A20.G4 interaction remained surprisingly stable. Four additional room-temperature simulations were carried out to obtain insights into the structural and dynamic effects of selected mutations. In two of these, C8 was left unprotonated. Considerable local rearrangements occurred that were not observed in the crystal structure, thus confirming N3-protonation of C8 in the native molecule. We also investigated the effect of mutating C8(N3+) to U8, to correlate with experimental and phylogenetic studies, and of changing the G4 x C17 base-pair to A4 x U17 to weaken the trans sugar-edge interaction between positions 4 and 20 and to test models of unfolding. The simulations indicate that the C8 x G12 x C26 base-triple at the junction is the most labile region of the frame-shifting pseudoknot. They provide insights into the roles of the other non-Watson-Crick base-pairs in the early stages of unfolding of the pseudoknot, which must occur to allow readthrough of the message by the ribosome. The simulations revealed several critical, highly ordered hydration sites with close to 100 % occupancies and residency times of individual water molecules of up to 5 ns. Sodium cation coordination sites with occupancies above 50 % were also observed.
Collapse
Affiliation(s)
- K Csaszar
- Chemistry Department and Center for Biomolecular Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | | | | | | | | |
Collapse
|
28
|
Meyer M, Brandl M, Sühnel J. Are Guanine Tetrads Stabilized by Bifurcated Hydrogen Bonds? J Phys Chem A 2001. [DOI: 10.1021/jp011179i] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michael Meyer
- Revotar Biopharmaceuticals AG, Neuendorfstrasse 24b, D-16761 Hennigsdorf, Germany, and Institut für Molekulare Biotechnologie, Biocomputing Group, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Maria Brandl
- Revotar Biopharmaceuticals AG, Neuendorfstrasse 24b, D-16761 Hennigsdorf, Germany, and Institut für Molekulare Biotechnologie, Biocomputing Group, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Jürgen Sühnel
- Revotar Biopharmaceuticals AG, Neuendorfstrasse 24b, D-16761 Hennigsdorf, Germany, and Institut für Molekulare Biotechnologie, Biocomputing Group, Beutenbergstrasse 11, D-07745 Jena, Germany
| |
Collapse
|
29
|
Guo JX, Gmeiner WH. Molecular dynamics simulation of the human U2B" protein complex with U2 snRNA hairpin IV in aqueous solution. Biophys J 2001; 81:630-42. [PMID: 11463612 PMCID: PMC1301540 DOI: 10.1016/s0006-3495(01)75728-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A 2200-ps molecular dynamics (MD) simulation of the U2 snRNA hairpin IV/U2B" complex was performed in aqueous solution using the particle mesh Ewald method to consider long-range electrostatic interactions. To investigate the interaction and recognition process between the RNA and protein, the free energy contributions resulting from individual amino acids of the protein component of the RNA/protein complex were calculated using the recently developed glycine-scanning method. The results revealed that the loop region of the U2 snRNA hairpin IV interacted mainly with three regions of the U2B" protein: 1) beta 1-helix A, 2) beta 2-beta 3, and 3) beta 4-helix C. U2 snRNA hairpin IV bound U2B" in a similar orientation as that previously described for U1 snRNA with the U1A' protein; however, the details of the interaction differed in several aspects. In particular, beta 1-helix A and beta 4-helix C in U2B" were not observed to interact with RNA in the U1A' protein complex. Most of the polar and charged residues in the interacting regions had larger mutant free energies than the nonpolar residues, indicating that electrostatic interactions were important for stabilizing the RNA/protein complex. The interaction was further stabilized by a network of hydrogen bonds and salt bridges formed between RNA and protein that was maintained throughout the MD trajectory. In addition to the direct interactions between RNA and the protein, solvent-mediated interactions also contributed significantly to complex stability. A detailed analysis of the ordered water molecules in the hydration of the RNA/protein complex revealed that bridged water molecules reside at the interface of RNA and protein as long as 2100 ps in the 2200-ps trajectory. At least 20 bridged water molecules, on average, contributed to the instantaneous stability of the RNA/protein complex. The stabilizing interaction energy due to bridging water molecules was obtained from ab initio Hartree-Fock and density functional theory calculations.
Collapse
Affiliation(s)
- J X Guo
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska, 68198-6805 USA
| | | |
Collapse
|
30
|
Schneider C, Brandl M, Sühnel J. Molecular dynamics simulation reveals conformational switching of water-mediated uracil-cytosine base-pairs in an RNA duplex. J Mol Biol 2001; 305:659-67. [PMID: 11162082 DOI: 10.1006/jmbi.2000.4338] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A 4 ns molecular dynamics simulation of an RNA duplex (r-GGACUUCGGUCC)(2 )in solution with Na+ and Cl- as counterions was performed. The X-ray structure of this duplex includes two water-mediated uracil-cytosine pairs. In contrast to the other base-pairs in the duplex the water-mediated pairs switch between different conformations. One conformation corresponds to the geometry of the water-mediated UC pairs in the duplex X-ray structure with water acting both as hydrogen-bond donor and acceptor. Another conformation is close to that of a water-mediated UC base-pair found in the X-ray structure of the 23 S rRNA sarcin/ricin domain. In this case the oxygen of the water molecule is linked to two-base donor sites. For a very short time also a direct UC base-pair and a further conformation that is similar to the one found in the RNA duplex structure but exhibits an increased H3(U)...N3(C) distance is observed. Water molecules with unusually long residence times are involved in the water-mediated conformations. These results indicate that the dynamic behaviour of the water-mediated UC base-pairs differs from that of the duplex Watson-Crick and non-canonical guanine-uracil pairs with two or three direct hydrogen bonds. The conformational variability and increased flexibility has to be taken into account when considering these base-pairs as RNA building blocks and as recognition motifs.
Collapse
Affiliation(s)
- C Schneider
- Biocomputing, Institut für Molekulare Biotechnologie Postfach, 100813 D-07708 Jena, Germany
| | | | | |
Collapse
|
31
|
Rauhut G. Recent Advances in Computing Heteroatom-Rich Five- and Six-Membered Ring Systems. ADVANCES IN HETEROCYCLIC CHEMISTRY 2001. [DOI: 10.1016/s0065-2725(01)81010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|