• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4641773)   Today's Articles (4754)   Subscriber (50420)
For: Higgins C, Ju Q, Seiser N, Flynn GW, Chapman S. Classical Trajectory Study of Energy Transfer in Pyrazine−CO Collisions. J Phys Chem A 2001;105:2858-66. [DOI: 10.1021/jp003980i] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Number Cited by Other Article(s)
1
Fu YL, Lu X, Han YC, Fu B, Zhang DH. Supercollisions of fast H-atom with ethylene on an accurate full-dimensional potential energy surface. J Chem Phys 2021;154:024302. [PMID: 33445911 DOI: 10.1063/5.0033682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
2
Classical trajectory studies of collisional energy transfer. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/b978-0-444-64207-3.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
3
Shen X, Wang S, Dai K, Shen Y. Nascent rotational distribution for LiH(v=0-3,J) states from collisions with H2(E=4300 and 4800cm-1). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017;173:516-526. [PMID: 27741492 DOI: 10.1016/j.saa.2016.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/28/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
4
Steill JD, Jasper AW, Chandler DW. Determination of the collisional energy transfer distribution responsible for the collision-induced dissociation of NO2 with Ar. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.06.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
5
Dagdigian PJ. Theoretical investigation of collisional energy transfer in polyatomic intermediates. INT REV PHYS CHEM 2013. [DOI: 10.1080/0144235x.2012.758543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
6
Dagdigian PJ, Alexander MH. Theoretical study of the vibrational relaxation of the methyl radical in collisions with helium. J Chem Phys 2013;138:104317. [DOI: 10.1063/1.4794167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
7
Hsu HC, Tsai MT, Dyakov YA, Ni CK. Energy transfer of highly vibrationally excited molecules studied by crossed molecular beam/time-sliced velocity map ion imaging. INT REV PHYS CHEM 2012. [DOI: 10.1080/0144235x.2012.673282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
8
Barker JR, Weston RE. Collisional Energy Transfer Probability Densities P(E, J; E′, J′) for Monatomics Colliding with Large Molecules. J Phys Chem A 2010;114:10619-33. [DOI: 10.1021/jp106443d] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
9
Havey DK, Du J, Liu Q, Mullin AS. Full State-Resolved Energy Gain Profiles of CO2 (J = 2−80) from Collisions of Highly Vibrationally Excited Molecules. 1. Relaxation of Pyrazine (E = 37900 cm−1). J Phys Chem A 2009;114:1569-80. [DOI: 10.1021/jp908934j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
10
Yuan L, Du J, Mullin AS. Energy-dependent dynamics of large-ΔE collisions: Highly vibrationally excited azulene (E=20390 and 38580cm−1) with CO2. J Chem Phys 2008;129:014303. [DOI: 10.1063/1.2943668] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
11
Liu CL, Hsu HC, Hsu YC, Ni CK. Energy transfer of highly vibrationally excited naphthalene. II. Vibrational energy dependence and isotope and mass effects. J Chem Phys 2008;128:124320. [DOI: 10.1063/1.2868753] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
12
Johnson JA, Duffin AM, Hom BJ, Jackson KE, Sevy ET. Quenching of highly vibrationally excited pyrimidine by collisions with CO2. J Chem Phys 2008;128:054304. [DOI: 10.1063/1.2825599] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
13
Viswanathan R, Dolgos M, Hinde RJ. Quasiclassical trajectory study of the vibrational quenching of hydroxyl radicals through collision with O atoms. J Phys Chem A 2007;111:783-92. [PMID: 17266218 DOI: 10.1021/jp0667947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
14
Fernandez-Ramos A, Miller JA, Klippenstein SJ, Truhlar DG. Modeling the kinetics of bimolecular reactions. Chem Rev 2007;106:4518-84. [PMID: 17091928 DOI: 10.1021/cr050205w] [Citation(s) in RCA: 393] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
15
Miller EM, Murat L, Bennette N, Hayes M, Mullin AS. Relaxation dynamics of highly vibrationally excited picoline isomers (E(vib) = 38 300 cm(-1)) with CO2: the role of state density in impulsive collisions. J Phys Chem A 2006;110:3266-72. [PMID: 16509652 DOI: 10.1021/jp054762y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
16
Li Z, Sansom R, Bonella S, Coker DF, Mullin AS. Trajectory Study of Supercollision Relaxation in Highly Vibrationally Excited Pyrazine and CO2. J Phys Chem A 2005;109:7657-66. [PMID: 16834139 DOI: 10.1021/jp0525336] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
17
Payne MA, Milce AP, Frost MJ, Orr BJ. Rovibrational Energy Transfer in the 4νCH Manifold of Acetylene Viewed by IR−UV Double Resonance Spectroscopy. 2. Perturbed States with J = 17 and 18. J Phys Chem B 2005;109:8332-43. [PMID: 16851977 DOI: 10.1021/jp0463518] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
18
Higgins CJ, Chapman S. Collisional Energy Transfer between Hot Pyrazine and Cold CO:  A Classical Trajectory Study. J Phys Chem A 2004. [DOI: 10.1021/jp040140l] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
19
Seiser N, Kavita K, Flynn GW. Long Range Collisional Energy Transfer from Highly Vibrationally Excited Pyrazine to CO Bath Molecules:  Excitation of the v = 1 CO Vibrational Level. J Phys Chem A 2003. [DOI: 10.1021/jp0225626] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
20
Miller JA, Klippenstein SJ, Raffy C. Solution of Some One- and Two-Dimensional Master Equation Models for Thermal Dissociation:  The Dissociation of Methane in the Low-Pressure Limit. J Phys Chem A 2002. [DOI: 10.1021/jp0144698] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA