1
|
Fu YL, Lu X, Han YC, Fu B, Zhang DH. Supercollisions of fast H-atom with ethylene on an accurate full-dimensional potential energy surface. J Chem Phys 2021; 154:024302. [PMID: 33445911 DOI: 10.1063/5.0033682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The collisions transferring large portions of energy are often called supercollisions. In the H + C2H2 reactive system, the rovibrationally cold C2H2 molecule can be activated with substantial internal excitations by its collision with a translationally hot H atom. It is interesting to investigate the mechanisms of collisional energy transfer in other important reactions of H with hydrocarbons. Here, an accurate, global, full-dimensional potential energy surface (PES) of H + C2H4 was constructed by the fundamental invariant neural network fitting based on roughly 100 000 UCCSD(T)-F12a/aug-cc-pVTZ data points. Extensive quasi-classical trajectory calculations were carried out on the full-dimensional PES to investigate the energy transfer process in collisions of the translationally hot H atoms with C2H4 in a wide range of collision energies. The computed function of the energy-transfer probability is not a simple exponential decay function but exhibits large magnitudes in the region of a large amount of energy transfer, indicating the signature of supercollisions. The supercollisions among non-complex-forming nonreactive (prompt) trajectories are frustrated complex-forming processes in which the incoming H atom penetrates into C2H4 with a small C-H distance but promptly and directly leaves C2H4. The complex-forming supercollisions, in which either the attacking H atom leaves (complex-forming nonreactive collisions) or one of the original H atoms of C2H4 leaves (complex-forming reactive trajectories), dominate large energy transfer from the translational energy to internal excitation of molecule. The current work sheds valuable light on the energy transfer of this important reaction in the combustion and may motivate related experimental investigations.
Collapse
Affiliation(s)
- Yan-Lin Fu
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Xiaoxiao Lu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong-Chang Han
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
2
|
Classical trajectory studies of collisional energy transfer. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/b978-0-444-64207-3.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
3
|
Shen X, Wang S, Dai K, Shen Y. Nascent rotational distribution for LiH(v=0-3,J) states from collisions with H 2(E=4300 and 4800cm -1). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:516-526. [PMID: 27741492 DOI: 10.1016/j.saa.2016.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/28/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Rotationally state selective excitation of H2(v=1, J=1 or 3) was achieved by stimulated Raman pumping. The full state-resolved distribution of scattered LiH(v=0-3, J=0~13)molecules from collisions with excited H2(E=4300 and 4800cm-1) is reported. Nascent rotational and translational energy profiles for scattered LiH(v=0~3) molecules with J=0~13 were measured using high-resolution transient laser induced fluorescence(LIF). The product translational energy for individual J-states increases by 120% for a 13% increase in donor energy. The scattered LiH(v=0, J=0~13) molecules have a biexponential rotational distribution. Fitting the data with a two-component exponential model yields a low-energy distribution and a high-energy distribution. The rotational distribution is sensitive to donor energy. Rotational distributions of scatted LiH(v=1-3) molecules were also measured. The distribution yielded rotational temperatures at 690K for LiH/H2(E=4300cm-1) and 730K for LiH/H2(E=4800cm-1), respectively. The rate constants for appearance LiH(v=0-3,J) were determined.
Collapse
Affiliation(s)
- Xiaoyan Shen
- School of Chemistry and Molecular Engineering, East China University of Sci.&Tech., Shanghai, 200237, China
| | - Shuying Wang
- School of Physics, Xinjiang University, Urumqi, 830046, China
| | - Kang Dai
- School of Physics, Xinjiang University, Urumqi, 830046, China
| | - Yifan Shen
- School of Physics, Xinjiang University, Urumqi, 830046, China
| |
Collapse
|
4
|
Steill JD, Jasper AW, Chandler DW. Determination of the collisional energy transfer distribution responsible for the collision-induced dissociation of NO2 with Ar. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.06.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Dagdigian PJ. Theoretical investigation of collisional energy transfer in polyatomic intermediates. INT REV PHYS CHEM 2013. [DOI: 10.1080/0144235x.2012.758543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Dagdigian PJ, Alexander MH. Theoretical study of the vibrational relaxation of the methyl radical in collisions with helium. J Chem Phys 2013; 138:104317. [DOI: 10.1063/1.4794167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Hsu HC, Tsai MT, Dyakov YA, Ni CK. Energy transfer of highly vibrationally excited molecules studied by crossed molecular beam/time-sliced velocity map ion imaging. INT REV PHYS CHEM 2012. [DOI: 10.1080/0144235x.2012.673282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Barker JR, Weston RE. Collisional Energy Transfer Probability Densities P(E, J; E′, J′) for Monatomics Colliding with Large Molecules. J Phys Chem A 2010; 114:10619-33. [DOI: 10.1021/jp106443d] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John R. Barker
- Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143, and Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973
| | - Ralph E. Weston
- Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143, and Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
9
|
Havey DK, Du J, Liu Q, Mullin AS. Full State-Resolved Energy Gain Profiles of CO2 (J = 2−80) from Collisions of Highly Vibrationally Excited Molecules. 1. Relaxation of Pyrazine (E = 37900 cm−1). J Phys Chem A 2009; 114:1569-80. [DOI: 10.1021/jp908934j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel K. Havey
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Juan Du
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Qingnan Liu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Amy S. Mullin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
10
|
Yuan L, Du J, Mullin AS. Energy-dependent dynamics of large-ΔE collisions: Highly vibrationally excited azulene (E=20390 and 38580cm−1) with CO2. J Chem Phys 2008; 129:014303. [DOI: 10.1063/1.2943668] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Liu CL, Hsu HC, Hsu YC, Ni CK. Energy transfer of highly vibrationally excited naphthalene. II. Vibrational energy dependence and isotope and mass effects. J Chem Phys 2008; 128:124320. [DOI: 10.1063/1.2868753] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
12
|
Johnson JA, Duffin AM, Hom BJ, Jackson KE, Sevy ET. Quenching of highly vibrationally excited pyrimidine by collisions with CO2. J Chem Phys 2008; 128:054304. [DOI: 10.1063/1.2825599] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Viswanathan R, Dolgos M, Hinde RJ. Quasiclassical trajectory study of the vibrational quenching of hydroxyl radicals through collision with O atoms. J Phys Chem A 2007; 111:783-92. [PMID: 17266218 DOI: 10.1021/jp0667947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The collisional removal of vibrationally excited OH radicals by O atoms is studied by the quasiclassical trajectory method. To evaluate the effect of different topological features on the scattering processes two different global potential energy surfaces, DMBE IV and TU, are used. Results for reactive, exchange, and inelastic scattering probabilities are reported for central collisions (with zero total angular momentum) with a fixed relative translational energy for vibrational levels of OH ranging from nu=1 to v=8. Vibrational state distributions of product molecules are also compared on the two potential energy surfaces. Both surfaces predict higher probabilities for reaction than for exchange or inelastic scattering. The vibrational state distributions of the product diatomic molecules are different on the two surfaces. In particular, the two surfaces give substantially different probabilities for multiquantum OH vibrational relaxation transitions OH(v)+O-->OH(v')+O.
Collapse
Affiliation(s)
- Raji Viswanathan
- Department of Chemistry, Yeshiva University, New York, New York 10033, USA.
| | | | | |
Collapse
|
14
|
Fernandez-Ramos A, Miller JA, Klippenstein SJ, Truhlar DG. Modeling the kinetics of bimolecular reactions. Chem Rev 2007; 106:4518-84. [PMID: 17091928 DOI: 10.1021/cr050205w] [Citation(s) in RCA: 393] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Antonio Fernandez-Ramos
- Departamento de Quimica Fisica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
15
|
Miller EM, Murat L, Bennette N, Hayes M, Mullin AS. Relaxation dynamics of highly vibrationally excited picoline isomers (E(vib) = 38 300 cm(-1)) with CO2: the role of state density in impulsive collisions. J Phys Chem A 2006; 110:3266-72. [PMID: 16509652 DOI: 10.1021/jp054762y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Strong collisions of highly vibrationally excited picoline isomers and CO2 (00(0)0) were investigated using high resolution transient IR absorption probing to investigate the role of donor state density. Vibrationally excited 3-picoline and 4-picoline (3-methylpyridine and 4 methylpyridine) with E(vib) = 38300 cm(-1) were prepared by 266 nm excitation followed by rapid internal conversion. Transient IR probe measurements of the nascent rotational and translational energy gain in CO2 (00(0)0) show that large DeltaE collisions for 3- and 4-picoline are similar to those for excited 2-picoline. The probability distributions for the large DeltaE energy transfer of the three isomers have similar dependence on DeltaE. The results are compared with other earlier results demonstrating that the shape of the large DeltaE probability distribution correlates with the DeltaE dependence of the donor vibrational state density. The results are discussed in terms of the GRETCHEN model for collisional relaxation.
Collapse
Affiliation(s)
- Elisa M Miller
- Department of Chemistry, Metcalf Center for Science and Engineering, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
16
|
Li Z, Sansom R, Bonella S, Coker DF, Mullin AS. Trajectory Study of Supercollision Relaxation in Highly Vibrationally Excited Pyrazine and CO2. J Phys Chem A 2005; 109:7657-66. [PMID: 16834139 DOI: 10.1021/jp0525336] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Classical trajectory calculations were performed to simulate state-resolved energy transfer experiments of highly vibrationally excited pyrazine (E(vib) = 37,900 cm(-1)) and CO(2), which were conducted using a high-resolution transient infrared absorption spectrometer. The goal here is to use classical trajectories to simulate the supercollision energy transfer pathway wherein large amounts of energy are transferred in single collisions in order to compare with experimental results. In the trajectory calculations, Newton's laws of motion are used for the molecular motion, isolated molecules are treated as collections of harmonic oscillators, and intermolecular potentials are formed by pairwise Lennard-Jones potentials. The calculations qualitatively reproduce the observed energy partitioning in the scattered CO(2) molecules and show that the relative partitioning between bath rotation and translation is dependent on the moment of inertia of the bath molecule. The simulations show that the low-frequency modes of the vibrationally excited pyrazine contribute most to the strong collisions. The majority of collisions lead to small DeltaE values and primarily involve single encounters between the energy donor and acceptor. The large DeltaE exchanges result from both single impulsive encounters and chattering collisions that involve multiple encounters.
Collapse
Affiliation(s)
- Ziman Li
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
17
|
Payne MA, Milce AP, Frost MJ, Orr BJ. Rovibrational Energy Transfer in the 4νCH Manifold of Acetylene Viewed by IR−UV Double Resonance Spectroscopy. 2. Perturbed States with J = 17 and 18. J Phys Chem B 2005; 109:8332-43. [PMID: 16851977 DOI: 10.1021/jp0463518] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Collision-induced state-to-state molecular energy transfer between rovibrational states in the 12,700 cm(-1) 4nu(CH) manifold of the electronic ground state X of acetylene (C(2)H(2)) is monitored by time-resolved infrared-ultraviolet double resonance (IR-UV DR) spectroscopy. Rotational J-states associated with the (nu(1) + 3nu(3)) or (1 0 3 0 0)(0) vibrational combination level, initially prepared by an IR pulse, are probed at approximately 299, approximately 296, or approximately 323 nm with UV laser-induced fluorescence via the Alpha electronic state. The rovibrational J-states of interest belong to a congested manifold that is affected by anharmonic, l-resonance, and Coriolis couplings, yielding complex intramolecular dynamics. Consequently, collision-induced rovibrational satellites observed by IR-UV DR comprise not only regular even-DeltaJ features but also supposedly forbidden odd-DeltaJ features. A preceding paper (J. Phys. Chem. A 2003, 107, 10759) focused on low-J-value rovibrational levels of the 4nu(CH) manifold (particularly those with J = 0 and J = 1) whereas this paper examines locally perturbed states at higher values of J (particularly J = 17 and 18, which display anomalous doublet structure in IR-absorption spectra). Three complementary forms of IR-UV DR experiments (IR-scanned, UV-scanned, and kinetic) are used to address the extent to which intramolecular perturbations influence the efficiency of J-resolved collision-induced energy transfer with both even and odd DeltaJ.
Collapse
Affiliation(s)
- Mark A Payne
- Centre for Lasers and Applications, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | | | | |
Collapse
|
18
|
Higgins CJ, Chapman S. Collisional Energy Transfer between Hot Pyrazine and Cold CO: A Classical Trajectory Study. J Phys Chem A 2004. [DOI: 10.1021/jp040140l] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cortney J. Higgins
- Department of Chemistry, Barnard College, Columbia University, New York, New York 10025
| | - Sally Chapman
- Department of Chemistry, Barnard College, Columbia University, New York, New York 10025
| |
Collapse
|
19
|
Seiser N, Kavita K, Flynn GW. Long Range Collisional Energy Transfer from Highly Vibrationally Excited Pyrazine to CO Bath Molecules: Excitation of the v = 1 CO Vibrational Level. J Phys Chem A 2003. [DOI: 10.1021/jp0225626] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- N. Seiser
- Department of Chemistry and Columbia Center for Integrated Science and Engineering, Columbia University, New York, New York 10027
| | - K. Kavita
- Department of Chemistry and Columbia Center for Integrated Science and Engineering, Columbia University, New York, New York 10027
| | - G. W. Flynn
- Department of Chemistry and Columbia Center for Integrated Science and Engineering, Columbia University, New York, New York 10027
| |
Collapse
|
20
|
Miller JA, Klippenstein SJ, Raffy C. Solution of Some One- and Two-Dimensional Master Equation Models for Thermal Dissociation: The Dissociation of Methane in the Low-Pressure Limit. J Phys Chem A 2002. [DOI: 10.1021/jp0144698] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James A. Miller
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551-0969
| | - Stephen J. Klippenstein
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551-0969
| | | |
Collapse
|