1
|
Donor MT, Shepherd SO, Prell JS. Rapid Determination of Activation Energies for Gas-Phase Protein Unfolding and Dissociation in a Q-IM-ToF Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:602-610. [PMID: 32126776 PMCID: PMC8063716 DOI: 10.1021/jasms.9b00055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ion mobility-mass spectrometry has emerged as a powerful tool for interrogating a wide variety of chemical systems. Collision-induced unfolding (CIU), typically performed in time-of-flight instruments, has been utilized to obtain valuable qualitative insight into protein structure and illuminate subtle differences between related species. CIU experiments can be performed relatively quickly, but unfolding energy information obtained from them has not yet been interpreted quantitatively. While several methods can determine quantitative dissociation energetics for small molecules, clusters, and peptides, these methods have rarely been applied to proteins, and never to study unfolding. Here, we present a method to rapidly determine activation energies for protein unfolding and dissociation, built on a model for energy deposition during collisional activation. The method is validated by comparing activation energies for dissociation of three complexes with those obtained using blackbody infrared radiative dissociation (BIRD); values from the two methods are in agreement. Several protein monomers were unfolded using CIU, including multiple charge states of both cations and anions, and activation energies determined. ΔH⧧ and ΔS⧧ values are found to be correlated, leading to ΔG⧧ values that lie within a narrow range (∼70-80 kJ/mol) and vary more with charge state than with protein identity. ΔG⧧ is anticorrelated with charge density, highlighting the key role of Coulombic repulsion in gas-phase unfolding. Measured ΔG⧧ values are similar to those computed for proton transfer within small peptides, suggesting that proton transfer is the rate-limiting step in gas-phase unfolding and providing evidence of a link between the Mobile Proton model and CIU.
Collapse
Affiliation(s)
- Micah T. Donor
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene OR 97403-1253
| | - Samantha O. Shepherd
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene OR 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene OR 97403-1253
- Materials Science Institute, University of Oregon, 1252 University of Oregon, Eugene, OR 97403-1252
- Address reprint requests to James S. Prell, 1253 University of Oregon, Eugene, OR 97405, Tel: +1 (541) 346-2597,
| |
Collapse
|
2
|
Donor MT, Mroz AM, Prell JS. Experimental and theoretical investigation of overall energy deposition in surface-induced unfolding of protein ions. Chem Sci 2019; 10:4097-4106. [PMID: 31049192 PMCID: PMC6471915 DOI: 10.1039/c9sc00644c] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/06/2019] [Indexed: 12/15/2022] Open
Abstract
Recent advances in native mass spectrometry have enabled its use to probe the structure of and interactions within biomolecular complexes. Surface-induced dissociation, in which inter- and intramolecular interactions are disrupted following an energetic ion-surface collision, is a method that can directly interrogate the topology of protein complexes. However, a quantitative relationship between the ion kinetic energy at the moment of surface collision and the internal energy deposited into the ion has not yet been established for proteins. The factors affecting energy deposition in surface-induced unfolding (SIU) of protein monomers were investigated and a calibration relating laboratory-frame kinetic energy to internal energy developed. Protein monomers were unfolded by SIU and by collision-induced unfolding (CIU). CIU and SIU cause proteins to undergo the same unfolding transitions at different values of laboratory-frame kinetic energy. There is a strong correlation between the SIU and CIU energies, demonstrating that SIU, like CIU, can largely be understood as a thermal process. The change in internal energy in CIU was modeled using a Monte Carlo approach and theory. Computed values of the overall efficiency were found to be approximately 25% and used to rescale the CIU energy axis and relate nominal SIU energies to internal energy. The energy deposition efficiency in SIU increases with mass and kinetic energy from a low of ∼20% to a high of ∼68%, indicating that the effective mass of the surface increases along with the mass of the ion. The effect of ion structure on energy deposition was probed using multiple stages of ion activation. Energy deposition in SIU strongly depends on structure, decreasing as the protein is elongated, due to decreased effective protein-surface collisional cross section and increased transfer to rotational modes.
Collapse
Affiliation(s)
- Micah T Donor
- Department of Chemistry and Biochemistry , 1253 University of Oregon , Eugene , OR 97403-1253 , USA
| | - Austin M Mroz
- Department of Chemistry and Biochemistry , 1253 University of Oregon , Eugene , OR 97403-1253 , USA
| | - James S Prell
- Department of Chemistry and Biochemistry , 1253 University of Oregon , Eugene , OR 97403-1253 , USA
- Materials Science Institute , University of Oregon , 1252 University of Oregon , Eugene , OR 97403-1252 , USA . ; ; Tel: +1 541 346 2597
| |
Collapse
|
3
|
Sephton MA, Waite JH, Brockwell TG. How to Detect Life on Icy Moons. ASTROBIOLOGY 2018; 18:843-855. [PMID: 30035638 PMCID: PMC6067095 DOI: 10.1089/ast.2017.1656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 12/10/2017] [Indexed: 05/09/2023]
Abstract
The icy moons of the outer Solar System present the possibility of subsurface water, habitable conditions, and potential abodes for life. Access to evidence that reveals the presence of life on the icy moons can be facilitated by plumes that eject material from the subsurface out into space. One instrument capable of performing life-search investigations at the icy moons is the MAss SPectrometer for Planetary EXploration/Europa (MASPEX), which constitutes a high-resolution, high-sensitivity multibounce time-of-flight mass spectrometer capable of measuring trace amounts (ppb) of organic compounds. MASPEX has been selected for the NASA Europa Clipper mission and will sample any plumes and the surface-sputtered atmosphere to assess any evidence for habitability and life. MASPEX is capable of similar investigations targeted at other icy moons. Data may be forthcoming from direct sampling but also impact dissociation because of the high speed of some analytes. Impact dissociation is analogous to the dissociation provided by modern analytical pyrolysis methods. Radiolytic dissociation on the europan surface before or during the sputtering process can also induce fragmentation similar to pyrolysis. In this study, we have compiled pyrolysis mass spectrometry data from a variety of biological and nonbiological materials to demonstrate the ability of MASPEX to recognize habitability and detect life in any plumes and atmospheres of icy moons. Key Words: Europa-Icy moons-Life detection-Mass spectrometry-Organic matter. Astrobiology 18, 843-855.
Collapse
Affiliation(s)
- Mark A. Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Jack Hunter Waite
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas
| | - Tim G. Brockwell
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas
| |
Collapse
|
4
|
Nagaoka S, Ikemoto K, Horiuchi K, Nakajima A. Soft- and Reactive-Landing of Cr(aniline)2 Sandwich Complexes onto Self-Assembled Monolayers: Separation between Functional and Binding Sites. J Am Chem Soc 2011; 133:18719-27. [DOI: 10.1021/ja205384q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuhei Nagaoka
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kaori Ikemoto
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kazuki Horiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Atsushi Nakajima
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- ERATO, Japan Science and Technology Agency, 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012, Japan
| |
Collapse
|
5
|
Pysanenko A, Žabka J, Herman Z. Scattering of Low-Energy (5-12 eV) C2D4•+ Ions from Room-Temperature Carbon Surfaces. ACTA ACUST UNITED AC 2008. [DOI: 10.1135/cccc20080755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The scattering of the hydrocarbon radical cation C2D4•+ from room-temperature carbon (highly oriented pyrolytic graphite, HOPG) surface was investigated at low incident energies of 6-12 eV. Mass spectra, angular and translational energy distributions of product ions were measured. From these data, information on processes at surfaces, absolute ion survival probability, and kinematics of the collision was obtained. The projectile ion showed both inelastic, dissociative and reactive scattering, namely the occurrence of H-atom transfer reaction with hydrocarbons present on the room-temperature carbon surface. The absolute survival probability of the ions for the incident angle of 30° (with respect to the surface) decreased from about 1.0% (16 eV) towards zero at incident energies below 10 eV. Estimation of the effective surface mass involved in the collision process led to m(S)eff of about 57 a.m.u. for inelastic non-dissociative collisions of C2D4•+ and of about 115 a.m.u. for fragment ions (C2D3+, C2D2•+) and ions formed in reactive surface collisions (C2D4H+, C2D2H+, contributions to C2D3+ and C2D2•+). This suggested a rather complex interaction between the projectile ion and the hydrocarbon-covered surface during the collision.
Collapse
|
6
|
Nagaoka S, Matsumoto T, Okada E, Mitsui M, Nakajima A. Room-Temperature Isolation of V(benzene)2Sandwich Clusters via Soft-Landing inton-Alkanethiol Self-Assembled Monolayers. J Phys Chem B 2006; 110:16008-17. [PMID: 16898758 DOI: 10.1021/jp061806+] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The adsorption state and thermal stability of V(benzene)2 sandwich clusters soft-landed onto a self-assembled monolayer of different chain-length n-alkanethiols (Cn-SAM, n = 8, 12, 16, 18, and 22) were studied by means of infrared reflection absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD). The IRAS measurement confirmed that V(benzene)2 clusters are molecularly adsorbed and maintain a sandwich structure on all of the SAM substrates. In addition, the clusters supported on the SAM substrates are oriented with their molecular axes tilted 70-80 degrees off the surface normal. An Arrhenius analysis of the TPD spectra reveals that the activation energy for the desorption of the supported clusters increases linearly with the chain length of the SAMs. For the longest chain C22-SAM, the activation energy reaches approximately 150 kJ/mol, and the thermal desorption of the supported clusters can be considerably suppressed near room temperature. The clear chain-length-dependent thermal stability of the supported clusters observed here can be explained well in terms of the cluster penetration into the SAM matrixes.
Collapse
Affiliation(s)
- Shuhei Nagaoka
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | | | | | | | | |
Collapse
|
7
|
Laskin J, Futrell JH. Activation of large ions in FT-ICR mass spectrometry. MASS SPECTROMETRY REVIEWS 2005; 24:135-167. [PMID: 15389858 DOI: 10.1002/mas.20012] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The advent of soft ionization techniques, notably electrospray and laser desorption ionization methods, has enabled the extension of mass spectrometric methods to large molecules and molecular complexes. This both greatly extends the applications of mass spectrometry and makes the activation and dissociation of complex ions an integral part of these applications. This review emphasizes the most promising methods for activation and dissociation of complex ions and presents this discussion in the context of general knowledge of reaction kinetics and dynamics largely established for small ions. We then introduce the characteristic differences associated with the higher number of internal degrees of freedom and high density of states associated with molecular complexity. This is reflected primarily in the kinetics of unimolecular dissociation of complex ions, particularly their slow decay and the higher energy content required to induce decomposition--the kinetic shift (KS). The longer trapping time of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) significantly reduces the KS, which presents several advantages over other methods for the investigation of dissociation of complex molecules. After discussing general principles of reaction dynamics related to collisional activation of ions, we describe conventional ways to achieve single- and multiple-collision activation in FT-ICR MS. Sustained off-resonance irradiation (SORI)--the simplest and most robust means of introducing the multiple collision activation process--is discussed in greatest detail. Details of implementation of this technique, required control of experimental parameters, limitations, and examples of very successful application of SORI-CID are described. The advantages of high mass resolving power and the ability to carry out several stages of mass selection and activation intrinsic to FT-ICR MS are demonstrated in several examples. Photodissociation of ions from small molecules can be effected using IR or UV/vis lasers and generally requires tuning lasers to specific wavelengths and/or utilizing high flux, multiphoton excitation to match energy levels in the ion. Photodissociation of complex ions is much easier to accomplish from the basic physics perspective. The quasi-continuum of vibrational states at room temperature makes it very easy to pump relatively large amounts of energy into complex ions and infrared multiphoton dissociation (IRMPD) is a powerful technique for characterizing large ions, particularly biologically relevant molecules. Since both SORI-CID and IRMPD are slow activation methods they have many common characteristics. They are also distinctly different because SORI-CID is intrinsically selective (only ions that have a cyclotron frequency close to the frequency of the excitation field are excited), whereas IRMPD is not (all ions that reside on the optical path of the laser are excited). There are advantages and disadvantages to each technique and in many applications they complement each other. In contrast with these slow activation methods, the less widely appreciated activation method of surface induced dissociation (SID) appears to offer unique advantages because excitation in SID occurs on a sub-picosecond time scale, instantaneously relative to the observation time of any mass spectrometer. Internal energy deposition is quite efficient and readily adjusted by altering the kinetic energy of the impacting ion. The shattering transition--instantaneous decomposition of the ion on the surface--observed at high collision energies enables access to dissociation channels that are not accessible using SORI-CID or IRMPD. Finally, we discuss some approaches for tailoring the surface to achieve particular aims in SID.
Collapse
Affiliation(s)
- Julia Laskin
- Fundamental Science Directorate, Pacific Northwest National Laboratory, P.O. Box 999 (K8-88), Richland, Washington 99352, USA.
| | | |
Collapse
|
8
|
Laskin J, Futrell JH. Energy transfer in collisions of peptide ions with surfaces. J Chem Phys 2003. [DOI: 10.1063/1.1589739] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
9
|
Laskin J, Futrell JH. Collisional activation of peptide ions in FT-ICR mass spectrometry. MASS SPECTROMETRY REVIEWS 2003; 22:158-181. [PMID: 12838543 DOI: 10.1002/mas.10041] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the last decade, the characterization of complex molecules, particularly biomolecules, became a focus of fundamental and applied research in mass spectrometry. Most of these studies utilize tandem mass spectrometry (MS/MS) to obtain structural information for complex molecules. Tandem mass spectrometry (MS/MS) typically involves the mass selection of a primary ion, its activation by collision or photon excitation, unimolecular decay into fragment ions characteristic of the ion structure and its internal excitation, and mass analysis of the fragment ions. Although the fundamental principles of tandem mass spectrometry of relatively small molecules are fairly well-understood, our understanding of the activation and fragmentation of large molecules is much more primitive. For small ions, a single energetic collision is sufficient to dissociate the ion; however, this is not the case for complex molecules. For large ions, two fundamental limits severely constrain fragmentation in tandem mass spectrometry. First, the center-of-mass collision energy-the absolute upper limit of energy transfer in a collision process-decreases with increasing mass of the projectile ion for fixed ion kinetic energy and neutral mass. Secondly, the dramatic increase in density of states with increasing internal degrees of freedom of the ion decreases the rate of dissociation by many orders of magnitude at a given internal energy. Consequently, most practical MS/MS experiments with complex ions involve multiple-collision activation (MCA-CID), multi-photon activation, or surface-induced dissociation (SID). This review is focused on what has been learned in recent research studies concerned with fundamental aspects of MCA-CID and SID of model peptides, with an emphasis on experiments carried out with Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS). These studies provide the first quantitative comparison of gas-phase multiple-collision activation and SID of peptide ions. Combining collisional energy-resolved data with RRKM-based modeling revealed the effect of peptide size and identity on energy transfer in collisions-very important characteristics of ion activation from fundamental and the analytical perspectives. Finally, the combination of FT-ICR with SID was utilized to carry out the first time-resolved experiments that examine the kinetics of peptide fragmentation. This has lead to the discovery that the time-dependence of ion dissociation varies smoothly up to a certain collision energy, and then shifts dramatically to a time-independent, extensive dissociation. This near-instantaneous "shattering" of the ion generates a large number of relatively small fragment ions. Shattering of ions on surfaces opens up a variety of dissociation pathways that are not accessible with multiple-collision and multiphoton excitation.
Collapse
Affiliation(s)
- Julia Laskin
- Pacific Northwest National Laboratory, Fundamental Science Directorate, P.O. Box 999 (K8-88), Richland, Washington 99352, USA.
| | | |
Collapse
|
10
|
Jo SC, Cooks RG. Translational to vibrational energy conversion during surface-induced dissociation of n-butylbenzene molecular ions colliding at self-assembled monolayer surfaces. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2003; 9:237-4. [PMID: 12939476 DOI: 10.1255/ejms.554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Translational to vibrational (T-->V) energy conversion in the course of inelastic collisions of n-butylbenzene molecular ions with thiolate self-assembled monolayer (SAM) gold surfaces is studied to better understand internal energy uptake by the hyperthermal projectile ions. The projectile ion is selected by a mass spectrometer of BE configuration and product ions are analyzed using a quadrupole mass analyzer after kinetic energy selection with an electric sector. The branching ratio for formation of the fragment ions m/z 91 and m/z 92, measured over a range of collision energies, is used to estimate the average internal energy with the aid of calculations based on unimolecular dissociation kinetics [Rice-Ramsperger-Kassel-Marcus (RRKM) theory]. The measured T-->V conversion efficiencies (the fraction of the laboratory kinetic energy converted into internal energy) are 11 approximately 12% for dodecanethiolate SAM (H-SAM) and 19 approximately 20% for 2-perfluorooctylethanethiolate SAM (F-SAM), respectively, over ranges of a few 10s of eV. The values are similar to those reported earlier for other thermometer molecules undergoing surface collisions. Chemical sputtering leading to ionization of the surface is a prominent feature of the surface-induced dissociation (SID) spectra of n-butylbenzene acquired using the H-SAM surface but not the F-SAM surface because of the lower ionization energy of the former.
Collapse
Affiliation(s)
- Sung-Chan Jo
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|