1
|
Salazar E, Menger MFS, Faraji S. Ultrafast Photoinduced Dynamics in 1,3-Cyclohexadiene: A Comparison of Trajectory Surface Hopping Schemes†. J Chem Theory Comput 2024; 20:5796-5806. [PMID: 38949625 PMCID: PMC11270829 DOI: 10.1021/acs.jctc.4c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Photoinduced nonadiabatic processes play a crucial role in a wide range of disciplines, from fundamental steps in biology to modern applications in advanced materials science. A theoretical understanding of these processes is highly desirable, and trajectory surface hopping (TSH) has proven to be a well-suited framework for a wide range of systems. In this work, we present a comprehensive comparison between two TSH algorithms, the conventional Tully's fewest switches surface hopping (FSSH) scheme and the Landau-Zener surface hopping (LZSH), to study the photoinduced ring-opening of 1,3-cyclohexadiene (CHD) to 1,3,5-hexatriene at the spin-flip time-dependent density functional theory (SF-TDDFT) level of theory. Additionally, we compare our results with a literature study at the extended multistate complete active space second-order perturbation theory method (XMS-CASPT2) level of theory. Our results show that the average population and lifetimes estimated with LZSH using SF-TDDFT are closer to the literature (using multireference methods) than those estimated with FSSH using SF-TDDFT. The latter speaks in favor of applying LZSH in combination with the SF-TDDFT method to study larger and more complex systems such as molecular photoswitches where the CHD molecule acts as a backbone. In addition, we present an implementation of Tully's FSSH algorithm as an extension to the PySurf software package.
Collapse
Affiliation(s)
- Edison
X. Salazar
- Instituut-Lorentz, Universiteit Leiden, 2300 RA Leiden, The Netherlands
- Theoretical
Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Maximilian F. S.
J. Menger
- Theoretical
Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Theoretische
Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Shirin Faraji
- Theoretical
Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Institute
of Theoretical and Computational Chemistry, Faculty of Mathematics
and Natural Sciences, Heinrich Heine University
Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Deree Y, Bogoslavsky B, Schapiro I, Gidron O. The photochemistry and photophysics of benzoyl-carbazole. Phys Chem Chem Phys 2024; 26:18048-18053. [PMID: 38895802 DOI: 10.1039/d4cp01781a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Benzoyl-carbazole and its derivatives are considered a platform for exploring processes such as room temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF). They have also been reported to exhibit dual emission, but there is a great spectral variability in the relative intensity of the emission bands reported in different studies. To better understand the fundamental photophysical properties, we set to explore BCz and its perfluorinated derivative F5BCz using spectroscopy and quantum chemical simulations. We find that the reported dual fluorescence in solution and in films results from a photochemical process (photo-Fries rearrangement), producing carbazole among other products, explaining the variation in the reported emission spectra. In addition, BCz exhibits solvent dependent TADF, which is explained by the stabilization of the charge transfer S1 state in polar solvents. F5BCz undergoes an efficient photochemical process (Mallory reaction) from its single state to produce highly fluorescent product c-F5BCz, in 40% isolated yield. This photoreactivity also proceeds in films under ambient conditions, which have significant implications on the applications of BCz-based materials for optoelectronic applications.
Collapse
Affiliation(s)
- Yinon Deree
- Institute of Chemistry and the Center for Nano science and Nano-technology, The Hebrew University of Jerusalem Edmond J. Safra Campus, 9190401 Jerusalem, Israel.
| | - Benny Bogoslavsky
- Institute of Chemistry and the Center for Nano science and Nano-technology, The Hebrew University of Jerusalem Edmond J. Safra Campus, 9190401 Jerusalem, Israel.
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Ori Gidron
- Institute of Chemistry and the Center for Nano science and Nano-technology, The Hebrew University of Jerusalem Edmond J. Safra Campus, 9190401 Jerusalem, Israel.
| |
Collapse
|
3
|
Shu Y, Truhlar DG. Generalized Semiclassical Ehrenfest Method: A Route to Wave Function-Free Photochemistry and Nonadiabatic Dynamics with Only Potential Energies and Gradients. J Chem Theory Comput 2024; 20:4396-4426. [PMID: 38819014 DOI: 10.1021/acs.jctc.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We reconsider recent methods by which direct dynamics calculations of electronically nonadiabatic processes can be carried out while requiring only adiabatic potential energies and their gradients. We show that these methods can be understood in terms of a new generalization of the well-known semiclassical Ehrenfest method. This is convenient because it eliminates the need to evaluate electronic wave functions and their matrix elements along the mixed quantum-classical trajectories. The new approximations and procedures enabling this advance are the curvature-driven approximation to the time-derivative coupling, the generalized semiclassical Ehrenfest method, and a new gradient correction scheme called the time-derivative matrix (TDM) scheme. When spin-orbit coupling is present, one can carry out dynamics calculations in the fully adiabatic basis using potential energies and gradients calculated without spin-orbit coupling plus the spin-orbit coupling matrix elements. Even when spin-orbit coupling is neglected, the method is useful because it allows calculations by electronic structure methods for which nonadiabatic coupling vectors are unavailable. In order to place the new considerations in context, the article starts out with a review of background material on trajectory surface hopping, the semiclassical Ehrenfest scheme, and methods for incorporating decoherence. We consider both internal conversion and intersystem crossing. We also review several examples from our group of successful applications of the curvature-driven approximation.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
4
|
Morreale D, Persico M. Topology of Conical Intersection Seams and the Geometric Phase. J Phys Chem A 2024; 128:1707-1714. [PMID: 38408203 DOI: 10.1021/acs.jpca.3c07042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In this paper, we demonstrate two topological properties of crossing seams, that is, the sets of points in the N-dimensional space of nuclear coordinates where two electronic eigenstates are degenerate. We shall examine the typical case of states of the same spin with accidental degeneracies, whereby the crossing seam is of dimension N - 2. The first property we demonstrate is that a crossing seam has no boundary, therefore, it must either extend asymptotically to infinite values of one or more coordinates or wrap on itself. The second property is that two (or more) crossing seams can intersect each other but in such a way that neither of them ends at the intersection. When N = 3, the crossing seam is a line in a 3D space; this is so in triatomic molecules but also in reduced dimensionality treatments of larger polyatomics. The above-mentioned rules then mean that the crossing seam is a line of infinite length or a closed loop and can split into three branches but not in two. The example of the first two excited 1A' states of H2Cl+ illustrates these rules and shows their usefulness for computational search and characterization of crossing seams.
Collapse
Affiliation(s)
- Daniel Morreale
- Department of Chemistry and Industrial Chemistry, University of Pisa, v. G. Moruzzi 13, Pisa 56126, Italy
| | - Maurizio Persico
- Department of Chemistry and Industrial Chemistry, University of Pisa, v. G. Moruzzi 13, Pisa 56126, Italy
| |
Collapse
|
5
|
Acheson K, Kirrander A. Automatic Clustering of Excited-State Trajectories: Application to Photoexcited Dynamics. J Chem Theory Comput 2023; 19:6126-6138. [PMID: 37703098 PMCID: PMC10536988 DOI: 10.1021/acs.jctc.3c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Indexed: 09/14/2023]
Abstract
We introduce automatic clustering as a computationally efficient tool for classifying and interpreting trajectories from simulations of photo-excited dynamics. Trajectories are treated as time-series data, with the features for clustering selected by variance mapping of normalized data. The L2-norm and dynamic time warping are proposed as suitable similarity measures for calculating the distance matrices, and these are clustered using the unsupervised density-based DBSCAN algorithm. The silhouette coefficient and the number of trajectories classified as noise are used as quality measures for the clustering. The ability of clustering to provide rapid overview of large and complex trajectory data sets, and its utility for extracting chemical and physical insight, is demonstrated on trajectories corresponding to the photochemical ring-opening reaction of 1,3-cyclohexadiene, noting that the clustering can be used to generate reduced dimensionality representations in an unbiased manner.
Collapse
Affiliation(s)
- Kyle Acheson
- EaStCHEM,
School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K.
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Adam Kirrander
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| |
Collapse
|
6
|
Hiroyasu Y, Higashiguchi K, Shirakata C, Sugimoto M, Matsuda K. Kinetic Analysis of the Photochemical Paths in Asymmetric Diarylethene Dimer. Chemistry 2023; 29:e202300126. [PMID: 37246241 DOI: 10.1002/chem.202300126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/19/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
An asymmetric diarylethene dimer composed of 2- and 3-thienylethene units linked by m-phenylene developed various colors upon UV irradiation via an independent photochromic reaction on each unit. The change in contents and the other photoresponses of the photogenerated four isomers were analyzed using quantum yield for all the possible photochemical paths, i. e., photoisomerization, fluorescence, energy transfer, and the other non-radiative paths. Almost all the rate constants of photochemical paths were calculated using measurable quantum yields and lifetimes. It was found that a significant contribution on photoresponse was the competition between photoisomerization and intramolecular energy transfer. The clear difference was observed in the photoresponses of the dimer and the 1 : 1 mixture solution of the model compounds. The m-phenylene spacer appropriately regulated the rate of energy transfer in the asymmetric dimer, and the spacer enabled isolation of the excited state of the dimer, making the above quantitative analysis possible.
Collapse
Affiliation(s)
- Yae Hiroyasu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kenji Higashiguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Chihiro Shirakata
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Masataka Sugimoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kenji Matsuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano Nishibiraki-cho 34-4, Sakyo-ku, Kyoto, 606-8103, Japan
| |
Collapse
|
7
|
Liu Y, Sanchez DM, Ware MR, Champenois EG, Yang J, Nunes JPF, Attar A, Centurion M, Cryan JP, Forbes R, Hegazy K, Hoffmann MC, Ji F, Lin MF, Luo D, Saha SK, Shen X, Wang XJ, Martínez TJ, Wolf TJA. Rehybridization dynamics into the pericyclic minimum of an electrocyclic reaction imaged in real-time. Nat Commun 2023; 14:2795. [PMID: 37202402 DOI: 10.1038/s41467-023-38513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/28/2023] [Indexed: 05/20/2023] Open
Abstract
Electrocyclic reactions are characterized by the concerted formation and cleavage of both σ and π bonds through a cyclic structure. This structure is known as a pericyclic transition state for thermal reactions and a pericyclic minimum in the excited state for photochemical reactions. However, the structure of the pericyclic geometry has yet to be observed experimentally. We use a combination of ultrafast electron diffraction and excited state wavepacket simulations to image structural dynamics through the pericyclic minimum of a photochemical electrocyclic ring-opening reaction in the molecule α-terpinene. The structural motion into the pericyclic minimum is dominated by rehybridization of two carbon atoms, which is required for the transformation from two to three conjugated π bonds. The σ bond dissociation largely happens after internal conversion from the pericyclic minimum to the electronic ground state. These findings may be transferrable to electrocyclic reactions in general.
Collapse
Affiliation(s)
- Y Liu
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11790, USA
| | - D M Sanchez
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305, USA
- Design Physics Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - M R Ware
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - E G Champenois
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - J Yang
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Center of Basic Molecular Science, Department of Chemistry, Mong Man Wai Building of Science and Technology, S-1027 Tsinghua University, Beijing, China
| | - J P F Nunes
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Theodore Jorgensen Hall 208, 855 N 16th Street, Lincoln, NE, 68588, USA
- Diamond Light Source, Harwell Science Campus, Fermi Ave, Didcot, OX11 0DE, UK
| | - A Attar
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - M Centurion
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Theodore Jorgensen Hall 208, 855 N 16th Street, Lincoln, NE, 68588, USA
| | - J P Cryan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - R Forbes
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - K Hegazy
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - M C Hoffmann
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - F Ji
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - M-F Lin
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - D Luo
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - S K Saha
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Theodore Jorgensen Hall 208, 855 N 16th Street, Lincoln, NE, 68588, USA
| | - X Shen
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - X J Wang
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - T J Martínez
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305, USA.
| | - T J A Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| |
Collapse
|
8
|
Sekikawa T, Saito N, Kurimoto Y, Ishii N, Mizuno T, Kanai T, Itatani J, Saita K, Taketsugu T. Real-time observation of the Woodward-Hoffmann rule for 1,3-cyclohexadiene by femtosecond soft X-ray transient absorption. Phys Chem Chem Phys 2023; 25:8497-8506. [PMID: 36883468 DOI: 10.1039/d2cp05268g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The stereochemistry of pericyclic reactions is explained by orbital symmetry conservation, referred to as the Woodward-Hoffmann (WH) rule. Although this rule has been verified using the structures of reactants and products, the temporal evolution of the orbital symmetry during the reaction has not been clarified. Herein, we used femtosecond soft X-ray transient absorption spectroscopy to elucidate the thermal pericyclic reaction of 1,3-cyclohexadiene (CHD) molecules, i.e., their isomerization to 1,3,5-hexatriene. In the present experimental scheme, the ring-opening reaction is driven by the thermal vibrational energy induced by photoexcitation to the Rydberg states at 6.2 eV and subsequent femtosecond relaxation to the ground state of CHD molecules. The direction of the ring opening, which can be conrotatory or disrotatory, was the primary focus, and the WH rule predicts the disrotatory pathway in the thermal process. We observed the shifts in K-edge absorption of the carbon atom from the 1s orbital to vacant molecular orbitals around 285 eV at a delay between 340 and 600 fs. Furthermore, a theoretical investigation predicts that the shifts depend on the molecular structures along the reaction pathways and the observed shifts in induced absorption are attributed to the structural change in the disrotatory pathway. This confirms that the orbital symmetry is dynamically conserved in the ring-opening reaction of CHD molecules as predicted using the WH rule.
Collapse
Affiliation(s)
- Taro Sekikawa
- Department of Applied Physics, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Nariyuki Saito
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - Yutaro Kurimoto
- Department of Applied Physics, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Nobuhisa Ishii
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa 619-0215, Japan
| | - Tomoya Mizuno
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - Teruto Kanai
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - Jiro Itatani
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - Kenichiro Saita
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
9
|
Zhang L, Shu Y, Bhaumik S, Chen X, Sun S, Huang Y, Truhlar DG. Nonadiabatic Dynamics of 1,3-Cyclohexadiene by Curvature-Driven Coherent Switching with Decay of Mixing. J Chem Theory Comput 2022; 18:7073-7081. [PMID: 36350795 DOI: 10.1021/acs.jctc.2c00801] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The photoinduced ring-opening reaction of 1,3-cyclohexadiene to produce 1,3,5-hexatriene is a classic electrocyclic reaction and is also a prototype for many reactions of biological and synthetic importance. Here, we simulate the ultrafast nonadiabatic dynamics of the reaction in the manifold of the three lowest valence electronic states by using extended multistate complete-active-space second-order perturbation theory (XMS-CASPT2) combined with the curvature-driven coherent switching with decay of mixing (κCSDM) dynamical method. We obtain an excited-state lifetime of 79 fs, and a product quantum yield of 40% from the 500 trajectories initiated in the S1 excited state. The obtained lifetime and quantum yield values are very close to previously reported experimental and computed values, showing the capability of performing a reasonable nonadiabatic ring-opening dynamics with the κCSDM method that does not require nonadiabatic coupling vectors, time derivatives, or diabatization. In addition, we study the ring-opening reaction by initiating the trajectories in the dark state S2. We also optimize the S0/S1 and S1/S2 minimum-energy conical intersections (MECIs) by XMS-CASPT2; for S1/S2, we optimized both an inner and an outer local-minimum-energy conical intersections (LMECIs). We provide the potential energy profile along the ring-opening coordinate by joining selected critical points via linear synchronous transit paths. We find the inner S1/S2 LMECI to be more crucial than the outer one.
Collapse
Affiliation(s)
- Linyao Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yinan Shu
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Suman Bhaumik
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Xiye Chen
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Shaozeng Sun
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yudong Huang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
10
|
Travnikova O, Piteša T, Ponzi A, Sapunar M, Squibb RJ, Richter R, Finetti P, Di Fraia M, De Fanis A, Mahne N, Manfredda M, Zhaunerchyk V, Marchenko T, Guillemin R, Journel L, Prince KC, Callegari C, Simon M, Feifel R, Decleva P, Došlić N, Piancastelli MN. Photochemical Ring-Opening Reaction of 1,3-Cyclohexadiene: Identifying the True Reactive State. J Am Chem Soc 2022; 144:21878-21886. [PMID: 36444673 PMCID: PMC9732879 DOI: 10.1021/jacs.2c06296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photochemically induced ring-opening isomerization reaction of 1,3-cyclohexadiene to 1,3,5-hexatriene is a textbook example of a pericyclic reaction and has been amply investigated with advanced spectroscopic techniques. The main open question has been the identification of the single reactive state which drives the process. The generally accepted description of the isomerization pathway starts with a valence excitation to the lowest lying bright state, followed by a passage through a conical intersection to the lowest lying doubly excited state, and finally a branching between either the return to the ground state of the cyclic molecule or the actual ring-opening reaction leading to the open-chain isomer. Here, in a joint experimental and computational effort, we demonstrate that the evolution of the excitation-deexcitation process is much more complex than that usually described. In particular, we show that an initially high-lying electronic state smoothly decreasing in energy along the reaction path plays a key role in the ring-opening reaction.
Collapse
Affiliation(s)
- Oksana Travnikova
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France
| | | | - Aurora Ponzi
- Institut
Rud̵er Bošković, ZagrebHR-10000, Croatia
| | | | | | | | | | | | | | - Nicola Mahne
- IOM-CNR, S.S. 14 km 163.5 in Area Science
Park, Trieste34149, Italy
| | | | - Vitali Zhaunerchyk
- Department
of Physics, University of Gothenburg, GothenburgSE-412 96, Sweden
| | - Tatiana Marchenko
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France
| | - Renaud Guillemin
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France
| | - Loic Journel
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France
| | | | | | - Marc Simon
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France
| | - Raimund Feifel
- Department
of Physics, University of Gothenburg, GothenburgSE-412 96, Sweden
| | - Piero Decleva
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá
di Trieste, TriesteI-34127, Italy
| | - Nad̵a Došlić
- Institut
Rud̵er Bošković, ZagrebHR-10000, Croatia,
| | - Maria Novella Piancastelli
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France,Department
of Physics and Astronomy, Uppsala University, UppsalaSE-751 20, Sweden,
| |
Collapse
|
11
|
Burns KH, Elles CG. Ultrafast Dynamics of a Molecular Switch from Resonance Raman Spectroscopy: Comparing Visible and UV Excitation. J Phys Chem A 2022; 126:5932-5939. [PMID: 36026439 DOI: 10.1021/acs.jpca.2c05435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resonance Raman spectroscopy probes the ultrafast dynamics of a diarylethene (DAE) molecular switch following excitation into the first two optical absorption bands. Mode-specific resonance enhancements for Raman excitation at visible (750-560 nm) and near-UV (420-390 nm) wavelengths compared with the calculated and experimental off-resonance Raman spectrum at 785 nm reveal different Franck-Condon active vibrations for the two electronically excited states. The resonance enhancements at visible wavelengths are consistent with initial motion on the first excited-state that promotes the cycloreversion reaction, whereas the enhancements for excitation at near-UV wavelengths highlight motions involving conjugated backbone and phenyl ring stretching modes that are orthogonal to the reaction coordinate. The results support a mechanism involving rapid internal conversion from the higher-lying state followed by cycloreversion on the first excited state. These observations provide new information about the reactivity of DAE derivatives following excitation in the visible and near-UV.
Collapse
Affiliation(s)
- Kristen H Burns
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Christopher G Elles
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
12
|
Cofer-Shabica DV, Menger MFSJ, Ou Q, Shao Y, Subotnik JE, Faraji S. INAQS, a Generic Interface for Nonadiabatic QM/MM Dynamics: Design, Implementation, and Validation for GROMACS/Q-CHEM simulations. J Chem Theory Comput 2022; 18:4601-4614. [PMID: 35901266 DOI: 10.1021/acs.jctc.2c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accurate description of large molecular systems in complex environments remains an ongoing challenge for the field of computational chemistry. This problem is even more pronounced for photoinduced processes, as multiple excited electronic states and their corresponding nonadiabatic couplings must be taken into account. Multiscale approaches such as hybrid quantum mechanics/molecular mechanics (QM/MM) offer a balanced compromise between accuracy and computational burden. Here, we introduce an open-source software package (INAQS) for nonadiabatic QM/MM simulations that bridges the sampling capabilities of the GROMACS MD package and the excited-state infrastructure of the Q-CHEM electronic structure software. The interface is simple and can be adapted easily to other MD codes. The code supports a variety of different trajectory-based molecular dynamics, ranging from Born-Oppenheimer to surface hopping dynamics. To illustrate the power of this combination, we simulate electronic absorption spectra, free-energy surfaces along a reaction coordinate, and the excited-state dynamics of 1,3-cyclohexadiene in solution.
Collapse
Affiliation(s)
- D Vale Cofer-Shabica
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| | - Maximilian F S J Menger
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Qi Ou
- AI for Science Institute, Beijing 100080, China
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| | - Shirin Faraji
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
13
|
Salazar E, Reinink S, Faraji S. Providing theoretical insight into the role of symmetry in the photoisomerization mechanism of a non-symmetric dithienylethene photoswitch. Phys Chem Chem Phys 2022; 24:11592-11602. [PMID: 35531648 PMCID: PMC9116444 DOI: 10.1039/d2cp00550f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dithienylethene (DTE) molecular photoswitches have shown to be excellent candidates in the design of efficient optoelectronic devices, due to their high photoisomerization quantum yield (QY), for which symmetry is suggested to play a crucial role. Here, we present a theoretical study on the photochemistry of a non-symmetric dithienylethene photoswitch, with a special emphasis on the effect of asymmetric substitution on the photocyclization and photoreversion mechanisms. We used the Spin-Flip Time Dependent Density Functional Theory (SF-TDDFT) method to locate and characterize the main structures (conical intersections and minima) of the ground state and the first two excited states, S1 and S2, along the ring-opening/closure reaction coordinate of the photocyclization and photoreversion processes, and to identify the important coordinates governing the radiationless decay pathways. Our results suggest that while the main features that characterize the photoisomerization of symmetric DTEs are also present for the photoisomerization of the non-symmetric DTE, the lower energy barrier on S1 along the cycloreversion reaction speaks in favor of a more efficient and therefore a higher cycloreversion QY for the non-symmetric DTEs, making them a better candidate for molecular optoelectronic devices than their symmetric counterparts.
Collapse
Affiliation(s)
- Edison Salazar
- Theoretical Chemistry, Zernike Institute for Advanced Materials, University of GroningenNijenborgh 49747 AG GroningenThe Netherlands
| | - Suzanne Reinink
- Theoretical Chemistry, Zernike Institute for Advanced Materials, University of GroningenNijenborgh 49747 AG GroningenThe Netherlands
| | - Shirin Faraji
- Theoretical Chemistry, Zernike Institute for Advanced Materials, University of GroningenNijenborgh 49747 AG GroningenThe Netherlands
| |
Collapse
|
14
|
Champenois EG, Sanchez DM, Yang J, Figueira Nunes JP, Attar A, Centurion M, Forbes R, Gühr M, Hegazy K, Ji F, Saha SK, Liu Y, Lin MF, Luo D, Moore B, Shen X, Ware MR, Wang XJ, Martínez TJ, Wolf TJA. Conformer-specific photochemistry imaged in real space and time. Science 2021; 374:178-182. [PMID: 34618569 DOI: 10.1126/science.abk3132] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- E G Champenois
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - D M Sanchez
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.,Department of Chemistry, Stanford University, Stanford, CA, USA
| | - J Yang
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.,SLAC National Accelerator Laboratory, Menlo Park, CA, USA.,Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| | - J P Figueira Nunes
- Department of Physics and Astronomy, University of Nebraska, Lincoln, NE, USA
| | - A Attar
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - M Centurion
- Department of Physics and Astronomy, University of Nebraska, Lincoln, NE, USA
| | - R Forbes
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - M Gühr
- Institut für Physik und Astronomie, Universität Potsdam, Potsdam, Germany
| | - K Hegazy
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.,Department of Physics, Stanford University, Stanford, CA, USA
| | - F Ji
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - S K Saha
- Department of Physics and Astronomy, University of Nebraska, Lincoln, NE, USA
| | - Y Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - M-F Lin
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - D Luo
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - B Moore
- Department of Physics and Astronomy, University of Nebraska, Lincoln, NE, USA
| | - X Shen
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - M R Ware
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - X J Wang
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - T J Martínez
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.,Department of Chemistry, Stanford University, Stanford, CA, USA
| | - T J A Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| |
Collapse
|
15
|
Guerra C, Ayarde-Henríquez L, Duque-Noreña M, Cárdenas C, Pérez P, Chamorro E. On the nature of bonding in the photochemical addition of two ethylenes: C-C bond formation in the excited state? Phys Chem Chem Phys 2021; 23:20598-20606. [PMID: 34505860 DOI: 10.1039/d1cp03554a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, the 2s + 2s (face-to-face) prototypical example of a photochemical reaction has been re-examined to characterize the evolution of chemical bonding. The analysis of the electron localization function (as an indirect measure of the Pauli principle) along the minimum energy path provides strong evidence supporting that CC bond formation occurs not in the excited state but in the ground electronic state after crossing the rhombohedral S1/S0 conical intersection.
Collapse
Affiliation(s)
- Cristian Guerra
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Avenida República 275, 8370146, Santiago, Chile.
| | - Leandro Ayarde-Henríquez
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Avenida República 275, 8370146, Santiago, Chile.
| | - Mario Duque-Noreña
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Avenida República 275, 8370146, Santiago, Chile.
| | - Carlos Cárdenas
- Universidad de Chile, Facultad de Ciencias, Departamento de Física, Avenida Las Palmeras 3425, Santiago, Chile. .,Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), 9170124 Santiago, Chile
| | - Patricia Pérez
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Avenida República 275, 8370146, Santiago, Chile.
| | - Eduardo Chamorro
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Avenida República 275, 8370146, Santiago, Chile.
| |
Collapse
|
16
|
Jankowska J, Martyka M, Michalski M. Photo-cycloreversion mechanism in diarylethenes revisited: A multireference quantum-chemical study at the ODM2/MRCI level. J Chem Phys 2021; 154:204305. [PMID: 34241185 DOI: 10.1063/5.0045830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photoswitchable diarylethenes (DAEs), over years of intense fundamental and applied research, have been established among the most commonly chosen molecular photoswitches, often employed as controlling units in molecular devices and smart materials. At the same time, providing reliable explanation for their photophysical behavior, especially the mechanism of the photo-cycloreversion transformation, turned out to be a highly challenging task. Herein, we investigate this mechanism in detail by means of multireference semi-empirical quantum chemistry calculations, allowing, for the first time, for a balanced treatment of the static and dynamic correlation effects, both playing a crucial role in DAE photochemistry. In the course of our study, we find the second singlet excited state of double electronic-excitation character to be the key to understanding the nature of the photo-cycloreversion transformation in DAE molecular photoswitches.
Collapse
Affiliation(s)
- J Jankowska
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland
| | - M Martyka
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland
| | - M Michalski
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland
| |
Collapse
|
17
|
Karashima S, Humeniuk A, Uenishi R, Horio T, Kanno M, Ohta T, Nishitani J, Mitrić R, Suzuki T. Ultrafast Ring-Opening Reaction of 1,3-Cyclohexadiene: Identification of Nonadiabatic Pathway via Doubly Excited State. J Am Chem Soc 2021; 143:8034-8045. [DOI: 10.1021/jacs.1c01896] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Shutaro Karashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Alexander Humeniuk
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Straße 42, Würzburg 97074, Germany
| | - Ryuta Uenishi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takuya Horio
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Manabu Kanno
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Tetsuro Ohta
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Junichi Nishitani
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Straße 42, Würzburg 97074, Germany
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
18
|
Sofferman DL, Konar A, Spears KG, Sension RJ. Ultrafast excited state dynamics of provitamin D 3 and analogs in solution and in lipid bilayers. J Chem Phys 2021; 154:094309. [PMID: 33685160 DOI: 10.1063/5.0041375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The photochemical ring-opening reaction of 7-dehydrocholesterol (DHC, provitamin D3) is responsible for the light-initiated formation of vitamin D3 in mammalian skin membranes. Visible transient absorption spectroscopy was used to explore the excited state dynamics of DHC and two analogs: ergosterol (provitamin D2) and DHC acetate free in solution and confined to lipid bilayers chosen to model the biological cell membrane. In solution, the excited state dynamics of the three compounds are nearly identical. However, when confined to lipid bilayers, the heterogeneity of the lipid membrane and packing forces imposed on the molecule by the lipid alter the excited state dynamics of these compounds. When confined to lipid bilayers in liposomes formed using DPPC, two solvation environments are identified. The excited state dynamics for DHC and analogs in fluid-like regions of the liposome membrane undergo internal conversion and ring-opening on 1 ps-2 ps time scales, similar to those observed in isotropic solution. In contrast, the excited state lifetime of a subpopulation in regions of lower fluidity is 7 ps-12 ps. The long decay component is unique to these liposomes and results from the structural properties of the lipid bilayer. Additional measurements in liposomes prepared with lipids having slightly longer or shorter alkane tails support this conclusion. In the lipid environments studied, the longest lifetimes are observed for DHC. The unsaturated sterol tail of ergosterol and the acetate group of DHC acetate disrupt the packing around the molecule and permit faster internal conversion and relaxation back to the ground state.
Collapse
Affiliation(s)
- Danielle L Sofferman
- Program in Applied Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, USA
| | - Arkaprabha Konar
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, USA
| | - Kenneth G Spears
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Roseanne J Sension
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
19
|
Fang Y, Duan YC, Geng Y, Zhao ZW, Zhong RL, Zhao L, Li RH, Zhang M, Su ZM. Theoretical study on the photocyclization reactivity mechanism in a diarylethene derivative with multicolour fluorescence modulation. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Filatov M, Lee S, Nakata H, Choi CH. Structural or population dynamics: what is revealed by the time-resolved photoelectron spectroscopy of 1,3-cyclohexadiene? A study with an ensemble density functional theory method. Phys Chem Chem Phys 2020; 22:17567-17573. [PMID: 32716454 DOI: 10.1039/d0cp02963g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-resolved photoelectron spectra during the photochemical ring-opening reaction of 1,3-cyclohexadiene (CHD) are modeled by an ensemble density functional theory (eDFT) method. The computational methodology employed in this work is capable of correctly describing the multi-reference effects arising in the ground and excited electronic states of molecules, which is important for the correct description of the ring-opening reaction of CHD. The geometries of molecular species along the non-adiabatic molecular dynamics (NAMD) trajectories reported in a previous study of the CHD photochemical ring-opening were used in this work to calculate the ionization energies and the respective Dyson orbitals for all possible ionization channels. The obtained theoretical time-resolved spectra display decay characteristics in a reasonable agreement with the experimental observations; i.e., the decay (and rise) of the most mechanistically significant signals occurs on the timescale of 100-150 fs. This is very different from the excited state population decay characteristics (τS1 = 234 ± 8 fs) obtained in the previous NAMD study. The difference between the population decay and the decay of the photoelectron signal intensity is traced back to the geometric transformation that the molecule undergoes during the photoreaction. This demonstrates the importance of including the geometric information in interpretation of the experimental observations.
Collapse
Affiliation(s)
- Michael Filatov
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea.
| | | | | | | |
Collapse
|
21
|
Nagasaka T, Sotome H, Morikawa S, Uriarte LM, Sliwa M, Kawai T, Miyasaka H. Restriction of the conrotatory motion in photo-induced 6π electrocyclic reaction: formation of the excited state of the closed-ring isomer in the cyclization. RSC Adv 2020; 10:20038-20045. [PMID: 35520419 PMCID: PMC9054205 DOI: 10.1039/d0ra03523h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
The electrocyclic reaction dynamics of a photochromic dithiazolylarylene derivative, 2,3-dithiazolylbenzothiophene (DTA) was investigated by using time-resolved transient absorption and fluorescence spectroscopies. The closed-ring isomer of DTA undergoes cycloreversion through the conical intersection mediating the potential energy surfaces of the excited and ground states, which is in agreement with the Woodward–Hoffmann rules for the electrocyclic reactions of 6π electron systems. On the other hand, a large portion of the open-ring isomer undergoes cyclization along the distinct reaction scheme, in which the cyclization takes place in the excited state manifold leading to the formation of the excited state of the closed-ring isomer. The suppression of the geometrical motion of DTA due to the intramolecular interaction could open a new efficient reaction pathway resulting in the formation of the electronically excited state of the product. Restriction of the molecular geometry opens up a novel pathway in the cyclization reaction of a photochromic dithiazolylarylene derivative.![]()
Collapse
Affiliation(s)
- Tatsuhiro Nagasaka
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Soichiro Morikawa
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Lucas Martinez Uriarte
- Univ. Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman Lille 59000 France
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman Lille 59000 France
| | - Tsuyoshi Kawai
- Graduate School of Science and Technology, Division of Materials Science, Nara Institute of Science and Technology Ikoma Nara 630-0192 Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
22
|
Salazar E, Faraji S. Theoretical study of cyclohexadiene/hexatriene photochemical interconversion using spin-Flip time-Dependent density functional theory. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1764120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Edison Salazar
- Theoretical Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Shirin Faraji
- Theoretical Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| |
Collapse
|
23
|
Maiuri M, Garavelli M, Cerullo G. Ultrafast Spectroscopy: State of the Art and Open Challenges. J Am Chem Soc 2019; 142:3-15. [DOI: 10.1021/jacs.9b10533] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Margherita Maiuri
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| |
Collapse
|
24
|
Sen S, Chattopadhyay A. A Computational Study on the Photochemistry of 2,4,4‐Trimethyl‐1‐pyrroline 1‐Oxide and Investigation on the Reaction Paths of Its Photoproduct Oxaziridine. ChemistrySelect 2019. [DOI: 10.1002/slct.201903230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sindhuja Sen
- Department of ChemistryBirla Institute of Technology and Science (BITS)Pilani –K.K. Birla Goa Campus Goa 403 726 India
| | - Anjan Chattopadhyay
- Department of ChemistryBirla Institute of Technology and Science (BITS)Pilani –K.K. Birla Goa Campus Goa 403 726 India
| |
Collapse
|
25
|
Ruddock JM, Yong H, Stankus B, Du W, Goff N, Chang Y, Odate A, Carrascosa AM, Bellshaw D, Zotev N, Liang M, Carbajo S, Koglin J, Robinson JS, Boutet S, Kirrander A, Minitti MP, Weber PM. A deep UV trigger for ground-state ring-opening dynamics of 1,3-cyclohexadiene. SCIENCE ADVANCES 2019; 5:eaax6625. [PMID: 31523713 PMCID: PMC6731073 DOI: 10.1126/sciadv.aax6625] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/03/2019] [Indexed: 05/03/2023]
Abstract
We explore the photo-induced kinetics of 1,3-cyclohexadiene upon excitation at 200 nm to the 3p state by ultrafast time-resolved, gas-phase x-ray scattering using the Linac Coherent Light Source. Analysis of the scattering anisotropy reveals that the excitation leads to the 3px and 3py Rydberg electronic states, which relax to the ground state with a time constant of 208 ± 11 fs. In contrast to the well-studied 266 nm excitation, at 200 nm the majority of the molecules (76 ± 3%) relax to vibrationally hot cyclohexadiene in the ground electronic state. A subsequent reaction on the ground electronic state surface leads from the hot cyclohexadiene to 1,3,5-hexatriene, with rates for the forward and backward reactions of 174 ± 13 and 355 ± 45 ps, respectively. The scattering pattern of the final hexatriene product reveals a thermal distribution of rotamers about the carbon-carbon single bonds.
Collapse
Affiliation(s)
- Jennifer M. Ruddock
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI 02912, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Haiwang Yong
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI 02912, USA
| | - Brian Stankus
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI 02912, USA
| | - Wenpeng Du
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI 02912, USA
| | - Nathan Goff
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI 02912, USA
| | - Yu Chang
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI 02912, USA
| | - Asami Odate
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI 02912, USA
| | - Andrés Moreno Carrascosa
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Darren Bellshaw
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Nikola Zotev
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Mengning Liang
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Sergio Carbajo
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Jason Koglin
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Joseph S. Robinson
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Sébastien Boutet
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Adam Kirrander
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Michael P. Minitti
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Peter M. Weber
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI 02912, USA
| |
Collapse
|
26
|
Li Y, Pérez Lustres JL, Volpp HR, Buckup T, Kolmar T, Jäschke A, Motzkus M. Ultrafast ring closing of a diarylethene-based photoswitchable nucleoside. Phys Chem Chem Phys 2019; 20:22867-22876. [PMID: 30152514 DOI: 10.1039/c8cp03549k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Deoxyuridine nucleosides embodied into diarylethenes form an especial class of photoswitchable compounds that are designed to stack and pair with DNA bases. The molecular geometry can be switched between "open" and "closed" isomers by a pericyclic reaction that affects the stability of the surrounding double helix. This potentially enables light-induced control of DNA hybridization at microscopic resolution. Despite its importance for the optimization of DNA photoswitches, the ultrafast photoisomerization mechanism of these diarylethenes is still not well understood. In this work, femtosecond transient absorption spectroscopy is applied to study the ring closing reaction upon UV excitation with 45 fs pulses. Excited-state absorption decays rapidly and gives rise to the UV-Vis difference spectrum of the "closed" form within ≈15 ps. Time constants of 0.09, 0.49 and 6.6 ps characterize the multimodal dynamics, where a swift recurrence in the signal anisotropy indicates transient population of the intermediate 21A-like state.
Collapse
Affiliation(s)
- Yang Li
- Physikalisch Chemisches Institut, Ruprecht-Karls University, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Polyak I, Hutton L, Crespo-Otero R, Barbatti M, Knowles PJ. Ultrafast Photoinduced Dynamics of 1,3-Cyclohexadiene Using XMS-CASPT2 Surface Hopping. J Chem Theory Comput 2019; 15:3929-3940. [DOI: 10.1021/acs.jctc.9b00396] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Iakov Polyak
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Lewis Hutton
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Rachel Crespo-Otero
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | | | - Peter J. Knowles
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
28
|
Ashfold MNR, Ingle RA, Karsili TNV, Zhang J. Photoinduced C–H bond fission in prototypical organic molecules and radicals. Phys Chem Chem Phys 2019; 21:13880-13901. [DOI: 10.1039/c8cp07454b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We survey and assess current knowledge regarding the primary photochemistry of hydrocarbon molecules and radicals.
Collapse
Affiliation(s)
| | | | | | - Jingsong Zhang
- Department of Chemistry
- University of California at Riverside
- Riverside
- USA
| |
Collapse
|
29
|
Aldaz C, Kammeraad JA, Zimmerman PM. Discovery of conical intersection mediated photochemistry with growing string methods. Phys Chem Chem Phys 2018; 20:27394-27405. [PMID: 30357173 PMCID: PMC6532651 DOI: 10.1039/c8cp04703k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Conical intersections (CIs) are important features of photochemistry that determine yields and selectivity. Traditional CI optimizers require significant human effort and chemical intuition, which typically restricts searching to only a small region of the CI space. Herein, a systematic approach utilizing the growing string method is introduced to locate multiple CIs. Unintuitive MECI are found using driving coordinates that can be generated using a combinatorial search, and subsequent optimization allows reaction pathways, transition states, products, and seam-space pathways to be located. These capabilities are demonstrated by application to two prototypical photoisomerization reactions and the dimerization of butadiene. In total, many reaction pathways were uncovered, including the elusive stilbene hula-twist mechanism, and a previously unidentified product in butadiene dimerization. Overall, these results suggest that growing string methods provide a predictive strategy for exploring photochemistry.
Collapse
Affiliation(s)
- Cody Aldaz
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
30
|
Saltiel J, Redwood CE, Laohhasurayotin K, Samudrala R. Photochemistry of the 1,6-Dideuterio-1,3,5-hexatrienes in Solution: Efficient Terminal Bond Photoisomerization in One-Bond-Twist and Bicycle Pedal Ways. J Phys Chem A 2018; 122:8477-8489. [PMID: 30277763 DOI: 10.1021/acs.jpca.8b08288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The report that the central bond photoisomerization of the 1,3,5-hexatrienes (Hts) is highly inefficient has encouraged theoreticians to seek conical intersections (CIs) at geometries that can explain rapid nonradiative return to the initially excited isomer. Because they are photochemically silent, torsional relaxations about the terminal double bonds of the Hts have not been evaluated as significant radiationless decay pathways. Study of the photoisomerization of trans,trans,trans- and trans,cis,trans-1,6-dideuterio-1,3,5-hexatrienes ( ttt- and tct-Htd2) addresses this issue. Degassed cyclohexane- d12 (C6D12) and CD3CN solutions were irradiated at 254 nm in quartz NMR tubes, and the progress of the reactions was followed by 1H NMR. Photoisomerization rates based on the integration of terminal hydrogen NMR peaks are in reasonable agreement with rates obtained by fitting pure isomer NMR spectra to the phase shift and baseline corrected experimental NMR spectra. The results show that terminal bond isomerization is highly efficient, especially when one considers that central bond isomerization is much more efficient than previously reported and is mainly observed together with terminal bond isomerization. A mechanism involving terminal one-bond-twist (OBT) in competition with a bicycle pedal (BP) process accounts for all terminal and most central bond photoisomerization. OBT central bond isomerization is a minor reaction that is observed primarily in the tct to ttt direction. Most surprising is the prominent role of the BP process in central bond photoisomerization. Proposed initially to account for photoisomerization in free volume constraining media, it is observed here in the absence of medium constraints.
Collapse
Affiliation(s)
- Jack Saltiel
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306-4390 , United States
| | - Christopher E Redwood
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306-4390 , United States
| | - Kritapas Laohhasurayotin
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306-4390 , United States
| | - Ramakrishna Samudrala
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306-4390 , United States
| |
Collapse
|
31
|
Filatov M, Min SK, Kim KS. Non-adiabatic dynamics of ring opening in cyclohexa-1,3-diene described by an ensemble density-functional theory method. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1519200] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Michael Filatov
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| | - Seung Kyu Min
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| | - Kwang S. Kim
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| |
Collapse
|
32
|
Iikubo R, Sekikawa T, Harabuchi Y, Taketsugu T. Structural dynamics of photochemical reactions probed by time-resolved photoelectron spectroscopy using high harmonic pulses. Faraday Discuss 2018; 194:147-160. [PMID: 27711881 DOI: 10.1039/c6fd00063k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Femtosecond ring-opening dynamics of 1,3-cyclohexadiene (CHD) in gas phase upon two-photon excitation at 400 nm (=3.1 eV) was investigated by time-resolved photoelectron spectroscopy using 42 nm (=29.5 eV) high harmonic photons probing the dynamics of the lower-lying occupied molecular orbitals (MOs), which are the fingerprints of the molecular structure. After 500 fs, the photoelectron intensity of the MO constituting the C[double bond, length as m-dash]C sigma bond (σC[double bond, length as m-dash]C) of CHD was enhanced, while that of the MO forming the C-C sigma bond (σCC) of CHD was decreased. The changes in the photoelectron spectra suggest that the ring of CHD opens to form a 1,3,5-hexatriene (HT) after 500 fs. The dynamics of the σC[double bond, length as m-dash]C and σCC bands between 200 and 500 fs reflects the ring deformation to a conical intersection between the 21A and 11A potential energy surfaces prior to the ring-opening reaction.
Collapse
Affiliation(s)
- Ryo Iikubo
- Department of Applied Physics, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Taro Sekikawa
- Department of Applied Physics, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Yu Harabuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
33
|
Schweighöfer F, Moreno J, Bobone S, Chiantia S, Herrmann A, Hecht S, Wachtveitl J. Connectivity pattern modifies excited state relaxation dynamics of fluorophore-photoswitch molecular dyads. Phys Chem Chem Phys 2018; 19:4010-4018. [PMID: 28106194 DOI: 10.1039/c6cp07112k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In order to modulate the emission of BODIPY fluorophores, they were connected to a diarylethene (DAE) photoswitch via phenylene-ethynylene linkers of different lengths and orientations. The latter allowed for modulation of the electronic coupling in the prepared four BODIPY-DAE dyads, which were compared also to appropriate BODIPY and DAE model compounds by steady state as well as time-resolved spectroscopies. In their open isomers, all dyads show comparable luminescence behavior indicative of an unperturbed BODIPY fluorophore. In strong contrast, in the closed isomers the BODIPY emission is efficiently quenched but the deactivation mechanism depends on the nature of the linker. The most promising dyad was rendered water-soluble by means of micellar encapsulation and aqueous suspensions were investigated by fluorescence spectroscopy and microscopy. Our results (i) illustrate that the electronic communication between the BODIPY and DAE units can indeed be fine-tuned by the nature of the linker to achieve fluorescence modulation while maintaining photoswitchability and (ii) highlight potential applications to image and control biological processes with high spatio-temporal resolution.
Collapse
Affiliation(s)
- F Schweighöfer
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue Str. 7, D 60438 Frankfurt/M, Germany.
| | - J Moreno
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - S Bobone
- Department of Biochemistry, Potsdam Universität, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany and Department of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - S Chiantia
- Department of Biochemistry, Potsdam Universität, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - A Herrmann
- Department of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - S Hecht
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - J Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue Str. 7, D 60438 Frankfurt/M, Germany.
| |
Collapse
|
34
|
Tudorovskaya M, Minns RS, Kirrander A. Effects of probe energy and competing pathways on time-resolved photoelectron spectroscopy: the ring-opening of 1,3-cyclohexadiene. Phys Chem Chem Phys 2018; 20:17714-17726. [DOI: 10.1039/c8cp02397b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Photoelectron spectra for the ring-opening dynamics of 1,3-cyclohexadiene are studied using a model based on quantum molecular dynamics and the Dyson orbital approach.
Collapse
Affiliation(s)
| | | | - Adam Kirrander
- EaStCHEM
- School of Chemistry
- University of Edinburgh
- Edinburgh
- UK
| |
Collapse
|
35
|
Nishitani J, West CW, Higashimura C, Suzuki T. Time-resolved photoelectron spectroscopy of polyatomic molecules using 42-nm vacuum ultraviolet laser based on high harmonics generation. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Ashfold MNR, Bain M, Hansen CS, Ingle RA, Karsili TNV, Marchetti B, Murdock D. Exploring the Dynamics of the Photoinduced Ring-Opening of Heterocyclic Molecules. J Phys Chem Lett 2017; 8:3440-3451. [PMID: 28661140 DOI: 10.1021/acs.jpclett.7b01219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Excited states formed by electron promotion to an antibonding σ* orbital are now recognized as key to understanding the photofragmentation dynamics of a broad range of heteroatom containing small molecules: alcohols, thiols, amines, and many of their aromatic analogues. Such excited states may be populated by direct photoexcitation, or indirectly by nonadiabatic transfer of population from some other optically excited state (e.g., a ππ* state). This Perspective explores the extent to which the fast-growing literature pertaining to such (n/π)σ*-state mediated bond fissions can inform and enhance our mechanistic understanding of photoinduced ring-opening in heterocyclic molecules.
Collapse
Affiliation(s)
- Michael N R Ashfold
- School of Chemistry, University of Bristol , Bristol, United Kingdom , BS8 1TS
| | - Matthew Bain
- School of Chemistry, University of Bristol , Bristol, United Kingdom , BS8 1TS
| | | | - Rebecca A Ingle
- School of Chemistry, University of Bristol , Bristol, United Kingdom , BS8 1TS
| | - Tolga N V Karsili
- School of Chemistry, University of Bristol , Bristol, United Kingdom , BS8 1TS
| | - Barbara Marchetti
- School of Chemistry, University of Bristol , Bristol, United Kingdom , BS8 1TS
| | - Daniel Murdock
- School of Chemistry, University of Bristol , Bristol, United Kingdom , BS8 1TS
| |
Collapse
|
37
|
Ischenko AA, Weber PM, Miller RJD. Capturing Chemistry in Action with Electrons: Realization of Atomically Resolved Reaction Dynamics. Chem Rev 2017; 117:11066-11124. [DOI: 10.1021/acs.chemrev.6b00770] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Anatoly A. Ischenko
- Institute
of Fine Chemical Technologies, Moscow Technological University, Vernadskogo
86, 119571 Moscow, Russia
| | - Peter M. Weber
- Department
of Chemistry, Brown University, 324 Brook Street, 02912 Providence, Rhode Island, United States
| | - R. J. Dwayne Miller
- The Max Planck Institute for the Structure and Dynamics of Matter, Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Departments
of Chemistry and Physics, University of Toronto, 80 St. George, M5S 3H6 Toronto, Canada
| |
Collapse
|
38
|
Fundamental Limits on Spatial Resolution in Ultrafast X-ray Diffraction. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7060534] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Attar AR, Bhattacherjee A, Pemmaraju CD, Schnorr K, Closser KD, Prendergast D, Leone SR. Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction. Science 2017; 356:54-59. [PMID: 28386006 DOI: 10.1126/science.aaj2198] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/24/2017] [Accepted: 02/22/2017] [Indexed: 01/30/2023]
Abstract
The ultrafast light-activated electrocyclic ring-opening reaction of 1,3-cyclohexadiene is a fundamental prototype of photochemical pericyclic reactions. Generally, these reactions are thought to proceed through an intermediate excited-state minimum (the so-called pericyclic minimum), which leads to isomerization via nonadiabatic relaxation to the ground state of the photoproduct. Here, we used femtosecond (fs) soft x-ray spectroscopy near the carbon K-edge (~284 electron volts) on a tabletop apparatus to directly reveal the valence electronic structure of this transient intermediate state. The core-to-valence spectroscopic signature of the pericyclic minimum observed in the experiment was characterized, in combination with time-dependent density functional theory calculations, to reveal overlap and mixing of the frontier valence orbital energy levels. We show that this transient valence electronic structure arises within 60 ± 20 fs after ultraviolet photoexcitation and decays with a time constant of 110 ± 60 fs.
Collapse
Affiliation(s)
- Andrew R Attar
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aditi Bhattacherjee
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - C D Pemmaraju
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Theory Institute for Materials and Energy Spectroscopies, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Kirsten Schnorr
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kristina D Closser
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David Prendergast
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, CA 94720, USA. .,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Physics, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
40
|
Ishida T, Nanbu S, Nakamura H. Clarification of nonadiabatic chemical dynamics by the Zhu-Nakamura theory of nonadiabatic transition: from tri-atomic systems to reactions in solutions. INT REV PHYS CHEM 2017. [DOI: 10.1080/0144235x.2017.1293399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Ohta A, Kobayashi O, Danielache SO, Nanbu S. Nonadiabatic ab initio molecular dynamics with PME-ONIOM scheme of photoisomerization reaction between 1,3-cyclohexadiene and 1,3,5-cis-hexatriene in solution phase. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Fdez. Galván I, Delcey MG, Pedersen TB, Aquilante F, Lindh R. Analytical State-Average Complete-Active-Space Self-Consistent Field Nonadiabatic Coupling Vectors: Implementation with Density-Fitted Two-Electron Integrals and Application to Conical Intersections. J Chem Theory Comput 2016; 12:3636-53. [DOI: 10.1021/acs.jctc.6b00384] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Mickaël G. Delcey
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Thomas Bondo Pedersen
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O.
Box 1033 Blindern, 0315 Oslo, Norway
| | - Francesco Aquilante
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Via F. Selmi 2, IT-40126 Bologna, Italy
| | | |
Collapse
|
43
|
Gao Y, Pemberton CC, Zhang Y, Weber PM. On the ultrafast photo-induced dynamics of α-terpinene. J Chem Phys 2016; 144:194303. [DOI: 10.1063/1.4948629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yan Gao
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | - Yao Zhang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Peter M. Weber
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
44
|
Schalk O, Geng T, Thompson T, Baluyot N, Thomas RD, Tapavicza E, Hansson T. Cyclohexadiene Revisited: A Time-Resolved Photoelectron Spectroscopy and ab Initio Study. J Phys Chem A 2016; 120:2320-9. [DOI: 10.1021/acs.jpca.5b10928] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oliver Schalk
- Department
of Chemical Physics, AlbaNova University Centre, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm, Sweden
| | - Ting Geng
- Department
of Chemical Physics, AlbaNova University Centre, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm, Sweden
| | - Travis Thompson
- Department
of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840-9507, United States
| | - Noel Baluyot
- Department
of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840-9507, United States
| | - Richard D. Thomas
- Department
of Chemical Physics, AlbaNova University Centre, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm, Sweden
| | - Enrico Tapavicza
- Department
of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840-9507, United States
| | - Tony Hansson
- Department
of Chemical Physics, AlbaNova University Centre, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm, Sweden
| |
Collapse
|
45
|
Lei Y, Wu H, Zheng X, Zhai G, Zhu C. Photo-induced 1,3-cyclohexadiene ring opening reaction: Ab initio on-the-fly nonadiabatic molecular dynamics simulation. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2015.10.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Buckup T, Sarter C, Volpp HR, Jäschke A, Motzkus M. Ultrafast Time-Resolved Spectroscopy of Diarylethene-Based Photoswitchable Deoxyuridine Nucleosides. J Phys Chem Lett 2015; 6:4717-4721. [PMID: 26554577 DOI: 10.1021/acs.jpclett.5b01949] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photoswitches based on the diarylethene architecture have been attracting considerable attention for the investigation and control of a variety of biological processes. The reversible photoisomerization reaction between their open- and closed-ring forms can be selectively addressed by irradiation with light of two markedly different wavelengths. In this work, the dynamics of the photochromic ring-opening reaction of four novel diarylethene-based photoswitchable deoxyuridine nucleosides is investigated by femtosecond transient absorption. Upon photoexcitation with sub-20 fs pulses in the first absorption band (500 nm), all four photoswitches showed a fast ballistic excited-state deactivation within less than 500 fs toward the S1/S0 conical intersection. Transient data was globally analyzed, and a relaxation kinetic model with a branching between open and closed ring forms without any loss channels was derived. Ring-opening quantum yields, Φr-o, were found to strongly depend on the substituents (R), ranging from 0.64 (dU(PSI): R = 2-naphthyl) to 0.30 (dU(PSIV): R = 2-pyridyl).
Collapse
Affiliation(s)
- Tiago Buckup
- Physikalisch Chemisches Institut and ‡Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universität Heidelberg , D-69120 Heidelberg, Germany
| | - Christopher Sarter
- Physikalisch Chemisches Institut and ‡Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universität Heidelberg , D-69120 Heidelberg, Germany
| | - Hans-Robert Volpp
- Physikalisch Chemisches Institut and ‡Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universität Heidelberg , D-69120 Heidelberg, Germany
| | - Andres Jäschke
- Physikalisch Chemisches Institut and ‡Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universität Heidelberg , D-69120 Heidelberg, Germany
| | - Marcus Motzkus
- Physikalisch Chemisches Institut and ‡Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universität Heidelberg , D-69120 Heidelberg, Germany
| |
Collapse
|
47
|
Branching and competition of ultrafast photochemical reactions of cyclooctatriene and bicyclooctadiene. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2015.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Nonadiabatic ab initio molecular dynamics of photoisomerization reaction between 1,3-cyclohexadiene and 1,3,5-cis-hexatriene. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2015.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Pemberton CC, Zhang Y, Saita K, Kirrander A, Weber PM. From the (1B) Spectroscopic State to the Photochemical Product of the Ultrafast Ring-Opening of 1,3-Cyclohexadiene: A Spectral Observation of the Complete Reaction Path. J Phys Chem A 2015; 119:8832-45. [DOI: 10.1021/acs.jpca.5b05672] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christine C. Pemberton
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Yao Zhang
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Kenichiro Saita
- EaStCHEM,
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Adam Kirrander
- EaStCHEM,
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Peter M. Weber
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
50
|
Minitti MP, Budarz JM, Kirrander A, Robinson JS, Ratner D, Lane TJ, Zhu D, Glownia JM, Kozina M, Lemke HT, Sikorski M, Feng Y, Nelson S, Saita K, Stankus B, Northey T, Hastings JB, Weber PM. Imaging Molecular Motion: Femtosecond X-Ray Scattering of an Electrocyclic Chemical Reaction. PHYSICAL REVIEW LETTERS 2015. [PMID: 26197134 DOI: 10.1103/physrevlett.114.255501] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Structural rearrangements within single molecules occur on ultrafast time scales. Many aspects of molecular dynamics, such as the energy flow through excited states, have been studied using spectroscopic techniques, yet the goal to watch molecules evolve their geometrical structure in real time remains challenging. By mapping nuclear motions using femtosecond x-ray pulses, we have created real-space representations of the evolving dynamics during a well-known chemical reaction and show a series of time-sorted structural snapshots produced by ultrafast time-resolved hard x-ray scattering. A computational analysis optimally matches the series of scattering patterns produced by the x rays to a multitude of potential reaction paths. In so doing, we have made a critical step toward the goal of viewing chemical reactions on femtosecond time scales, opening a new direction in studies of ultrafast chemical reactions in the gas phase.
Collapse
Affiliation(s)
- M P Minitti
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J M Budarz
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Brown University, Department of Chemistry, Providence, Rhode Island 02912, USA
| | - A Kirrander
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - J S Robinson
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - D Ratner
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - T J Lane
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Stanford University, Department of Chemistry, Stanford, California 94305, USA
| | - D Zhu
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J M Glownia
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M Kozina
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - H T Lemke
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M Sikorski
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Y Feng
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - S Nelson
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - K Saita
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - B Stankus
- Brown University, Department of Chemistry, Providence, Rhode Island 02912, USA
| | - T Northey
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - J B Hastings
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - P M Weber
- Brown University, Department of Chemistry, Providence, Rhode Island 02912, USA
| |
Collapse
|