1
|
Jütten L, Ramírez-Gualito K, Weilhard A, Albrecht B, Cuevas G, Fernández-Alonso MD, Jiménez-Barbero J, Schlörer NE, Diaz D. Exploring the Role of Solvent on Carbohydrate-Aryl Interactions by Diffusion NMR-Based Studies. ACS OMEGA 2018; 3:536-543. [PMID: 31457911 PMCID: PMC6641296 DOI: 10.1021/acsomega.7b01630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/28/2017] [Indexed: 05/26/2023]
Abstract
Carbohydrate-protein interactions play an important role in many molecular recognition processes. An exquisite combination of multiple factors favors the interaction of the receptor with one specific type of sugar, whereas others are excluded. Stacking CH-aromatic interactions within the binding site provide a relevant contribution to the stabilization of the resulting sugar-protein complex. Being experimentally difficult to detect and analyze, the key CH-π interaction features have been very often dissected using a variety of techniques and simple model systems. In the present work, diffusion NMR spectroscopy has been employed to separate the components of sugar mixtures in different solvents on the basis of their differential ability to interact through CH-π interactions with one particular aromatic cosolute in solution. The experimental data show that the properties of the solvent did also influence the diffusion behavior of the sugars present in the mixture, inhibiting or improving their separation. Overall, the results showed that, for the considered monosaccharide derivatives, their diffusion coefficient values and, consequently, their apparent molecular sizes and/or shapes depend on the balance between solute/cosolute as well as solute/solvent interactions. Thus, in certain media and in the presence of the aromatic cosolute, the studied saccharides that are more suited to display CH-π interactions exhibited a lower diffusion coefficient than the noncomplexing sugars in the mixture. However, when dissolved in another medium, the interaction with the solvent strongly competes with that of the aromatic cosolute.
Collapse
Affiliation(s)
- Linda Jütten
- Department
für Chemie, NMR-Abteilung, Universität
zu Köln, Greinstr.
4, 50939 Köln, Germany
| | - Karla Ramírez-Gualito
- Centro
de Nanociencias y Micro y Nanotecnología, Instituto Politécnico Nacional, Avenida Luis Enrique Erro S/N, Unidad Profesional
Adolfo López Mateos, Zacatenco, C.P. 07738 Ciudad de México, México
| | - Andreas Weilhard
- Department
für Chemie, NMR-Abteilung, Universität
zu Köln, Greinstr.
4, 50939 Köln, Germany
| | - Benjamin Albrecht
- Department
für Chemie, NMR-Abteilung, Universität
zu Köln, Greinstr.
4, 50939 Köln, Germany
| | - Gabriel Cuevas
- Instituto
de Química, Universidad Nacional Autónoma de México,
Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510 Ciudad de México, México
| | | | - Jesús Jiménez-Barbero
- Centro
de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- CIC
bioGUNE, Science and
Technology Park bld 801 A, 48160 Derio, Spain
- Basque Foundation
for Science, Ikerbasque, Maria Diaz de Haro 3, 48013 Bilbao, Spain
- Department
of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940 Leioa, Spain
| | - Nils E. Schlörer
- Department
für Chemie, NMR-Abteilung, Universität
zu Köln, Greinstr.
4, 50939 Köln, Germany
| | - Dolores Diaz
- Department
für Chemie, NMR-Abteilung, Universität
zu Köln, Greinstr.
4, 50939 Köln, Germany
- Centro
de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
2
|
Lim YM, Yao S, Gras SL, McSweeney C, Lockett T, Augustin MA, Gooley PR. Hydrodynamic radii of solubilized high amylose native and modified starches by pulsed field gradient NMR diffusion measurements. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2014.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
3
|
Zhong Y, Bauer BA, Patel S. Solvation properties of N-acetyl-β-glucosamine: molecular dynamics study incorporating electrostatic polarization. J Comput Chem 2011; 32:3339-53. [PMID: 21898464 PMCID: PMC3193586 DOI: 10.1002/jcc.21873] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/25/2011] [Accepted: 05/28/2011] [Indexed: 12/13/2022]
Abstract
N-Acetyl-β-glucosamine (NAG) is an important moiety of glycoproteins and is involved in many biological functions. However, conformational and dynamical properties of NAG molecules in aqueous solution, the most common biological environment, remain ambiguous due to limitations of experimental methods. Increasing efforts are made to probe structural properties of NAG and NAG-containing macromolecules, like peptidoglycans and polymeric chitin, at the atomic level using molecular dynamics simulations. In this work, we develop a polarizable carbohydrate force field for NAG and contrast simulation results of various properties using this novel force field and an analogous nonpolarizable (fixed charge) model. Aqueous solutions of NAG and its oligomers are investigated; we explore conformational properties (rotatable bond geometry), electrostatic properties (dipole moment distribution), dynamical properties (self-diffusion coefficient), hydrogen bonding (water bridge structure and dynamics), and free energy of hydration. The fixed-charge carbohydrate force field exhibits deviations from the gas phase relative rotation energy of exocyclic hydroxymethyl side chain and of chair/boat ring distortion. The polarizable force field predicts conformational properties in agreement with corresponding first-principles results. NAG-water hydrogen bonding pattern is studied through radial distribution functions (RDFs) and correlation functions. Intermolecular hydrogen bonding between solute and solvent is found to stabilize NAG solution structures while intramolecular hydrogen bonds define glycosidic linkage geometry of NAG oligomers. The electrostatic component of hydration free energy is highly dependent on force field atomic partial charges, influencing a more favorable free energy of hydration in the fixed-charge model compared to the polarizable model.
Collapse
Affiliation(s)
- Yang Zhong
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Brad A. Bauer
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Sandeep Patel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
4
|
Molecular dynamics simulations of a cyclic-DP-240 amylose fragment in a periodic cell: Glass transition temperature and water diffusion. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2009.07.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Otero J, Mazarrasa O, Villasante J, Silva V, Prádanos P, Calvo J, Hernández A. Three independent ways to obtain information on pore size distributions of nanofiltration membranes. J Memb Sci 2008. [DOI: 10.1016/j.memsci.2007.09.065] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Takagaki A, Tagusagawa C, Domen K. Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalyst. Chem Commun (Camb) 2008:5363-5. [DOI: 10.1039/b810346a] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Ghalebani L, Kruk D, Kowalewski J. Nuclear spin relaxation study of aqueous raffinose solution in the presence of a gadolinium contrast agent. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2005; 43:235-239. [PMID: 15625722 DOI: 10.1002/mrc.1535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Paramagnetic enhancement of nuclear spin-lattice relaxation rates (PREs) was measured in aqueous solution of the trisaccharide raffinose in the presence of a gadolinium(III) complex, GdDTPA-BMA, used as a magnetic resonance imaging contrast agent. The relaxation enhancement of aqueous protons was measured over a broad range of magnetic fields, using field-cycling apparatus in addition to conventional spectrometers. The nuclear magnetic relaxation dispersion profile thus obtained was interpreted with a recently developed model, allowing for both inner- and outer-sphere relaxation. The relaxation enhancement for the carbon-13 nuclei in raffinose was studied under high-resolution conditions at three magnetic fields, whereas the sugar proton PRE was measured at two fields. The PRE of the sugar nuclei could be interpreted in a consistent way, assuming that it was caused by the outer-sphere mechanism. The electron spin relaxation was found to be a less important source of modulation of the electron-nuclear dipole-dipole interaction than the mutual translational diffusion.
Collapse
Affiliation(s)
- Leila Ghalebani
- Physical Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
8
|
Corzana F, Motawia MS, Hervé du Penhoat C, van den Berg F, Blennow A, Perez S, Engelsen SB. Hydration of the Amylopectin Branch Point. Evidence of Restricted Conformational Diversity of the α-(1→6) Linkage. J Am Chem Soc 2004; 126:13144-55. [PMID: 15469314 DOI: 10.1021/ja048622y] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hydration behavior of a model compound for the amylopectin branch point, methyl 6'-alpha-maltosyl-alpha-maltotrioside, was investigated by combining molecular dynamics simulations in explicit water, 500 MHz NMR spectroscopy, including pulsed field gradient diffusion measurements, and exploratory multivariate data analysis. In comparison with results on a tetrasaccharide analogue, the study reveals that the conformational diversity of the three-bond alpha-(1-->6) linkage becomes quite limited in aqueous solution upon the addition of a fifth glucose residue that elongates the alpha-(1-->6) branch. This investigation reveals two plausible starch branch point structures, one that permits the formation of double helices and one that is adapted for interconnection of double helices. The apparent rigidity of the former is explained by the presence of water pockets/bridges in the vicinity of the branch point that lock the pentasaccharide structure into one conformational family that is able to accommodate the creation of the double-helical amylopectin structure.
Collapse
Affiliation(s)
- Francisco Corzana
- Contribution from the Centre for Advanced Food Studies (LMC), The Royal Veterinary and Agricultural University (KVL), Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | | | | | | | | | | | | |
Collapse
|
9
|
Corzana F, Motawia MS, Du Penhoat CH, Perez S, Tschampel SM, Woods RJ, Engelsen SB. A hydration study of (1-->4) and (1-->6) linked alpha-glucans by comparative 10 ns molecular dynamics simulations and 500-MHz NMR. J Comput Chem 2004; 25:573-86. [PMID: 14735575 PMCID: PMC4201036 DOI: 10.1002/jcc.10405] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hydration behavior of two model disaccharides, methyl-alpha-D-maltoside (1) and methyl-alpha-D-isomaltoside (2), has been investigated by a comparative 10 ns molecular dynamics study. The detailed hydration of the two disaccharides was described using three force fields especially developed for modeling of carbohydrates in explicit solvent. To validate the theoretical results the two compounds were synthesized and subjected to 500 MHz NMR spectroscopy, including pulsed field gradient diffusion measurements (1: 4.0. 10(-6) cm(2). s(-1); 2: 4.2. 10(-6) cm(2). s(-1)). In short, the older CHARMM-based force field exhibited a more structured carbohydrate-water interaction leading to better agreement with the diffusional properties of the two compounds, whereas especially the alpha-(1-->6) linkage and the primary hydroxyl groups were inaccurately modeled. In contrast, the new generation of the CHARMM-based force field (CSFF) and the most recent version of the AMBER-based force field (GLYCAM-2000a) exhibited less structured carbohydrate-water interactions with the result that the diffusional properties of the two disaccharides were underestimated, whereas the simulations of the alpha-(1-->6) linkage and the primary hydroxyl groups were significantly improved and in excellent agreement with homo- and heteronuclear coupling constants. The difference between the two classes of force field (more structured and less structured carbohydrate-water interaction) was underlined by calculation of the isotropic hydration as calculated by radial pair distributions. At one extreme, the radial O em leader O pair distribution function yielded a peak density of 2.3 times the bulk density in the first hydration shell when using the older CHARMM force field, whereas the maximum density observed in the GLYCAM force field was calculated to be 1.0, at the other extreme.
Collapse
Affiliation(s)
- Francisco Corzana
- Food Technology, Department of Dairy and Food Science, The Royal Veterinary and Agricultural University, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | | | | | | | | | | | | |
Collapse
|
10
|
Hannuksela T, Hervé du Penhoat C. NMR structural determination of dissolved O-acetylated galactoglucomannan isolated from spruce thermomechanical pulp. Carbohydr Res 2004; 339:301-12. [PMID: 14698888 DOI: 10.1016/j.carres.2003.10.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Water-soluble O-acetylated galactoglucomannan (GGM) isolated from spruce thermomechanical pulp (TMP) by hot-water extraction was characterized by 1D and 2D (homo- and heteronuclear) NMR analysis. The backbone was found to consist of (1-->4)-linked mannopyranosyl and glucopyranosyl units in a ratio of 10:1.9-2.6. The mannopyranosyl units were acetylated at C-2 and C-3 with a degree of acetylation around 0.28-0.37 as determined by NMR. A slightly larger amount of 2-O-acetylated mannopyranosyl was detected when compared to the 3-O-acetylated component. Approximately every 10th mannopyranosyl unit was substituted at C-6 by a single alpha-galactopyranosyl unit. Fine structure determination based on sequence-specific chemical shift variations showed that the distribution of glycosyl residues is random. Small amounts of other minor polysaccharide species including xylans and galactans could also be identified by NMR.
Collapse
Affiliation(s)
- Tea Hannuksela
- Process Chemistry Group, Abo Akademi University, Porthaninkatu 3, FIN-20500, Turku/Abo, Finland.
| | | |
Collapse
|
11
|
Rodríguez-Carvajal MA, Hervé du Penhoat C, Mazeau K, Doco T, Pérez S. The three-dimensional structure of the mega-oligosaccharide rhamnogalacturonan II monomer: a combined molecular modeling and NMR investigation. Carbohydr Res 2003; 338:651-71. [PMID: 12644378 DOI: 10.1016/s0008-6215(03)00003-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we describe the first optimized molecular models of the mega-oligosaccharide rhamnogalaturonan II, that is found in the primary cell walls of all higher plants. The 750 MHz 1H NMR data previously reported and new heteronuclear correlation spectra (sensitivity-enhanced HSQC and HSQC-TOCSY) were first reassigned in light of the modifications in the primary structure. In turn, the experimental NMR data revealed the presence of an additional sugar, alpha-Araf (E-chain), and also the disaccharidic repeating unit of RG-I, another component of the pectic matrix. Due to a fuller picture of the primary structure of RG-II, a much more complete assignment of the NOE data has been achieved. A systematic computational study based on these NOEs lead us to a realistic three-dimensional description of the RG-II, in excellent agreement with the molecular dimensions obtained from various experimental methods.
Collapse
Affiliation(s)
- Miguel A Rodríguez-Carvajal
- Centre de Recherches sur les Macromolécules Végétales, CNRS (associated with University Joseph Fourier), BP 53, 38041 Cedex 9, Grenoble, France
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Engelsen SB, Monteiro C, Hervé de Penhoat C, Pérez S. The diluted aqueous solvation of carbohydrates as inferred from molecular dynamics simulations and NMR spectroscopy. Biophys Chem 2001; 93:103-27. [PMID: 11804720 DOI: 10.1016/s0301-4622(01)00215-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The purpose of this paper is to review our understanding of the dilute hydration (aqueous solvation) behaviour of disaccharide compounds. To this end we discuss and scrutinize the results that have been obtained for the three model disaccharides: maltose, sucrose and trehalose from experimental NMR studies and from theoretical molecular dynamics studies in explicit aqueous solutions. The focus is on the description of molecular hydration features that will influence macroscopic entities such as diffusion and relaxation: residence times of hydration waters, hydration numbers and hydration densities. The principles of molecular dynamics simulation are briefly outlined while a detailed presentation is given of the key features that characterise hydration: the solvation of the glycosidic linkage, the radial hydration of the solute, the water density anisotropy around the solute, the residential behaviour of water molecules in the periphery of the solute, and rotational and translational diffusion coefficients. With respect to the use of NMR in characterising the structure and dynamics of the hydration, the hydrodynamic theory of rotational and translational diffusion of biomolecules as well as the use of pulse field gradient spin echo experiments are briefly presented. The NMR-defined rotational diffusion coefficients (D(r)) and the experimentally determined translational diffusion (D(t)) coefficients are reported for 4% (w/w) solutions of sucrose, trehalose and maltose. These results are compared with theoretical data obtained from molecular dynamics simulations of sucrose, trehalose and maltose under identical conditions (concentration, temperature, etc.). With our present level of knowledge we can propose that although carbohydrates share a number of hydration characteristics, evidence is accumulating in support of the notion that it is not the amount or overall hydration but rather the detailed individual carbohydrate-water interaction that is likely to determine carbohydrate structure and functionality.
Collapse
Affiliation(s)
- S B Engelsen
- The Royal Veterinary and Agricultural University, Centre for Advanced food Studies, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|