1
|
Takayama T, Otosu T, Yamaguchi S. Theoretical and experimental OD-stretch vibrational spectroscopy of heavy water. J Chem Phys 2024; 160:104504. [PMID: 38465684 DOI: 10.1063/5.0200623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
In view of the current situation in which the OD-stretch vibrational spectra have been scarcely computed with non-polarizable rigid D2O models, we investigate the IR and Raman spectra of D2O by using a newly-reported model TIP4P/2005-HW. From the comparison between the calculations and experimental data, we find the excellent performance of TIP4P/2005-HW for vibrational spectroscopy of D2O in the same manner as TIP4P/2005 for H2O, although one may still conveniently employ an alternative method that regards OH as putative OD to calculate the OD-stretch spectra with similar quality from TIP4P/2005 trajectories. We also demonstrate that the appropriate setting for the spectral simulation of D2O under the time-averaging approximation reflects the slower dynamics (i.e., slower motion of translation and rotation due to the heavier mass and stronger hydrogen bond) of D2O than H2O. Moreover, we show from the theoretical calculations that the established interpretation of the OH-stretch spectra of H2O is finely applicable to the OD-stretch of D2O.
Collapse
Affiliation(s)
- Tetsuyuki Takayama
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Takuhiro Otosu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| |
Collapse
|
2
|
Yamaguchi S, Takayama T, Otosu T. Appraisal of TIP4P-type models at water surface. J Chem Phys 2023; 159:171101. [PMID: 37909448 DOI: 10.1063/5.0171999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
In view of the current situation in which non-polarizable rigid water models have been scarcely examined against surface-specific properties, we appraise TIP4P-type models at the liquid water surface on the basis of heterodyne-detected sum frequency generation (HD-SFG) spectroscopy. We find in the HD-SFG spectrum of the water surface that the peak frequency of the hydrogen-bonded OH band, the half width at half maximum of the hydrogen-bonded OH band, and the full width at half maximum of the free OH band are best reproduced by TIP4P, TIP4P/Ew, and TIP4P/Ice, respectively, whereas it is already well known that TIP4P/2005 best reproduces the surface tension. These TIP4P-type models perform better at the water surface in terms of the present appraisal items than some polarizable models in the literature.
Collapse
Affiliation(s)
- Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Tetsuyuki Takayama
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Takuhiro Otosu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| |
Collapse
|
3
|
Seliya P, Bonn M, Grechko M. Experimental Access to Mode-Specific Coupling between Quantum Molecular Vibrations and Classical Bath Modes. J Phys Chem Lett 2023; 14:8630-8637. [PMID: 37728562 PMCID: PMC10544034 DOI: 10.1021/acs.jpclett.3c01974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
The interaction of quantum-mechanical systems with a fluctuating thermal environment (bath) is fundamental to molecular mechanics and energy transport/dissipation. Its complete picture requires mode-specific measurements of this interaction and an understanding of its nature. Here, we present a combined experimental and theoretical study providing detailed insights into the coupling between a high-frequency vibrational two-level system and thermally excited terahertz modes. Experimentally, two-dimensional terahertz-infrared-visible spectroscopy reports directly on the coupling between quantum oscillators represented by CH3 streching vibrations in liquid dimethyl sulfoxide and distinct low-frequency modes. Theoretically, we present a mixed quantum-classical formalism of the sample response to enable the simultaneous quantum description of high-frequency oscillators and a classical description of the bath. We derive the strength and nature of interaction and find different coupling between CH3 stretch and low-frequency modes. This general approach enables quantitative and mode-specific analysis of coupled quantum and classical dynamics in complex chemical systems.
Collapse
Affiliation(s)
- Pankaj Seliya
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Mischa Bonn
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Maksim Grechko
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| |
Collapse
|
4
|
van Hengel CDN, van Adrichem KE, Jansen TLC. Simulation of two-dimensional infrared Raman spectroscopy with application to proteins. J Chem Phys 2023; 158:064106. [PMID: 36792507 DOI: 10.1063/5.0138958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Two-dimensional infrared Raman spectroscopy is a powerful technique for studying the structure and interaction in molecular and biological systems. Here, we present a new implementation of the simulation of the two-dimensional infrared Raman signals. The implementation builds on the numerical integration of the Schrödinger equation approach. It combines the prediction of dynamics from molecular dynamics with a map-based approach for obtaining Hamiltonian trajectories and response function calculations. The new implementation is tested on the amide-I region for two proteins, where one is dominated by α-helices and the other by β-sheets. We find that the predicted spectra agree well with experimental observations. We further find that the two-dimensional infrared Raman spectra at least of the studied proteins are much less sensitive to the laser polarization used compared to conventional two-dimensional infrared experiments. The present implementation and findings pave the way for future applications for the interpretation of two-dimensional infrared Raman spectra.
Collapse
Affiliation(s)
- Carleen D N van Hengel
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Kim E van Adrichem
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L C Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
5
|
Abstract
Traditional descriptions of vibrational energy transfer consider a quantum oscillator interacting with a classical environment. However, a major limitation of this simplified description is the neglect of quantum decoherence induced by the different interactions between two distinct quantum states and their environment, which can strongly affect the predicted energy-transfer rate and vibrational spectra. Here, we use quantum-classical molecular dynamics simulations to determine the vibrational quantum decoherence time for an OH stretch vibration in liquid heavy water. We show that coherence is lost on a sub-100 fs time scale due to the different responses of the first shell neighbors to the ground and excited OH vibrational states. This ultrafast decoherence induces a strong homogeneous contribution to the linear infrared spectrum and suggests that resonant vibrational energy transfer in H2O may be more incoherent than previously thought.
Collapse
Affiliation(s)
- Tatsuya Joutsuka
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC, Univ Paris 06, CNRS UMR 8640 PASTEUR , 24 rue Lhomond, 75005 Paris, France
| | - Ward H Thompson
- Department of Chemistry, University of Kansas , Lawrence, Kansas 66045, United States
| | - Damien Laage
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC, Univ Paris 06, CNRS UMR 8640 PASTEUR , 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
6
|
Sun Y, Zheng R, Shi Q. Theoretical Study of Raman Spectra of Methanol in Aqueous Solutions: Non-Coincident Effect of the CO Stretch. J Phys Chem B 2012; 116:4543-51. [DOI: 10.1021/jp300178v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuanyuan Sun
- Beijing National
Laboratory for Molecular Sciences,
State Key Laboratory for Structural Chemistry of Unstable and Stable
Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Renhui Zheng
- Beijing National
Laboratory for Molecular Sciences,
State Key Laboratory for Structural Chemistry of Unstable and Stable
Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Qiang Shi
- Beijing National
Laboratory for Molecular Sciences,
State Key Laboratory for Structural Chemistry of Unstable and Stable
Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| |
Collapse
|
7
|
Torii H, Giorgini MG, Musso M. Merged- and Separate-Band Behavior of the C═O Stretching Band in N,N-Dimethylformamide Isotopic Liquid Mixtures: DMF/DMF-d1, DMF/DMF-d6, and DMF/DMF-13C═O. J Phys Chem B 2011; 116:353-66. [DOI: 10.1021/jp209119e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hajime Torii
- Department of Chemistry, School of Education, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Maria Grazia Giorgini
- Dipartimento di Chimica Fisica ed Inorganica, Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Maurizio Musso
- Fachbereich Materialforschung und Physik, Abteilung Physik und Biophysik, Universität Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| |
Collapse
|
8
|
Zheng R, Sun Y, Shi Q. Theoretical study of the infrared and Raman line shapes of liquid methanol. Phys Chem Chem Phys 2011; 13:2027-35. [DOI: 10.1039/c0cp01145b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Torii H. Nature of vibrational frequency modulations and the related one- and two-dimensional vibrational spectral features analysed for the amide I mode of tetraalanine in aqueous solution. Mol Phys 2009. [DOI: 10.1080/00268970902804542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Lima M, Chelli R, Volkov VV, Righini R. Two-dimensional infrared spectroscopy of a structured liquid: Neat formamide. J Chem Phys 2009; 130:204518. [DOI: 10.1063/1.3139002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Auer BM, Skinner JL. Dynamical effects in line shapes for coupled chromophores: time-averaging approximation. J Chem Phys 2007; 127:104105. [PMID: 17867735 DOI: 10.1063/1.2766943] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
For an isolated resonance of an isolated chromophore in a condensed phase, the absorption line shape is often more sharply peaked than the distribution of transition frequencies as a result of motional narrowing. The latter arises from the time-dependent fluctuations of the transition frequencies. It is well known that one can incorporate these dynamical effects into line shape calculations within a semiclassical approach. For a system of coupled chromophores, both the transition frequencies and the interchromophore couplings fluctuate in time. In principle one can again solve this more complicated problem with a related semiclassical approach, but in practice, for large numbers of chromophores, the computational demands are prohibitive. This has led to the development of a number of approximate theoretical approaches to this problem. In this paper we develop another such approach, using a time-averaging approximation. The idea is that, for a single chromophore, a motionally narrowed line shape can be thought of as a distribution of time-averaged frequencies. This idea is developed and tested on both stochastic and more realistic models of isolated chromophores, and also on realistic models of coupled chromophores, and it is found that in all cases this approximation is quite satisfactory, without undue computational demands. This approach should find application for the vibrational spectroscopy of neat liquids, and also for proteins and other complicated multichromophore systems.
Collapse
Affiliation(s)
- B M Auer
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
12
|
Modulations of vibrational frequencies and other vibrational properties of the CO stretching mode of liquid acetone. J Mol Liq 2007. [DOI: 10.1016/j.molliq.2006.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Torii H. Time-Domain Calculations of the Infrared and Polarized Raman Spectra of Tetraalanine in Aqueous Solution. J Phys Chem B 2007; 111:5434-44. [PMID: 17441760 DOI: 10.1021/jp070301w] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The IR and polarized (isotropic and anisotropic) Raman spectra are calculated for the amide I band of tetraalanine ((Ala)4) in aqueous solution by using a time-domain computational method, which includes the effects of the diagonal frequency modulations (of individual peptide groups), the off-diagonal (interpeptide) vibrational couplings, and structural dynamics. It is shown that the calculated band profiles, especially the existence of a large negative noncoincidence effect (i.e., large frequency separations between the IR, isotropic Raman, and anisotropic Raman bands, with the isotropic Raman being higher in frequency), are in reasonable agreement with the experimental results. This negative noncoincidence effect derives from two conditions: the positive coupling between the amide I vibrations of peptide groups and the angle larger than 90 degrees between the transition dipoles of the coupled vibrations. This result means that the dynamically changing structures mainly in the polyproline II and beta-type conformations containing some repeated interconversions obtained from the molecular dynamics calculation are consistent with the existence of a large negative noncoincidence effect, as far as the structures satisfy the above two conditions. It is also shown that the electric fields from solvent water molecules induce larger frequency shifts than those of intrachain interactions, with rapid underdamped oscillatory modulations ( approximately 43 fs) due to the librational motions of water molecules that give rise to motional narrowing effect on the spectra. The reason for the difference from the behavior seen for the O-H stretching mode of liquid water is discussed. The time-domain analysis of the mode identity shows that the system proceeds halfway to complete mode mixing with a similar time scale ( approximately 60 fs), suggesting the importance of the nonadiabatic effect, which is included in a natural way in the present computational method.
Collapse
Affiliation(s)
- Hajime Torii
- Department of Chemistry, School of Education, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan.
| |
Collapse
|
14
|
Torii H. Time-Domain Calculations of the Polarized Raman Spectra, the Transient Infrared Absorption Anisotropy, and the Extent of Delocalization of the OH Stretching Mode of Liquid Water. J Phys Chem A 2006; 110:9469-77. [PMID: 16869698 DOI: 10.1021/jp062033s] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The polarized Raman spectrum and the time dependence of the transient infrared (TRIR) absorption anisotropy are calculated for the OH stretching mode of liquid water (neat liquid H2O) by using time-domain formulations, which include the effects of both the diagonal frequency modulations (of individual oscillators) induced by the interactions between the dipole derivatives and the intermolecular electric field, and the off-diagonal (intermolecular) vibrational coupling described by the transition dipole coupling (TDC) mechanism. The IR spectrum of neat liquid H2O and the TRIR anisotropy of a liquid mixture of H2O/HDO/D2O are also calculated. It is shown that the calculated features of these optical signals, including the temperature dependence of the polarized Raman and IR spectra, are in reasonable agreement with the experimental results, indicating that the frequency separation between the isotropic and anisotropic components of the polarized Raman spectrum and the rapid decay (approximately 0.1 ps) of the TRIR anisotropy of the OH stretching mode of neat liquid H2O are mainly controlled by the resonant intermolecular vibrational coupling described by the TDC mechanism. Comparing with the time evolution of vibrational excitations, it is suggested that the TRIR anisotropy decays in the time needed for the initially localized vibrational excitations to delocalize over a few oscillators. It is also shown that the enhancement of the dipole derivatives by the interactions with surrounding molecules is an important factor in generating the spectral profiles of the OH stretching Raman band. The time-domain behavior of the molecular motions that affect the spectroscopic features is discussed.
Collapse
Affiliation(s)
- Hajime Torii
- Department of Chemistry, School of Education, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan.
| |
Collapse
|
15
|
Torii H. Effects of Intermolecular Vibrational Coupling and Liquid Dynamics on the Polarized Raman and Two-Dimensional Infrared Spectral Profiles of Liquid N,N-Dimethylformamide Analyzed with a Time-Domain Computational Method. J Phys Chem A 2006; 110:4822-32. [PMID: 16599451 DOI: 10.1021/jp060014c] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A time-domain method for calculating polarized Raman and two-dimensional infrared (2D-IR) spectra that includes the effects of both the diagonal frequency modulations (of individual molecules in the system) and the off-diagonal (intermolecular) vibrational coupling is presented and applied to the case of the amide I band of liquid N,N-dimethylformamide. It is shown that the effect of the resonant off-diagonal vibrational coupling and the resulting delocalization of vibrational modes is clearly seen as the noncoincidence effect in the polarized Raman spectrum and some spectral features (especially as asymmetric intensity patterns) in the 2D-IR spectra. The type of 2D-IR spectra (concerning the polarization condition) most appropriate for observing this effect is discussed. On the basis of the agreement between the observed and calculated band profiles of the polarized Raman spectrum, the time dependence of the transient IR absorption anisotropy is also calculated. The method of evaluating the extent of delocalization of vibrational modes that is relevant to the features of these optical signals in the time and frequency domains is discussed. The nature of the molecular motions (concerning the liquid dynamics) that are effective on the diagonal frequency modulations is also examined.
Collapse
Affiliation(s)
- Hajime Torii
- Department of Chemistry, School of Education, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan.
| |
Collapse
|
16
|
Ha JH, Kim YS, Hochstrasser RM. Vibrational dynamics of N–H, C–D, and CO modes in formamide. J Chem Phys 2006; 124:64508. [PMID: 16483221 DOI: 10.1063/1.2162165] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By means of heterodyned two-dimensional IR photon echo experiments on liquid formamide and isotopomers the vibrational frequency dynamics of the N-H stretch mode, the C-D mode, and the C=O mode were obtained. In each case the vibrational frequency correlation function is fitted to three exponentials representing ultrafast (few femtoseconds), intermediate (hundreds of femtoseconds), and slow (many picoseconds) correlation times. In the case of N-H there is a significant underdamped contribution to the correlation decay that was not seen in previous experiments and is attributed to hydrogen-bond librational modes. This underdamped motion is not seen in the C-D or C=O correlation functions. The motions probed by the C-D bond are generally faster than those seen by N-H and C=O, indicating that the environment of C-D interchanges more rapidly, consistent with a weaker C-D...O=C bond. The correlation decays of N-H and C=O are similar, consistent with both being involved in strong H bonding.
Collapse
Affiliation(s)
- Jeong-Hyon Ha
- Department of Chemistry, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | |
Collapse
|
17
|
Time-domain calculations of the polarized Raman and two-dimensional infrared spectra of liquid N,N-dimethylformamide. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2005.07.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Torii H, Musso M, Giorgini MG. Time-Domain Theoretical Analysis of the Noncoincidence Effect, Diagonal Frequency Shift, and the Extent of Delocalization of the CO Stretching Mode of Acetone/Dimethyl Sulfoxide Binary Liquid Mixtures. J Phys Chem A 2005; 109:7797-804. [PMID: 16834157 DOI: 10.1021/jp052565t] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A time-domain method for simulating vibrational band profiles that simultaneously takes into account both the diagonal and off-diagonal effects is developed and applied to the C=O stretching bands of neat liquid acetone and the acetone/dimethyl sulfoxide (DMSO) binary liquid mixtures. By using this method, it is possible to examine the influence of liquid dynamics on the noncoincidence effect (NCE), which arises from the off-diagonal vibrational interactions, as well as the frequency shifts and band broadening, which are related to both the diagonal and off-diagonal effects. It is shown that the simulations for the C=O stretching bands of acetone in acetone/DMSO binary liquid mixtures on the basis of this method can reproduce the experimentally observed concave curvature of the concentration dependence of the NCE and the unusually large frequency shift of the anisotropic Raman band. The widths of the infrared, isotropic Raman, and anisotropic Raman bands calculated for neat liquid acetone are also in good agreement with those observed. Based on these calculations, the extent of delocalization of the C=O stretching vibrational motions is examined by referring to two quantitative measures of this property, one calculated in the frequency domain and the other in the time domain. It is shown that the extent of delocalization gets larger as the mole fraction of acetone increases, the C=O stretching vibrations being delocalized over a few tens of molecules in neat liquid acetone. It is also shown that the extent of delocalization is related to the quantity called NCE detectability, which is the ratio between the magnitude of NCE and the bandwidth. It is therefore suggested that the extent of delocalization of vibrational motions may be estimated from observable features of Raman band profiles.
Collapse
Affiliation(s)
- Hajime Torii
- Department of Chemistry, School of Education, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan.
| | | | | |
Collapse
|
19
|
Torii H. Extent of Delocalization of Vibrational Modes in Liquids as a Result of Competition between Diagonal Disorder and Off-Diagonal Coupling. J Phys Chem A 2004. [DOI: 10.1021/jp037603s] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hajime Torii
- Department of Chemistry, School of Education, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| |
Collapse
|