1
|
Gorka M, Charles P, Kalendra V, Baldansuren A, Lakshmi KV, Golbeck JH. A dimeric chlorophyll electron acceptor differentiates type I from type II photosynthetic reaction centers. iScience 2021; 24:102719. [PMID: 34278250 PMCID: PMC8267441 DOI: 10.1016/j.isci.2021.102719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/17/2021] [Accepted: 06/09/2021] [Indexed: 01/09/2023] Open
Abstract
This research addresses one of the most compelling issues in the field of photosynthesis, namely, the role of the accessory chlorophyll molecules in primary charge separation. Using a combination of empirical and computational methods, we demonstrate that the primary acceptor of photosystem (PS) I is a dimer of accessory and secondary chlorophyll molecules, Chl2A and Chl3A, with an asymmetric electron charge density distribution. The incorporation of highly coupled donors and acceptors in PS I allows for extensive delocalization that prolongs the lifetime of the charge-separated state, providing for high quantum efficiency. The discovery of this motif has widespread implications ranging from the evolution of naturally occurring reaction centers to the development of a new generation of highly efficient artificial photosynthetic systems. Video abstract
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Philip Charles
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Vidmantas Kalendra
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Amgalanbaatar Baldansuren
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Analysis of Photosynthetic Systems and Their Applications with Mathematical and Computational Models. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In biological and life science applications, photosynthesis is an important process that involves the absorption and transformation of sunlight into chemical energy. During the photosynthesis process, the light photons are captured by the green chlorophyll pigments in their photosynthetic antennae and further funneled to the reaction center. One of the most important light harvesting complexes that are highly important in the study of photosynthesis is the membrane-attached Fenna–Matthews–Olson (FMO) complex found in the green sulfur bacteria. In this review, we discuss the mathematical formulations and computational modeling of some of the light harvesting complexes including FMO. The most recent research developments in the photosynthetic light harvesting complexes are thoroughly discussed. The theoretical background related to the spectral density, quantum coherence and density functional theory has been elaborated. Furthermore, details about the transfer and excitation of energy in different sites of the FMO complex along with other vital photosynthetic light harvesting complexes have also been provided. Finally, we conclude this review by providing the current and potential applications in environmental science, energy, health and medicine, where such mathematical and computational studies of the photosynthesis and the light harvesting complexes can be readily integrated.
Collapse
|
3
|
Sinnecker S, Lubitz W. Probing the Electronic Structure of Bacteriochlorophyll Radical Ions-A Theoretical Study of the Effect of Substituents on Hyperfine Parameters. Photochem Photobiol 2017; 93:755-761. [PMID: 28120345 DOI: 10.1111/php.12724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/01/2016] [Indexed: 11/29/2022]
Abstract
In reaction centers (RCs) of photosynthesis, a light-induced charge separation takes place creating radical cations and anions of the participating cofactors. In photosynthetic bacteria, different bacteriochlorophylls (BChl) are involved in this process. Information about the electronic structure of the BChl radical cations and anions can be obtained by measuring the electron spin density distribution via the electron-nuclear hyperfine interaction using EPR and ENDOR techniques. In this communication, we report isotropic hyperfine coupling constants (hfcs) of the BChl b and g radical cations and anions, calculated by density functional theory, and compare them with the more common radical ions of BChl a and with available experimental data. The observed differences in the computed hyperfine data are discussed in view of a possible distinction between these species by EPR/ENDOR methods. In addition, 14 N nuclear quadrupole coupling constants (nqcs) computed for BChl a, b, g, and also for Chl a in their charge neutral, radical cation and radical anion states are presented. These nqcs are compared with experimental values obtained by ESEEM spectroscopy on several different radical ions.
Collapse
Affiliation(s)
- Sebastian Sinnecker
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr, Germany
| |
Collapse
|
4
|
Hedayatifar L, Irani E, Mazarei M, Rasti S, Azar YT, Rezakhani AT, Mashaghi A, Shayeganfar F, Anvari M, Heydari T, Tabar AR, Nafari N, Vesaghi MA, Asgari R, Rahimi Tabar MR. Optical absorption and electronic spectra of chlorophylls a and b. RSC Adv 2016. [DOI: 10.1039/c6ra20226h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report optical and electronic properties of the two main chlorophylls in green plants, namely, chlorophylls a and b. We estimate the electric moments of these molecules and study absorption spectra of the chlorophylls.
Collapse
|
5
|
Bechaieb R, Fredj AB, Akacha AB, Gérard H. Interactions of copper(ii) and zinc(ii) with chlorophyll: insights from density functional theory studies. NEW J CHEM 2016. [DOI: 10.1039/c5nj03244j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The most favored reaction of chlorophyll is computed to be substitution for Cu2+ and peripheral chelation for Zn2+.
Collapse
Affiliation(s)
- Rim Bechaieb
- Université de Tunis el Manar
- Faculté des Science de Tunis
- Laboratoire de Spectroscopie Atomique
- Moléculaire et Applications -LSAMA
- 1060 Tunis
| | - Arij B. Fredj
- Université de Tunis el Manar
- Faculté des Science de Tunis
- Laboratoire de Spectroscopie Atomique
- Moléculaire et Applications -LSAMA
- 1060 Tunis
| | - Azaiez B. Akacha
- Université de Tunis el Manar
- Faculté des Sciences de Tunis
- Département de chimie
- Laboratoire de Synthèse Organique et Hétérocyclique
- 2092 Tunis
| | - Hélène Gérard
- Sorbonne Universités
- UPMC Univ Paris 06
- UMR 7616
- Laboratoire de Chimie Théorique
- Paris
| |
Collapse
|
6
|
Orzeł Ł, Szmyd B, Rutkowska-Żbik D, Fiedor L, van Eldik R, Stochel G. Fine tuning of copper(II)-chlorophyll interactions in organic media. Metalation versus oxidation of the macrocycle. Dalton Trans 2015; 44:6012-22. [PMID: 25720308 DOI: 10.1039/c4dt03809f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nature of chlorophyll interactions with copper(II) ions varies considerably in organic solvents, depending on the dominant coordinative form. Besides formation of the metallo tetrapyrrolic complex, Cu(II) ions can cause oxidation of the pigment, reversible or irreversible, which can lead to the destruction of the macrocyclic structure. All these reaction types can be distinguished within a quite narrow range of reaction conditions. The ability to form new metallo derivatives in either metalation or transmetalation reactions is obviously limited by the concentration of the potential oxidant, but can be secured below this level via suitable composition of the reaction system. The decisive factor in the selection of a specific reaction pathway is the presence of a potential ligand that can affect the reactivity of Cu(II) for example by shifting its redox potential. Spectroscopic and electrochemical studies were performed in order to determine the predominant species of Cu(II) in methanol, nitromethane and acetonitrile in the presence of chloride and acetate ions, as well as to assign their appropriate oxidizing ability. This allowed us to estimate the boundary conditions for the electron transfer processes in chlorophyll-Cu(II) systems. Chlorophyll and its free base can undergo both types of electron transfer processes, however, they reveal different susceptibilities that make this class of ligands quite versatile markers in tuning the reactivity of metal ions in solutions.
Collapse
Affiliation(s)
- Łukasz Orzeł
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland.
| | | | | | | | | | | |
Collapse
|
7
|
Role of quantum chemical calculations in molecular biophysics with a historical perspective. Theor Chem Acc 2009. [DOI: 10.1007/s00214-009-0622-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Robotham B, O’Malley PJ. Density Functional Studies of the Spin Density Distribution of the P865 Cation Radical in the Reaction Center of Rb sphaeroides. Biochemistry 2008; 47:13261-6. [DOI: 10.1021/bi801395s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin Robotham
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Patrick J. O’Malley
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
9
|
Canfield P, Dahlbom MG, Hush NS, Reimers JR. Density-functional geometry optimization of the 150 000-atom photosystem-I trimer. J Chem Phys 2006; 124:024301. [PMID: 16422577 DOI: 10.1063/1.2148956] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a linear-scaling method based on the use of density-functional theory (DFT) for the system-wide optimization of x-ray structural coordinates and apply it to optimize the 150,000 atoms of the photosystem-I (PS-I) trimer. The method is based on repetitive applications of a multilevel ONIOM procedure using the PW916-31G(d) DFT calculations for the high level and PM3 for the lower level; this method treats all atoms in the structure equivalently, a structure in which the majority of the atoms can be considered as part of some internal "active site." To obtain a realistic single structure, some changes to the original protein model were necessary but these are kept to a minimum in order that the optimized structure most closely resembles the original x-ray one. Optimization has profound effects on the perceived electronic properties of the cofactors, with, e.g., optimization lowering the internal energy of the chlorophylls by on average 53 kcal mol(-1) and eliminates the enormous 115 kcal mol(-1) energy spread depicted by the original x-ray heavy-atom coordinates. A highly precise structure for PS-I results that is suitable for analysis of device function. Significant qualitative features of the structure are also improved such as correction of an error in the stereochemistry of one of the chlorophylls in the "special pair" of the reaction center, as well as the replacement of a water molecule with a metal cation in a critical region on the C3 axis. The method also reveals other unusual features of the structure, leading both to suggestions concerning device functionality and possible mutations between gene sequencing and x-ray structure determination. The optimization scheme is thus shown to augment the molecular modeling schemes that are currently used to add medium-resolution structural information to the raw scattering data in order to obtain atomically resolved structures. System-wide optimization is now a feasible process and its use within protein x-ray data refinement should be considered.
Collapse
Affiliation(s)
- Peter Canfield
- School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| | | | | | | |
Collapse
|
10
|
Linnanto J, Korppi-Tommola J. Quantum chemical simulation of excited states of chlorophylls, bacteriochlorophylls and their complexes. Phys Chem Chem Phys 2005; 8:663-87. [PMID: 16482307 DOI: 10.1039/b513086g] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present review describes the use of quantum chemical methods in estimation of structures and electronic transition energies of photosynthetic pigments in vacuum, in solution and imbedded in proteins. Monomeric Mg-porphyrins, chlorophylls and bacteriochlorophylls and their solvent 1:1 and 1:2 complexes were studied. Calculations were performed for Mg-porphyrin, Mg-chlorin, Mg-bacteriochlorin, mesochlorophyll a, chlorophylls a, b, c(1), c(2), c(3), d and bacteriochlorophylls a, b, c, d, e, f, g, h, plus several homologues. Geometries were optimised with PM3, PM3/CISD, PM5, ab initio HF (6-31G*/6-311G**) and density functional B3LYP (6-31G*/6-311G**) methods. Spectroscopic transition energies were calculated with ZINDO/S CIS, PM3 CIS, PM3 CISD, ab initio CIS, time-dependent HF and time-dependent B3LYP methods. Estimates for experimental transition energies were obtained from linear correlations of the calculated transition energies of 1:1 solvent complexes against experimentally recorded solution energies (scaling). According to the calculations in five-coordinated solvent complexes the magnesium atom lies out of the porphyrin plane, while in six-coordinated complexes the porphyrin is nearly planar. Charge densities on magnesium and nitrogen atoms were strongly dependent on the computational method deployed. Several dark states of low oscillator strength below the main Soret band were predicted for solvent complexes and chlorophylls and bacteriochlorophylls in protein environment. Such states, though not yet identified experimentally, might serve as intermediate states for excitation energy transfer in photosynthetic complexes. Q(y), Q(x) and Soret transition energies were found to depend on the orientation of the acetyl group and external pressure. A method to estimate site energies and dimeric interaction energies and to simulate absorption and CD spectra of photosynthetic complexes is described. Simulations for the light harvesting complexes Rhodospirillum molischianum, chlorosomes of Chlorobium tepidum and Chloroflexus aurantiacus, and LHC-II of Spinacia oleracea are presented as examples.
Collapse
Affiliation(s)
- Juha Linnanto
- Physical Chemistry Laboratory, University of Jyväskylä, P.O. Box 35, FIN-40014, Finland.
| | | |
Collapse
|
11
|
Hasegawa K, Noguchi T. Density Functional Theory Calculations on the Dielectric Constant Dependence of the Oxidation Potential of Chlorophyll: Implication for the High Potential of P680 in Photosystem II†. Biochemistry 2005; 44:8865-72. [PMID: 15952793 DOI: 10.1021/bi050273c] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The primary donor chlorophyll (Chl) of photosystem II (PSII), P680, has an extremely high oxidation redox potential (E(ox)) of approximately 1.2 V, which is essential for photosynthetic water oxidation. The mechanism for achieving a high potential such as that of P680 has been one of the central questions in photosynthesis research. Here, we have examined the dielectric constant (epsilon) dependence of the E(ox) of monomer Chl using density functional theory calculations with the polarizable continuum model. The calculated E(ox) of a model Chl compound exhibited a sharp increase with a decrease in epsilon in the relatively low epsilon region (epsilon < 5). In contrast, in the higher-epsilon region, E(ox) was rather insensitive to epsilon and converged to a constant value at very high epsilon values. This tendency in the high-epsilon region explains the experimental E(ox) values of isolated Chl a that have been observed in a relatively narrow range of 0.74-0.93 V. The E(ox) of Chl in an ideal hydrophobic protein was estimated to be approximately 1.4 V at an epsilon value of 2. This value indicates that Chl in a hydrophobic environment originally has a high E(ox) that is sufficient for oxidizing water (E(ox) = 0.88 V at pH 6). On the basis of the reported X-ray crystallographic structures, the protein environment of P680 in PSII was estimated to be more hydrophobic than that of the primary donors in bacterial reaction centers. It is therefore suggested that the low-dielectric environment around P680 is one of the major factors in its very high E(ox), and thus, introducing nonpolar amino acids into the binding pocket of P680 was an important process in the evolution of PSII.
Collapse
Affiliation(s)
- Koji Hasegawa
- Laboratory for Photo-Biology (I), RIKEN Photodynamics Research Center, Aoba, Sendai, Miyagi 980-0845, Japan. kojihase@ postman.riken.go.jp
| | | |
Collapse
|
12
|
|
13
|
|
14
|
Plato M, Krauß N, Fromme P, Lubitz W. Molecular orbital study of the primary electron donor P700 of photosystem I based on a recent X-ray single crystal structure analysis. Chem Phys 2003. [DOI: 10.1016/s0301-0104(03)00378-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Lubitz W. Pulse EPR and ENDOR studies of light-induced radicals and triplet states in photosystem II of oxygenic photosynthesis. Phys Chem Chem Phys 2002. [DOI: 10.1039/b206551g] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|