1
|
Kim Y, Gräsing D, Alia A, Wiebeler C, Matysik J. Solid-State NMR Analysis of the Dynamics of Cofactors: Comparison of Heliobacterial and Purple Bacterial Reaction Centers. J Phys Chem B 2024; 128:11525-11545. [PMID: 39514084 DOI: 10.1021/acs.jpcb.4c04082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photosynthetic reaction centers (RCs) serve as natural engines converting solar energy to chemical energy. Understanding the principles of efficient charge separation and light-induced electron transfer (ET) between the chlorophyll-type pigments might guide the synthesis for artificial photosynthetic systems. We present detailed insight into the dynamics at the atomic level using solid-state NMR techniques applied to the RCs of Heliobacillus (Hb.) mobilis (HbRCs) and the purple bacterium Rhodobacter (R.) sphaeroides (PbRCs). It is assumed that heliobacteria were among the first phototrophic organisms; therefore, their RC can be regarded as ancient. They are constructed homodimerically with perfect C2 symmetry, enabling ET over both branches of cofactors. Modern RCs of R. sphaeroides wild-type (WT) have higher redox power and are functionally highly asymmetric. The dynamics of the cofactors in both RCs has been explored using nuclear hyperpolarization, induced by the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect. Based on the individual incorporation of 13C positions of the cofactors (through supplementation by 13C-δ-aminolevulinic acid), photo-CIDNP magic-angle spinning (MAS) NMR experiments provide access to the local dynamics of the cofactors along the ET path over a broad range of time scales. Theoretical analysis of the dynamic deformation of these macrocycles is also discussed in terms of function. The dynamics observed in HbRCs appears to be correlated to ET. The cofactors in PbRC are significantly less dynamic than those in the HbRC. Relevance for efficiency and redox properties are discussed.
Collapse
Affiliation(s)
- Yunmi Kim
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Daniel Gräsing
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - A Alia
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
- Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| |
Collapse
|
2
|
Syryamina VN, Afanasyeva EF, Dzuba SA, Formaggio F, De Zotti M. Peptide-membrane binding is not enough to explain bioactivity: A case study. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183978. [PMID: 35659865 DOI: 10.1016/j.bbamem.2022.183978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Membrane-active peptides are a promising class of antimicrobial and anticancer therapeutics. For this reason, their molecular mechanisms of action are currently actively investigated. By exploiting Electron Paramagnetic Resonance, we study the membrane interaction of two spin-labeled analogs of the antimicrobial and cytotoxic peptide trichogin GA IV (Tri), with opposite bioactivity: Tri(Api8), able to selectively kill cancer cells, and Tri(Leu4), which is completely nontoxic. In our attempt to determine the molecular basis of their different biological activity, we investigate peptide impact on the lateral organization of lipid membranes, peptide localization and oligomerization, in the zwitter-ionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) model membrane We show that, despite their divergent bioactivity, both peptide analogs (i) are membrane-bound, (ii) display a weak tendency to oligomerization, and (iii) do not induce significant lipid rearrangement. Conversely, literature data show that the parent peptide trichogin, which is cytotoxic without any selectivity, is strongly prone to dimerization and affects the reorganization of POPC membranes. Its dimers are involved in the rotation around the peptide helix, as observed at cryogenic temperatures in the millisecond timescale. Since this latter behavior is not observed for the inactive Tri(Leu4), we propose that for short-length peptides as trichogin oligomerization and molecular motions are crucial for bioactivity, and membrane binding alone is not enough to predict or explain it. We envisage that small changes in the peptide sequence that affect only their ability to oligomerize, or their molecular motions inside the membrane, can tune the peptide activity on membranes of different compositions.
Collapse
Affiliation(s)
- Victoria N Syryamina
- Voevodsky Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk 630090, Russian Federation.
| | - Ekaterina F Afanasyeva
- Voevodsky Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk 630090, Russian Federation
| | - Sergei A Dzuba
- Voevodsky Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk 630090, Russian Federation; Department of Physics, Novosibirsk State University,630090 Novosibirsk, Russian Federation
| | - Fernando Formaggio
- ICB-CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Marta De Zotti
- ICB-CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
3
|
Probing Small-Angle Molecular Motions with EPR Spectroscopy: Dynamical Transition and Molecular Packing in Disordered Solids. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8020019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Disordered molecular solids present a rather broad class of substances of different origin—amorphous polymers, materials for photonics and optoelectronics, amorphous pharmaceutics, simple molecular glass formers, and others. Frozen biological media in many respects also may be referred to this class. Theoretical description of dynamics and structure of disordered solids still does not exist, and only some phenomenological models can be developed to explain results of particular experiments. Among different experimental approaches, electron paramagnetic resonance (EPR) applied to spin probes and labels also can deliver useful information. EPR allows probing small-angle orientational molecular motions (molecular librations), which intrinsically are inherent to all molecular solids. EPR is employed in its conventional continuous wave (CW) and pulsed—electron spin echo (ESE)—versions. CW EPR spectra are sensitive to dynamical librations of molecules while ESE probes stochastic molecular librations. In this review, different manifestations of small-angle motions in EPR of spin probes and labels are discussed. It is shown that CW-EPR-detected dynamical librations provide information on dynamical transition in these media, similar to that explored with neutron scattering, and ESE-detected stochastic librations allow elucidating some features of nanoscale molecular packing. The possible EPR applications are analyzed for gel-phase lipid bilayers, for biological membranes interacting with proteins, peptides and cryoprotectants, for supercooled ionic liquids (ILs) and supercooled deep eutectic solvents (DESs), for globular proteins and intrinsically disordered proteins (IDPs), and for some other molecular solids.
Collapse
|
4
|
Golysheva EA, Samoilova RI, De Zotti M, Toniolo C, Formaggio F, Dzuba SA. Electron spin echo detection of stochastic molecular librations: Non-cooperative motions on solid surface. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 309:106621. [PMID: 31669794 DOI: 10.1016/j.jmr.2019.106621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
In frozen biological media and molecular glasses only restricted motions exist; because of the weakness and disorder of intermolecular bonds these motions may have stochastic nature. Electron spin echo (ESE) spectroscopy of spin-labeled molecules allows detecting their restricted stochastic rotations (stochastic molecular librations). As in molecular disordered media motions may be highly cooperative, it would be desirable to investigate their spectroscopic manifestation also in the systems where cooperative effects would be certainly ruled out. In this work, ESE of spin-labeled molecules adsorbed on inorganic SiO2 surface was investigated in a wide temperature range. The rate of motion-induced spin relaxation was found to become measurable above 130 K, increasing with temperature and attaining then a saturating behavior with a well-defined maximum near 250 K. For two types of molecules differing remarkably in their size and polarity (a small highly-polar nitroxide radical and a large spin-labeled peptide), quite similar results were obtained. This saturating behavior was quantitatively reproduced in simulations within a simple model of jump between two close orientations. Comparison with experiment allowed estimate that at 250 K the correlation time of the motion τc is of the order of several tens of nanoseconds and the angle α between two orientations is around 0.02 rad. As the found saturating behavior is a property of individual motions, for any other molecular system an excess of the spin relaxation rate above the maximum found here for adsorbed molecules may be ascribed to cooperative motions. Comparison with literature data on molecular systems of different origin has shown that effects of cooperativity indeed are present and, moreover, may be very essential.
Collapse
Affiliation(s)
- Elena A Golysheva
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russian Federation; Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Rimma I Samoilova
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Marta De Zotti
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Claudio Toniolo
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy
| | - Fernando Formaggio
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russian Federation; Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russian Federation.
| |
Collapse
|
5
|
Krasilnikov PM. Problems of the theory of electron transfer in biological systems. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Bercu V, Martinelli M, Pardi L, Massa CA, Leporini D. Dynamical Line-Shifts in High-Field Electron Spin Resonance: Applications to Polymer Physics. Z PHYS CHEM 2012. [DOI: 10.1524/zpch.2012.0283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
High-field high-frequency Electron Paramagnetic Resonance spectroscopy (HF
2
-EPR) is a powerful tool to investigate, with ultra-high angular resolution, the rotational dynamics of complex systems like polymers, viscous fluids and glasses. Usually, information is drawn by detailed numerical analysis of the overall lineshape. Here, we present a simplified analytical model of the line shifts due to the rotational dynamics of the paramagnetic centre. The model captures the basic features of the reorientation process (time scale and size of the angular jump). It is compared with experimental results concerning the reorientation of a paramagnetic guest molecule dissolved in polystyrene. We find that, if the rotational model to describe the reorientation of the radical is consistent, the best-fit parameters yield equally acceptable best-fits of the overall spectrum by numerical simulations and dynamical line shifts by independent analytic expressions.
Collapse
Affiliation(s)
- Vasile Bercu
- University of Bucharest, Faculty of Physics, Bucharest, Rumänien
| | | | - Luca Pardi
- Istituto per i processi Chimico-Fisici (IPCF-CNR), Pisa, Italien
| | | | | |
Collapse
|
7
|
Leonova MM, Fufina TY, Vasilieva LG, Shuvalov VA. Structure-function investigations of bacterial photosynthetic reaction centers. BIOCHEMISTRY (MOSCOW) 2012; 76:1465-83. [DOI: 10.1134/s0006297911130074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Savitsky A, Malferrari M, Francia F, Venturoli G, Möbius K. Bacterial Photosynthetic Reaction Centers in Trehalose Glasses: Coupling between Protein Conformational Dynamics and Electron-Transfer Kinetics as Studied by Laser-Flash and High-Field EPR Spectroscopies. J Phys Chem B 2010; 114:12729-43. [DOI: 10.1021/jp105801q] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anton Savitsky
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy, Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, c/o Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy, and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Marco Malferrari
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy, Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, c/o Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy, and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Francesco Francia
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy, Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, c/o Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy, and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Giovanni Venturoli
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy, Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, c/o Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy, and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Klaus Möbius
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy, Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, c/o Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy, and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
9
|
Savitsky A, Möbius K. High-field EPR. PHOTOSYNTHESIS RESEARCH 2009; 102:311-333. [PMID: 19468856 DOI: 10.1007/s11120-009-9432-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 04/29/2009] [Indexed: 05/27/2023]
Abstract
Among the numerous spectroscopic techniques utilized in photosynthesis research, high-field/high-frequency EPR and its pulse extensions ESE, ENDOR, ESEEM, and PELDOR play an important role in the endeavor to understand, on the basis of structure and dynamics data, dominant factors that control specificity and efficiency of light-induced electron- and proton-transfer processes in primary photosynthesis. Short-lived transient intermediates of the photocycle can be characterized by high-field EPR techniques, and detailed structural information can be obtained even from disordered sample preparations. The chapter describes how multifrequency high-field EPR methodology, in conjunction with mutation strategies for site-specific isotope or spin labeling and with the support of modern quantum-chemical computation methods for data interpretation, is capable of providing new insights into the photosynthetic transfer processes. The information obtained is complementary to that of protein crystallography, solid-state NMR and laser spectroscopy.
Collapse
Affiliation(s)
- Anton Savitsky
- Department of Physics, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | |
Collapse
|
10
|
Jones MR. Structural Plasticity of Reaction Centers from Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
High-Field/High-Frequency Electron Paramagnetic Resonance Involving Single- and Multiple-Transition Schemes. BIOPHYSICAL TECHNIQUES IN PHOTOSYNTHESIS 2008. [DOI: 10.1007/978-1-4020-8250-4_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Savitsky A, Dubinskii AA, Flores M, Lubitz W, Möbius K. Orientation-Resolving Pulsed Electron Dipolar High-Field EPR Spectroscopy on Disordered Solids: I. Structure of Spin-Correlated Radical Pairs in Bacterial Photosynthetic Reaction Centers. J Phys Chem B 2007; 111:6245-62. [PMID: 17497913 DOI: 10.1021/jp070016c] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Distance and relative orientation of functional groups within protein domains and their changes during chemical reactions determine the efficiency of biological processes. In this work on disordered solid-state electron-transfer proteins, it is demonstrated that the combination of pulsed high-field EPR spectroscopy at the W band (95 GHz, 3.4 T) with its extensions to PELDOR (pulsed electron-electron double resonance) and RIDME (relaxation-induced dipolar modulation enhancement) offers a powerful tool for obtaining not only information on the electronic structure of the redox partners but also on the three-dimensional structure of radical-pair systems with large interspin distances (up to about 5 nm). Strategies are discussed both in terms of data collection and data analysis to extract unique solutions for the full radical-pair structure with only a minimum of additional independent structural information. By this novel approach, the three-dimensional structure of laser-flash-induced transient radical pairs P(865)(*+)Q(A)(*-) in frozen-solution reaction centers (RCs) from the photosynthetic bacterium Rhodobacter (Rb.) sphaeroides is solved. The measured positions and relative orientations of the weakly coupled ion radicals P(865)(*+) and Q(A)(*-) are compared with those of the precursor cofactors P865 and QA known from X-ray crystallography. A small but significant reorientation of the reduced ubiquinone QA is revealed and interpreted as being due to the photosynthetic electron transfer. In contrast to the large conformational change of Q(B)(*-) upon light illumination of the RCs, the small light-induced reorientation of Q(A)(*-) had escaped previous attempts to detect structural changes of photosynthetic cofactors upon charge separation. Although small, they still may be of functional importance for optimizing the electronic coupling of the redox partners in bacterial photosynthesis both for the charge-separation and charge-recombination processes.
Collapse
Affiliation(s)
- A Savitsky
- Department of Physics, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
13
|
Kirilina EP, Prisner TF, Bennati M, Endeward B, Dzuba SA, Fuchs MR, Möbius K, Schnegg A. Molecular dynamics of nitroxides in glasses as studied by multi-frequency EPR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2005; 43 Spec no.:S119-29. [PMID: 16235207 DOI: 10.1002/mrc.1677] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Pulsed multi-frequency EPR was used to investigate orientational molecular motion of the nitroxide spin probe (Fremy's salt) in glycerol glass near the glass transition temperature. By measuring echo-detected EPR spectra at different pulse separation times at resonance frequencies of 3, 9.5, 95 and 180 GHz, we were able to discriminate between different relaxation mechanisms and characterize the timescale of molecular reorientations (10(-7)-10(-10) s). We found that near the glass transition temperature, the orientation-dependent transverse relaxation is dominated by fast reorientational fluctuations, which may be overlapped with fast modulations of the canonical g-matrix values. The data was interpreted using a new simulation program for the orientation-dependent transverse relaxation rate 1/T2 of nitroxides based on different models for the molecular motion. The validity of the different models was assessed by comparing least-square fits of the simulated relaxation behaviour to the experimental data.
Collapse
Affiliation(s)
- Evgeniya P Kirilina
- Institute of Chemical Kinetics and Combustion, Institutskaya 3, Novosibirsk, 630090, Russia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Earle KA, Dzikovski B, Hofbauer W, Moscicki JK, Freed JH. High-frequency ESR at ACERT. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2005; 43 Spec no.:S256-66. [PMID: 16235203 DOI: 10.1002/mrc.1684] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
High-field ESR offers many advantages in exploring fundamental questions of structure and dynamics in chemical, biological and physical samples. We provide a review of recent work performed at ACERT demonstrating the utility and flexibility of our methods for extracting both qualitative and quantitative information from a variety of systems. In particular, we emphasize the utility of multi-frequency ESR techniques for unraveling the details of the complex dynamical modes of proteins in solution and in heterogeneous systems such as lipid bilayers. We also include indications of directions for future work where appropriate.
Collapse
Affiliation(s)
- Keith A Earle
- Advanced Center for ESR Technology (ACERT), Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
15
|
Borovykh IV, Gast P, Dzuba SA. “Glass Transition” near 200 K in the Bacterial Photosynthetic Reaction Center Protein Detected by Studying the Distances in the Transient P+QA- Radical Pair. J Phys Chem B 2005; 109:7535-9. [PMID: 16851865 DOI: 10.1021/jp0451750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transient radical pair P(+)Q(A)(-) in the photosynthetic reaction center from Rhodobacter sphaeroides R26 was studied over a wide temperature range using out-of-phase electron spin-echo envelope modulation (ESEEM) spectroscopy. This method is sensitive to the magnetic dipole-dipole interaction between the two electron spins of the pair and allows precise determination of the distance in the pair P(+)Q(A)(-). The out-of-phase data were complemented by normal in-phase ESEEM spectra from the two stable radicals of P(+) and Q(A)(-). The results seem to indicate that the radical pair undergoes a noticeable molecular motion around 200 K that may be characterized by a change in the distance in the pair by approximately 0.3 nm. As the two cofactors, P(+) and Q(A)(-), are held in a well-defined relative position by the reaction center protein, this means that the protein becomes flexible at 200 K. This effect may be ascribed to a dynamic glass transition around 200 K. The relation with the temperature dependence of the back reaction of P(+)Q(A)(-) is discussed.
Collapse
Affiliation(s)
- Igor V Borovykh
- Department of Biophysics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
16
|
Dzuba SA, Kirilina EP, Salnikov ES, Kulik LV. Restricted orientational motion of nitroxides in molecular glasses: Direct estimation of the motional time scale basing on the comparative study of primary and stimulated electron spin echo decays. J Chem Phys 2005; 122:094702. [PMID: 15836157 DOI: 10.1063/1.1856926] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A comparative study of anisotropic relaxation in two-pulse primary and three-pulse stimulated electron spin echo decays provides a direct way to distinguish fast (correlation time tau(c)<10(-6) s) and slow (tau(c)>10(-6) s) motions. Anisotropic relaxation is detected as a difference of the decay rates for different resonance field positions in anisotropic electron paramagnetic resonance spectra. For fast motion anisotropic relaxation influences the primary echo decay and does not influence the stimulated echo decay. For slow motion it is seen in both two-pulse echo and three-pulse stimulated echo decays. For nitroxide spin probes dissolved in glassy glycerol only fast motion was found below 200 K. Increase of temperature above 200 K results in the appearance of slow motion. Its amplitude increases rapidly with temperature increase. While in glycerol glass slow motion appears above glass transition temperature T(g), in ethanol glass it is observable below T(g). The scenario of motional dynamics in glasses is proposed which involves the broadening of the correlation time distribution with increasing temperature.
Collapse
Affiliation(s)
- S A Dzuba
- Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090 Novosibirsk, Russia.
| | | | | | | |
Collapse
|
17
|
Möbius K, Savitsky A, Schnegg A, Plato M, Fuchs M. High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer. Phys Chem Chem Phys 2005; 7:19-42. [DOI: 10.1039/b412180e] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
|
19
|
High Field ESR: Applications to Protein Structure and Dynamics. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/978-1-4757-4379-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
|
21
|
Carmieli R, Manikandan P, Epel B, Kalb AJ, Schnegg A, Savitsky A, Möbius K, Goldfarb D. Dynamics in the Mn2+ binding site in single crystals of concanavalin A revealed by high-field EPR spectroscopy. Biochemistry 2003; 42:7863-70. [PMID: 12820896 DOI: 10.1021/bi034281+] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
EPR spectroscopy at 95 GHz was used to characterize the dynamics at the Mn(2+) binding site in single crystals of the saccharide-binding protein concanavalin A. The zero-field splitting (ZFS) tensor of the Mn(2+) was determined from rotation patterns in the a-c and a-b crystallographic planes, acquired at room temperature and 4.5 K. The analysis of the rotation patterns showed that while at room temperature there is only one type of Mn(2+) site, at low temperatures two types of Mn(2+) sites, not related by any symmetry, are distinguished. The sites differ in the ZFS parameters D and E and in the orientation of the ZFS tensor with respect to the crystallographic axes. Temperature-dependent EPR measurements on a crystal oriented with its crystallographic a axis parallel to the magnetic field showed that as the temperature increases, the two well-resolved Mn(2+) sextets gradually coalesce into a single sextet at room temperature. The line shape changes are characteristic of a two-site exchange. This was confirmed by simulations which gave rates in the range of 10(7)-10(8) s(-1) for the temperature range of 200-266 K and an activation energy of 23.8 kJ/mol. This dynamic process was attributed to a conformational equilibrium within the Mn(2+) binding site which freezes into two conformations at low temperatures.
Collapse
Affiliation(s)
- Raanan Carmieli
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot, Israel 76100
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Current awareness in phytochemical analysis. PHYTOCHEMICAL ANALYSIS : PCA 2003; 14:60-66. [PMID: 12597257 DOI: 10.1002/pca.676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|