1
|
Tasi DA, Czakó G. Benchmark ab initio characterization of the complex potential energy surfaces of the HOO - + CH 3Y [Y = F, Cl, Br, I] reactions. Phys Chem Chem Phys 2024; 26:16048-16059. [PMID: 38779842 DOI: 10.1039/d4cp01071j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The α-effect is a well-known phenomenon in organic chemistry, and is related to the enhanced reactivity of nucleophiles involving one or more lone-pair electrons adjacent to the nucleophilic center. The gas-phase bimolecular nucleophilic substitution (SN2) reactions of α-nucleophile HOO- with methyl halides have been thoroughly investigated experimentally and theoretically; however, these investigations have mainly focused on identifying and characterizing the α-effect of HOO-. Here, we perform the first comprehensive high-level ab initio mapping for the HOO- + CH3Y [Y = F, Cl, Br and I] reactions utilizing the modern explicitly-correlated CCSD(T)-F12b method with the aug-cc-pVnZ [n = 2-4] basis sets. The present ab initio characterization considers five distinct product channels of SN2: (CH3OOH + Y-), proton abstraction (CH2Y- + H2O2), peroxide ion substitution (CH3OO- + HY), SN2-induced elimination (CH2O + HY + HO-) and SN2-induced rearrangement (CH2(OH)O- + HY). Moreover, besides the traditional back-side attack Walden inversion, the pathways of front-side attack, double inversion and halogen-bond complex formation have also been explored for SN2. With regard to the Walden inversion of HOO- + CH3Cl, the previously unaddressed discrepancies concerning the geometry of the corresponding transition state are clarified. For the HOO- + CH3F reaction, the recently identified SN2-induced elimination is found to be more exothermic than the SN2 channel, submerged by ∼36 kcal mol-1. The accuracy of our high-level ab initio calculations performed in the present study is validated by the fact that our new benchmark 0 K reaction enthalpies show excellent agreement with the experimental data in nearly all cases.
Collapse
Affiliation(s)
- Domonkos A Tasi
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| |
Collapse
|
2
|
Tasi DA, Czakó G. Vibrational mode-specificity in the dynamics of the OH- + CH3I multi-channel reaction. J Chem Phys 2024; 160:044305. [PMID: 38265083 DOI: 10.1063/5.0189561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/25/2023] [Indexed: 01/25/2024] Open
Abstract
We report a comprehensive characterization of the vibrational mode-specific dynamics of the OH- + CH3I reaction. Quasi-classical trajectory simulations are performed at four different collision energies on our previously-developed full-dimensional high-level ab initio potential energy surface in order to examine the impact of four different normal-mode excitations in the reactants. Considering the 11 possible pathways of OH- + CH3I, pronounced mode-specificity is observed in reactivity: In general, the excitations of the OH- stretching and CH stretching exert the greatest influence on the channels. For the SN2 and proton-abstraction products, the reactant initial attack angle and the product scattering angle distributions do not show major mode-specific features, except for SN2 at higher collision energies, where forward scattering is promoted by the CI stretching and CH stretching excitations. The post-reaction energy flow is also examined for SN2 and proton abstraction, and it is unveiled that the excess vibrational excitation energies rather transfer into the product vibrational energy because the translational and rotational energy distributions of the products do not represent significant mode-specificity. Moreover, in the course of proton abstraction, the surplus vibrational energy in the OH- reactant mostly remains in the H2O product owing to the prevailing dominance of the direct stripping mechanism.
Collapse
Affiliation(s)
- Domonkos A Tasi
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
3
|
Tasi DA, Michaelsen T, Wester R, Czakó G. Quasi-classical trajectory study of the OH - + CH 3I reaction: theory meets experiment. Phys Chem Chem Phys 2023; 25:4005-4014. [PMID: 36649119 DOI: 10.1039/d2cp05553h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Regarding OH- + CH3I, several studies have focused on the dynamics of the reaction. Here, high-level quasi-classical trajectory simulations are carried out at four different collision energies on our recently developed potential energy surface. In all, more than half a million trajectories are performed, and for the first time, the detailed quasi-classical trajectory results are compared with the reanalysed crossed-beam ion imaging experiments. Concerning the previously reported direct dynamics study of OH- + CH3I, a better agreement can be obtained between the revised experiment and our novel theoretical results. Furthermore, in the present work, the benchmark geometries, frequencies and relative energies of the stationary points are also determined for the OH- + CH3I proton-abstraction channel along with the earlier characterized SN2 channel.
Collapse
Affiliation(s)
- Domonkos A Tasi
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Tim Michaelsen
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
| | - Roland Wester
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
| | - Gábor Czakó
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| |
Collapse
|
4
|
Zhao S, Fu G, Zhen W, Yang L, Sun J, Zhang J. Reaction mechanism conversion induced by the contest of nucleophile and leaving group. Phys Chem Chem Phys 2022; 24:24146-24154. [PMID: 36168813 DOI: 10.1039/d2cp01987f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct dynamic simulations have been employed to investigate the OH- + CH3Cl reaction with the chosen B3LYP/aug-cc-pVDZ method. The calculated rate coefficient for the bimolecular nucleophilic substitution reaction (SN2), 1.0 × 10-9 cm3 mol-1 s-1 at 300 K, agrees well with the experimental result of (1.3-1.6) × 10-9 cm3 mol-1 s-1. The simulations reveal that the majority of the SN2 reactions are temporarily trapped in the hydrogen-bonded complex at Ecoll = 0.89 kcal mol-1. Importantly, the influences of the leaving group and nucleophile have been discussed by comparisons of X- + CH3Y (X = F, OH; Y = Cl, I) reactions. For the X = F- reactions, the reaction probability of SN2 increases along the increased leaving group ability Cl < I, suggesting that the thermodynamic factor plays a key role. The indirect mechanisms were found to be dominant for both reactions. In contrast, for X = OH-, the fraction of SN2 drops with the enhanced leaving group ability. In particular, a dramatic transition occurs for the dominant atomic reaction mechanisms, i.e., from complex-mediated indirect to direct, implying an interesting contest between the leaving group and the nucleophile and the importance of the dynamic factors, i.e., the dipole moment, steric hindrance, and electronegativity.
Collapse
Affiliation(s)
- Siwei Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Gang Fu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Wenqing Zhen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Li Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China. .,State Key Lab of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Jianmin Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China. .,State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Jiaxu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China. .,State Key Lab of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
5
|
Tasi DA, Czakó G. Unconventional S N2 retention pathways induced by complex formation: High-level dynamics investigation of the NH 2 - + CH 3I polyatomic reaction. J Chem Phys 2022; 156:184306. [PMID: 35568546 DOI: 10.1063/5.0091789] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Investigations on the dynamics of chemical reactions have been a hot topic for experimental and theoretical studies over the last few decades. Here, we carry out the first high-level dynamical characterization for the polyatom-polyatom reaction between NH2 - and CH3I. A global analytical potential energy surface is developed to describe the possible pathways with the quasi-classical trajectory method at several collision energies. In addition to SN2 and proton abstraction, a significant iodine abstraction is identified, leading to the CH3 + [NH2⋯I]- products. For SN2, our computations reveal an indirect character as well, promoting the formation of [CH3⋯NH2] complexes. Two novel dominant SN2 retention pathways are uncovered induced by the rotation of the CH3 fragment in these latter [CH3⋯NH2] complexes. Moreover, these uncommon routes turn out to be the most dominant retention paths for the NH2 - + CH3I SN2 reaction.
Collapse
Affiliation(s)
- Domonkos A Tasi
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
6
|
Oh Y, Yun W, Lee S, Kim DW. Kinetics and Quantum Chemical Analysis of Intramolecular S
N
2 Reactions by Using Metal Salts and Promoted by Crown Ethers: Contact Ion Pair vs. Separated Nucleophile Mechanism. ChemistrySelect 2022. [DOI: 10.1002/slct.202104431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Young‐Ho Oh
- Department of Applied Chemistry Kyung Hee University 1732, Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 17104, Republic of Korea
| | - Wonhyuk Yun
- Department of Chemistry and Chemical Engineering Inha University 100 Inha-ro, Nam-gu Incheon 402-751, Republic of Korea
| | - Sungyul Lee
- Department of Applied Chemistry Kyung Hee University 1732, Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 17104, Republic of Korea
| | - Dong Wook Kim
- Department of Chemistry and Chemical Engineering Inha University 100 Inha-ro, Nam-gu Incheon 402-751, Republic of Korea
| |
Collapse
|
7
|
Tasi DA, Tokaji C, Czakó G. A benchmark ab initio study of the complex potential energy surfaces of the OH - + CH 3CH 2Y [Y = F, Cl, Br, I] reactions. Phys Chem Chem Phys 2021; 23:13526-13534. [PMID: 34132273 DOI: 10.1039/d1cp01303c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We provide the first benchmark characterization of the OH- + CH3CH2Y [Y = F, Cl, Br, I] reactions utilizing the high-level explicitly-correlated CCSD(T)-F12b method with the aug-cc-pVnZ [n = 2(D), 3(T), 4(Q)] basis sets. We explore and analyze the stationary points of the elimination (E2) and substitution (SN2) reactions, including anti-E2, syn-E2, back-side attack, front-side attack, and double inversion. In all cases, SN2 is thermodynamically more preferred than E2. In the entrance channel of SN2 a significant front-side complex formation is revealed, and in the product channel the global minimum of the title reactions is obtained at the hydrogen-bonded CH3CH2OHY- complex. Similar to the OH- + CH3Y reactions, double inversion can proceed via a notably lower-energy pathway than front-side attack, moreover, for Y = I double inversion becomes barrier-less. For the transition state of the anti-E2, a prominent ZPE effect emerges, giving an opportunity for a kinetically more favored pathway than back-side attack. In addition to SN2 and E2, other possible product channels are considered, and in most cases, the benchmark reaction enthalpies are in excellent agreement with the experimental data.
Collapse
Affiliation(s)
- Domonkos A Tasi
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | | | | |
Collapse
|
8
|
Inter- and Intra-Molecular Organocatalysis of S N2 Fluorination by Crown Ether: Kinetics and Quantum Chemical Analysis. Molecules 2021; 26:molecules26102947. [PMID: 34063489 PMCID: PMC8156096 DOI: 10.3390/molecules26102947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022] Open
Abstract
We present the intra- and inter-molecular organocatalysis of SN2 fluorination using CsF by crown ether to estimate the efficacy of the promoter and to elucidate the reaction mechanism. The yields of intramolecular SN2 fluorination of the veratrole substrates are measured to be very small (<1% in 12 h) in the absence of crown ether promoters, whereas the SN2 fluorination of the substrate possessing a crown ether unit proceeds to near completion (~99%) in 12 h. We also studied the efficacy of intermolecular rate acceleration by an independent promoter 18-crown-6 for comparison. We find that the fluorinating yield of a veratrole substrate (leaving group = −OMs) in the presence of 18-crown-6 follows the almost identical kinetic course as that of intramolecular SN2 fluorination, indicating the mechanistic similarity of intra- and inter-molecular organocatalysis of the crown ether for SN2 fluorination. The calculated relative Gibbs free energies of activation for these reactions, in which the crown ether units act as Lewis base promoters for SN2 fluorination, are in excellent agreement with the experimentally measured yields of fluorination. The role of the metal salt CsF is briefly discussed in terms of whether it reacts as a contact ion pair or as a “free” nucleophile F−.
Collapse
|
9
|
Computational mechanistic study of the unimolecular dissociation of ethyl hydroperoxide and its bimolecular reactions with atmospheric species. Sci Rep 2020; 10:15025. [PMID: 32929159 PMCID: PMC7490386 DOI: 10.1038/s41598-020-71881-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/10/2020] [Indexed: 11/24/2022] Open
Abstract
A detailed computational study of the atmospheric reaction of the simplest Criegee intermediate CH2OO with methane has been performed using the density functional theory (DFT) method and high-level calculations. Solvation models were utilized to address the effect of water molecules on prominent reaction steps and their associated energies. The structures of all proposed mechanisms were optimized using B3LYP functional with several basis sets: 6-31G(d), 6-31G (2df,p), 6-311++G(3df,3pd) and at M06-2X/6-31G(d) and APFD/6-31G(d) levels of theory. Furthermore, all structures were optimized at the B3LYP/6-311++G(3df,3pd) level of theory. The intrinsic reaction coordinate (IRC) analysis was performed for characterizing the transition states on the potential energy surfaces. Fifteen different mechanistic pathways were studied for the reaction of Criegee intermediate with methane. Both thermodynamic functions (ΔH and ΔG), and activation parameters (activation energies Ea, enthalpies of activation ΔHǂ, and Gibbs energies of activation ΔGǂ) were calculated for all pathways investigated. The individual mechanisms for pathways A1, A2, B1, and B2, comprise two key steps: (i) the formation of ethyl hydroperoxide (EHP) accompanying with the hydrogen transfer from the alkanes to the terminal oxygen atom of CIs, and (ii) a following unimolecular dissociation of EHP. Pathways from C1 → H1 involve the bimolecular reaction of EHP with different atmospheric species. The photochemical reaction of methane with EHP (pathway E1) was found to be the most plausible reaction mechanism, exhibiting an overall activation energy of 7 kJ mol−1, which was estimated in vacuum at the B3LYP/6-311++G(3df,3pd) level of theory. All of the reactions were found to be strongly exothermic, expect the case of the sulfur dioxide-involved pathway that is predicted to be endothermic. The solvent effect plays an important role in the reaction of EHP with ammonia (pathway F1). Compared with the gas phase reaction, the overall activation energy for the solution phase reaction is decreased by 162 and 140 kJ mol−1 according to calculations done with the SMD and PCM solvation models, respectively.
Collapse
|
10
|
Tasi DA, Fábián Z, Czakó G. Rethinking the X− + CH3Y [X = OH, SH, CN, NH2, PH2; Y = F, Cl, Br, I] SN2 reactions. Phys Chem Chem Phys 2019; 21:7924-7931. [DOI: 10.1039/c8cp07850e] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Explicitly-correlated ab initio computations reveal novel inversion and retention pathways for several SN2 reactions with different nucleophiles and leaving groups.
Collapse
Affiliation(s)
- Domonkos A. Tasi
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
- Hungary
| | - Zita Fábián
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
- Hungary
| | - Gábor Czakó
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
- Hungary
| |
Collapse
|
11
|
Tasi DA, Fábián Z, Czakó G. Benchmark ab Initio Characterization of the Inversion and Retention Pathways of the OH– + CH3Y [Y = F, Cl, Br, I] SN2 Reactions. J Phys Chem A 2018; 122:5773-5780. [DOI: 10.1021/acs.jpca.8b04218] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Domonkos A. Tasi
- Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Zita Fábián
- Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
12
|
Hamlin TA, Swart M, Bickelhaupt FM. Nucleophilic Substitution (S N 2): Dependence on Nucleophile, Leaving Group, Central Atom, Substituents, and Solvent. Chemphyschem 2018; 19:1315-1330. [PMID: 29542853 PMCID: PMC6001448 DOI: 10.1002/cphc.201701363] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 11/12/2022]
Abstract
The reaction potential energy surface (PES), and thus the mechanism of bimolecular nucleophilic substitution (SN 2), depends profoundly on the nature of the nucleophile and leaving group, but also on the central, electrophilic atom, its substituents, as well as on the medium in which the reaction takes place. Here, we provide an overview of recent studies and demonstrate how changes in any one of the aforementioned factors affect the SN 2 mechanism. One of the most striking effects is the transition from a double-well to a single-well PES when the central atom is changed from a second-period (e. g. carbon) to a higher-period element (e.g, silicon, germanium). Variations in nucleophilicity, leaving group ability, and bulky substituents around a second-row element central atom can then be exploited to change the single-well PES back into a double-well. Reversely, these variations can also be used to produce a single-well PES for second-period elements, for example, a stable pentavalent carbon species.
Collapse
Affiliation(s)
- Trevor A. Hamlin
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Marcel Swart
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institut de Química Computacional I Catàlisi and Department de QuímicaUniversitat de Girona17003GironaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institute of Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
13
|
Laloo JZA, Rhyman L, Larrañaga O, Ramasami P, Bickelhaupt FM, de Cózar A. Ion-Pair S N 2 Reaction of OH - and CH 3 Cl: Activation Strain Analyses of Counterion and Solvent Effects. Chem Asian J 2018; 13:1138-1147. [PMID: 29437289 DOI: 10.1002/asia.201800082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/12/2018] [Indexed: 11/10/2022]
Abstract
We have theoretically studied the non-identity SN 2 reactions of Mn OH(n-1) +CH3 Cl (M+ =Li+ , Na+ , K+ , and MgCl+ ; n=0, 1) in the gas phase and in THF solution at the OLYP/6-31++G(d,p) level using polarizable continuum model (PCM) implicit solvation. We want to explore and understand the effect of the metal counterion M+ and solvation on the reaction profile and the stereoselectivity of these processes. To this end, we have explored the potential energy surfaces of the backside (SN 2-b) and frontside (SN 2-f) pathways. To explain the computed trends, we have carried out analyses with an extended activation strain model (ASM) of chemical reactivity that includes the treatment of solvation effects.
Collapse
Affiliation(s)
- Jalal Z A Laloo
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius.,Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Olatz Larrañaga
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco (UPV/EHU) and Donostia International Physics Center (DIPC), P. K. 1072, 20018, San Sebastián-Donostia, Spain
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius.,Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - F Matthias Bickelhaupt
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081, HV, Amsterdam, The Netherlands.,Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Abel de Cózar
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco (UPV/EHU) and Donostia International Physics Center (DIPC), P. K. 1072, 20018, San Sebastián-Donostia, Spain.,Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081, HV, Amsterdam, The Netherlands.,IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain
| |
Collapse
|
14
|
Szabó I, Czakó G. Mode-specific multi-channel dynamics of the F - + CHD 2Cl reaction on a global ab initio potential energy surface. J Chem Phys 2016; 145:134303. [PMID: 27782409 DOI: 10.1063/1.4963664] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We report a detailed quasiclassical trajectory study for the dynamics of the ground-state and CH/CD stretching-excited F- + CHD2Cl(vCH/CD = 0, 1) → Cl- + CHD2F, HF + CD2Cl-, and DF + CHDCl- SN2, proton-, and deuteron-abstraction reactions using a full-dimensional global ab initio analytical potential energy surface. The simulations show that (a) CHD2Cl(vCH/CD = 1), especially for vCH = 1, maintains its mode-specific excited character prior to interaction, (b) the SN2 reaction is vibrationally mode-specific,
Collapse
Affiliation(s)
- István Szabó
- Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
15
|
Szabó I, Telekes H, Czakó G. Accurate ab initio potential energy surface, thermochemistry, and dynamics of the F− + CH3F SN2 and proton-abstraction reactions. J Chem Phys 2015; 142:244301. [DOI: 10.1063/1.4922616] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- István Szabó
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, Eötvös University, H-1518 Budapest 112, P.O. Box 32, Hungary
| | - Hajnalka Telekes
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, Eötvös University, H-1518 Budapest 112, P.O. Box 32, Hungary
| | - Gábor Czakó
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, Eötvös University, H-1518 Budapest 112, P.O. Box 32, Hungary
| |
Collapse
|
16
|
Tachikawa H, Igarashi M. Direct ab initio molecular dynamics study on a SN2 reaction OH−+CH3Cl→CH3OH+Cl−: Effect of non-zero impact parameter on the reaction dynamics. Chem Phys 2006. [DOI: 10.1016/j.chemphys.2005.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Ebrahimi A, Roohi H, Habibi M, Karimian T, Vaziri R. Topological and natural population analyses of gas-phase identity SN2 reactions of some methyl halides: Backside attack. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2005.10.154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Fridgen TD, McMahon TB, Maître P, Lemaire J. Experimental infrared spectra of Cl−(ROH) (R = H, CH3, CH3CH2) complexes in the gas-phase. Phys Chem Chem Phys 2006; 8:2483-90. [PMID: 16721432 DOI: 10.1039/b603102a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infrared multiple photon dissociation spectra for the chloride ion solvated by either water, methanol or ethanol have been recorded using an FTICR spectrometer coupled to a free-electron laser, and are presented here along with assignments to the observed bands. The assignments made to the Cl(-)/H(2)O, Cl(-)(CH(3)OH), and Cl(-)(CH(3)CH(2)OH) spectra are based on comparison with the neutral H(2)O, CH(3)OH, and CH(3)CH(2)OH spectra, respectively. This work confirms that a band observed around 1400 cm(-1) in the Cl(-)(H(2)O) spectrum is not due to the Ar tag in Ar predissociation spectra. The carrier of this band is, most likely, the first overtone of the OHCl bend. Based on the position of the overtone in the IRMPD spectrum, 1375 cm(-1), the fundamental must occur very close to 700 cm(-1) and observation of this band should aid theoretical treatments of the spectrum of this complex. B3LYP/6-311++G(2df,2pd) calculations are shown to reproduce the IRMPD spectra of all three solvated chloride species. They also predict that attaching one or two Ar atoms to the Cl(-)(H(2)O) complex results in a shift of no more than a few wavenumbers in the fundamental bands for the bare complex, in agreement with previous experiment. For both alcohol-Cl(-) complexes, the S(N)2 "backside attack" isomers are not observed and Cl(-) is predicted theoretically, and confirmed experimentally, to be bound to the hydroxyl hydrogen. For Cl(-)(CH(3)CH(2)OH), the trans and gauche conformers are similar in energy, with the gauche conformer predicted to be thermodynamically favoured. The experimental infrared spectrum agrees well with that predicted for the gauche conformer but a mixture of gauche and anti conformers cannot be ruled out based on the experimental spectra nor on the computed thermochemistry.
Collapse
Affiliation(s)
- Travis D Fridgen
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada.
| | | | | | | |
Collapse
|
19
|
Abstract
This paper re-examines gas-phase S(N)2 reactions at saturated carbon for model reactions Nu(-) + CH(3)Cl --> CH(3)Nu + Cl(-) (Nu(-) = HO(-), MeO(-), NH(2)(-), HS(-), Cl(-), Br(-), I(-), HOO(-), MeOO(-), HSS(-), and NH(2)NH(-)) using the G2(+) theory. The calculated results show that the alpha-effect does exist in the gas-phase S(N)2 reaction at the sp(3) carbon, contrary to the currently accepted notion of the absence of the alpha-effect in the gas phase.
Collapse
Affiliation(s)
- Yi Ren
- College of Chemistry, Sichuan University, Chengdu, PR China.
| | | |
Collapse
|
20
|
Salazar MR. Molecular Dynamics of Complex Gas-Phase Reactive Systems by Time-Dependent Groups. J Phys Chem A 2005; 109:11515-20. [PMID: 16354042 DOI: 10.1021/jp053551q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel way of assembling the total potential for performing molecular dynamical studies of complex gas-phase reactive chemical systems is introduced. The method breaks the calculation of the total potential and gradients of the potential into time-dependent groups that are governed by spatial cutoffs. These groups evolve during the course of the simulation and their number may increase or diminish as the dynamics of the system determine. In an effort to extend the simulation time of these complex reactive processes and to use high levels of theory when necessary, multiple levels of theory may be used over the groups for the calculation of both the intragroup and intergroup interactions. Representative simulations are performed to illustrate the method and a computationally facile method of obtaining the groups of a simulation are also discussed.
Collapse
Affiliation(s)
- Michael R Salazar
- Department of Chemistry, Union University, 1050 Union University Dr., Jackson, Tennessee 38305, USA.
| |
Collapse
|
21
|
Tachikawa H. S N2 and S N2′ reaction dynamics of cyclopropenyl chloride with halide ion A direct ab initio molecular dynamics (MD) study. CAN J CHEM 2005. [DOI: 10.1139/v05-176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Direct ab initio molecular dynamics (MD) calculations have been carried out for the reaction of cyclopropenyl chloride with halide ion (F) (F + (CH)3Cl → F(CH)3 + Cl) in gas phase. Both SN2 and SN2′ channels were found as product channels. These channels are strongly dependent on the collision angle of F to the target (CH)3Cl molecule. The collision at one of the carbon atoms of the C=C double bond leads to the SN2′ reaction channel; whereas the collision at the methylene carbon atom leads to the SN2 reaction channel. The reactions proceed via a direct mechanism without long-lived complexes. The reaction mechanism is discussed on the basis of the theoretical results.Key words: SN2 reaction, direct ab initio molecular dynamics, halogen exchange, reaction mechanism.
Collapse
|
22
|
Tachikawa H, Igarashi M, Nishihira J, Ishibashi T. Ab initio model study on acetylcholinesterase catalysis: potential energy surfaces of the proton transfer reactions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2005; 79:11-23. [PMID: 15792875 DOI: 10.1016/j.jphotobiol.2004.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 11/11/2004] [Accepted: 11/20/2004] [Indexed: 11/18/2022]
Abstract
Ab initio molecular orbital (MO) and hybrid density functional theory (DFT) calculations have been applied to the initial step of the acylation reaction catalyzed by acetylcholinesterase (AChE), which is the nucleophiric addition of Ser200 in catalytic triads to a neurotransmitter acetylcholine (ACh). We focus our attention mainly on the effects of oxyanion hole and Glu327 on the potential energy surfaces (PESs) for the proton transfer reactions in the catalytic triad Ser200-His440-Glu327. The activation barrier for the addition reaction of Ser200 to ACh was calculated to be 23.4 kcal/mol at the B3LYP/6-31G(d)//HF/3-21G(d) level of theory. The barrier height under the existence of oxyanion hole, namely, Ser200-His440-Glu327-ACh-(oxyanion hole) system, decreased significantly to 14.2 kcal/mol, which is in reasonable agreement with recent experimental value (12.0 kcal/mol). Removal of Glu327 from the catalytic triad caused destabilization of both energy of transition state for the reaction and tetrahedral intermediate (product). PESs calculated for the proton transfer reactions showed that the first proton transfer process is the most important in the stabilization of tetrahedral intermediate complex. The mechanism of addition reaction of ACh was discussed on the basis of theoretical results.
Collapse
Affiliation(s)
- Hiroto Tachikawa
- Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | | | | | | |
Collapse
|
23
|
Kawabata H, Tachikawa H. Ab initio and hybrid DFT study on the electronic states of fluorenone–Na complexes. Phys Chem Chem Phys 2003. [DOI: 10.1039/b305062a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|