1
|
Lipid-based and protein-based interactions synergize transmembrane signaling stimulated by antigen clustering of IgE receptors. Proc Natl Acad Sci U S A 2021; 118:2026583118. [PMID: 34433665 DOI: 10.1073/pnas.2026583118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Antigen (Ag) crosslinking of immunoglobulin E-receptor (IgE-FcεRI) complexes in mast cells stimulates transmembrane (TM) signaling, requiring phosphorylation of the clustered FcεRI by lipid-anchored Lyn tyrosine kinase. Previous studies showed that this stimulated coupling between Lyn and FcεRI occurs in liquid ordered (Lo)-like nanodomains of the plasma membrane and that Lyn binds directly to cytosolic segments of FcεRI that it initially phosphorylates for amplified activity. Net phosphorylation above a nonfunctional threshold is achieved in the stimulated state but not in the resting state, and current evidence supports the hypothesis that this relies on Ag crosslinking to disrupt a balance between Lyn and tyrosine phosphatase activities. However, the structural interactions that underlie the stimulation process remain poorly defined. This study evaluates the relative contributions and functional importance of different types of interactions leading to suprathreshold phosphorylation of Ag-crosslinked IgE-FcεRI in live rat basophilic leukemia mast cells. Our high-precision diffusion measurements by imaging fluorescence correlation spectroscopy on multiple structural variants of Lyn and other lipid-anchored probes confirm subtle, stimulated stabilization of the Lo-like nanodomains in the membrane inner leaflet and concomitant sharpening of segregation from liquid disordered (Ld)-like regions. With other structural variants, we determine that lipid-based interactions are essential for access by Lyn, leading to phosphorylation of and protein-based binding to clustered FcεRI. By contrast, TM tyrosine phosphatase, PTPα, is excluded from these regions due to its Ld-preference and steric exclusion of TM segments. Overall, we establish a synergy of lipid-based, protein-based, and steric interactions underlying functional TM signaling in mast cells.
Collapse
|
2
|
Bag N, Holowka DA, Baird BA. Imaging FCS delineates subtle heterogeneity in plasma membranes of resting mast cells. Mol Biol Cell 2020; 31:709-723. [PMID: 31895009 PMCID: PMC7202073 DOI: 10.1091/mbc.e19-10-0559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A myriad of transient, nanoscopic lipid- and protein-based interactions confer a steady-state organization of the plasma membrane in resting cells that is poised to orchestrate assembly of key signaling components upon reception of an extracellular stimulus. Although difficult to observe directly in live cells, these subtle interactions can be discerned by their impact on the diffusion of membrane constituents. Here, we quantified the diffusion properties of a panel of structurally distinct lipid, lipid-anchored, and transmembrane (TM) probes in RBL mast cells by imaging fluorescence correlation spectroscopy (ImFCS). We developed a statistical analysis of data combined from many pixels over multiple cells to characterize differences in diffusion coefficients as small as 10%, which reflect differences in underlying interactions. We found that the distinctive diffusion properties of lipid probes can be explained by their dynamic partitioning into Lo-like proteolipid nanodomains, which encompass a major fraction of the membrane and whose physical properties are influenced by actin polymerization. Effects on diffusion of functional protein modules in both lipid-anchored and TM probes reflect additional complexity in steady state membrane organization. The contrast we observe between different probes diffusing through the same membrane milieu represents the dynamic resting steady state, which serves as a baseline for monitoring plasma membrane remodeling that occurs upon stimulation.
Collapse
Affiliation(s)
- Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
3
|
Gupta A, Muralidharan S, Torta F, Wenk MR, Wohland T. Long acyl chain ceramides govern cholesterol and cytoskeleton dependence of membrane outer leaflet dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183153. [PMID: 31857071 DOI: 10.1016/j.bbamem.2019.183153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022]
Abstract
The spatiotemporal dynamics of the plasma membrane is a consequence of fine-tuned interactions between membrane components. However, the precise identity of molecular factors that maintain this delicate balance, which is lost even in cell membrane derived mimics, remains elusive. Here, we use two cell lines, CHO-K1 and RBL-2H3, which show differences in outer membrane organization, dynamics, and cytoskeleton coupling, to investigate the underlying factors. To our surprise, knock-down of the cytoskeleton-interacting Immunoglobulin E receptor, which is abundant in RBL-2H3 but not in CHO-K1 cells, is not responsible for lipid confinement or cytoskeleton coupling. A subsequent lipidomic analysis of the two cell membranes revealed differences in total membrane ceramide content (C16 to C24). Analysis of the dynamics and organization of ceramide treated live cell membranes by imaging fluorescence correlation spectroscopy demonstrates that C24 and C16 saturated ceramides uniquely alter membrane dynamics by promoting the formation of cholesterol-independent domains and by elevating the inter-leaflet coupling.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore; NUS Centre for Bio-Imaging Sciences, National University of Singapore, 14 Science Drive 4, 117557, Singapore
| | - Sneha Muralidharan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore
| | - Federico Torta
- Department of Biochemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Markus R Wenk
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore; Department of Biochemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore; NUS Centre for Bio-Imaging Sciences, National University of Singapore, 14 Science Drive 4, 117557, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
4
|
Shahinuzzaman M, Khetan J, Barua D. A spatio-temporal model reveals self-limiting Fc ɛRI cross-linking by multivalent antigens. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180190. [PMID: 30839725 PMCID: PMC6170560 DOI: 10.1098/rsos.180190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/23/2018] [Indexed: 06/09/2023]
Abstract
Aggregation of cell surface receptor proteins by multivalent antigens is an essential early step for immune cell signalling. A number of experimental and modelling studies in the past have investigated multivalent ligand-mediated aggregation of IgE receptors (FcɛRI) in the plasma membrane of mast cells. However, understanding of the mechanisms of FcɛRI aggregation remains incomplete. Experimental reports indicate that FcɛRI forms relatively small and finite-sized clusters when stimulated by a multivalent ligand. By contrast, modelling studies have shown that receptor cross-linking by a trivalent ligand may lead to the formation of large receptor superaggregates that may potentially give rise to hyperactive cellular responses. In this work, we have developed a Brownian dynamics-based spatio-temporal model to analyse FcɛRI aggregation by a trivalent antigen. Unlike the existing models, which implemented non-spatial simulation approaches, our model explicitly accounts for the coarse-grained site-specific features of the multivalent species (molecules and complexes). The model incorporates membrane diffusion, steric collisions and sub-nanometre-scale site-specific interaction of the time-evolving species of arbitrary structures. Using the model, we investigated temporal evolution of the species and their diffusivities. Consistent with a recent experimental report, our model predicted sharp decay in species mobility in the plasma membrane in response receptor cross-linking by a multivalent antigen. We show that, due to such decay in the species mobility, post-stimulation receptor aggregation may become self-limiting. Our analysis reveals a potential regulatory mechanism suppressing hyperactivation of immune cells in response to multivalent antigens.
Collapse
Affiliation(s)
| | | | - Dipak Barua
- Author for correspondence: Dipak Barua e-mail:
| |
Collapse
|
5
|
Huang S, Lim SY, Gupta A, Bag N, Wohland T. Plasma membrane organization and dynamics is probe and cell line dependent. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:1483-1492. [PMID: 27998689 DOI: 10.1016/j.bbamem.2016.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/03/2016] [Accepted: 12/08/2016] [Indexed: 01/01/2023]
Abstract
The action and interaction of membrane receptor proteins take place within the plasma membrane. The plasma membrane, however, is not a passive matrix. It rather takes an active role and regulates receptor distribution and function by its composition and the interaction of its lipid components with embedded and surrounding proteins. Furthermore, it is not a homogenous fluid but contains lipid and protein domains of various sizes and characteristic lifetimes which are important in regulating receptor function and signaling. The precise lateral organization of the plasma membrane, the differences between the inner and outer leaflet, and the influence of the cytoskeleton are still debated. Furthermore, there is a lack of comparisons of the organization and dynamics of the plasma membrane of different cell types. Therefore, we used four different specific membrane markers to test the lateral organization, the differences between the inner and outer membrane leaflet, and the influence of the cytoskeleton of up to five different cell lines, including Chinese hamster ovary (CHO-K1), Human cervical carcinoma (HeLa), neuroblastoma (SH-SY5Y), fibroblast (WI-38) and rat basophilic leukemia (RBL-2H3) cells by Imaging Total Internal Reflection (ITIR)-Fluorescence Correlation Spectroscopy (FCS). We measure diffusion in the temperature range of 298-310K to measure the Arrhenius activation energy (EArr) of diffusion and apply the FCS diffusion law to obtain information on the spatial organization of the probe molecules on the various cell membranes. Our results show clear differences of the FCS diffusion law and EArr for the different probes in dependence of their localization. These differences are similar in the outer and inner leaflet of the membrane. However, these values can differ significantly between different cell lines raising the question how molecular plasma membrane events measured in different cell lines can be compared. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova.
Collapse
Affiliation(s)
- Shuangru Huang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore; NUS Centre for Bio-Imaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore
| | - Shi Ying Lim
- NUS Centre for Bio-Imaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore
| | - Anjali Gupta
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore; NUS Centre for Bio-Imaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore
| | - Nirmalya Bag
- NUS Centre for Bio-Imaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore; NUS Centre for Bio-Imaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore.
| |
Collapse
|
6
|
Shelby SA, Veatch SL, Holowka DA, Baird BA. Functional nanoscale coupling of Lyn kinase with IgE-FcεRI is restricted by the actin cytoskeleton in early antigen-stimulated signaling. Mol Biol Cell 2016; 27:3645-3658. [PMID: 27682583 PMCID: PMC5221596 DOI: 10.1091/mbc.e16-06-0425] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022] Open
Abstract
Spatial targeting of signaling components to activated receptors on the plasma membrane is key for initiating signal transduction. The actin cytoskeleton restricts antigen-stimulated colocalization of IgE-FcεRI with membrane-anchored signaling partner Lyn kinase, and this regulation is mediated by organization of plasma membrane lipids. The allergic response is initiated on the plasma membrane of mast cells by phosphorylation of the receptor for immunoglobulin E (IgE), FcεRI, by Lyn kinase after IgE-FcεRI complexes are cross-linked by multivalent antigen. Signal transduction requires reorganization of receptors and membrane signaling proteins, but this spatial regulation is not well defined. We used fluorescence localization microscopy (FLM) and pair-correlation analysis to measure the codistribution of IgE-FcεRI and Lyn on the plasma membrane of fixed cells with 20- to 25-nm resolution. We directly visualized Lyn recruitment to IgE-FcεRI within 1 min of antigen stimulation. Parallel FLM experiments captured stimulation-induced FcεRI phosphorylation and colocalization of a saturated lipid-anchor probe derived from Lyn’s membrane anchorage. We used cytochalasin and latrunculin to investigate participation of the actin cytoskeleton in regulating functional interactions of FcεRI. Inhibition of actin polymerization by these agents enhanced colocalization of IgE-FcεRI with Lyn and its saturated lipid anchor at early stimulation times, accompanied by augmented phosphorylation within FcεRI clusters. Ising model simulations provide a simplified model consistent with our results. These findings extend previous evidence that IgE-FcεRI signaling is initiated by colocalization with Lyn in ordered lipid regions and that the actin cytoskeleton regulates this functional interaction by influencing the organization of membrane lipids.
Collapse
Affiliation(s)
- Sarah A Shelby
- Department of Chemistry and Chemical Biology and Field of Biophysics, Cornell University, Ithaca, NY 14853
| | - Sarah L Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - David A Holowka
- Department of Chemistry and Chemical Biology and Field of Biophysics, Cornell University, Ithaca, NY 14853
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology and Field of Biophysics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
7
|
Perillo EP, Liu YL, Huynh K, Liu C, Chou CK, Hung MC, Yeh HC, Dunn AK. Deep and high-resolution three-dimensional tracking of single particles using nonlinear and multiplexed illumination. Nat Commun 2015. [PMID: 26219252 PMCID: PMC4532916 DOI: 10.1038/ncomms8874] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Molecular trafficking within cells, tissues and engineered three-dimensional multicellular models is critical to the understanding of the development and treatment of various diseases including cancer. However, current tracking methods are either confined to two dimensions or limited to an interrogation depth of ∼15 μm. Here we present a three-dimensional tracking method capable of quantifying rapid molecular transport dynamics in highly scattering environments at depths up to 200 μm. The system has a response time of 1 ms with a temporal resolution down to 50 μs in high signal-to-noise conditions, and a spatial localization precision as good as 35 nm. Built on spatiotemporally multiplexed two-photon excitation, this approach requires only one detector for three-dimensional particle tracking and allows for two-photon, multicolour imaging. Here we demonstrate three-dimensional tracking of epidermal growth factor receptor complexes at a depth of ∼100 μm in tumour spheroids. Existing single-particle tracking techniques are limited in terms of penetration depth, tracking range or temporal resolution. Here, Perillo et al. demonstrate three-dimensional particle tracking up to 200-μm depth, with 35-nm spatial localization and 50-μs resolution using multiplexed two-photon excitation.
Collapse
Affiliation(s)
- Evan P Perillo
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, C0800, Austin, Texas 78712, USA
| | - Yen-Liang Liu
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, C0800, Austin, Texas 78712, USA
| | - Khang Huynh
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, C0800, Austin, Texas 78712, USA
| | - Cong Liu
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, C0800, Austin, Texas 78712, USA
| | - Chao-Kai Chou
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holocombe, Boulevard, Unit 108, Houston, Texas 77030-4009, USA [2] Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Mien-Chie Hung
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holocombe, Boulevard, Unit 108, Houston, Texas 77030-4009, USA [2] Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, C0800, Austin, Texas 78712, USA
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, C0800, Austin, Texas 78712, USA
| |
Collapse
|
8
|
Oxygen depletion speeds and simplifies diffusion in HeLa cells. Biophys J 2015; 107:1873-1884. [PMID: 25418168 DOI: 10.1016/j.bpj.2014.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 12/28/2022] Open
Abstract
Many cell types undergo a hypoxic response in the presence of low oxygen, which can lead to transcriptional, metabolic, and structural changes within the cell. Many biophysical studies to probe the localization and dynamics of single fluorescently labeled molecules in live cells either require or benefit from low-oxygen conditions. In this study, we examine how low-oxygen conditions alter the mobility of a series of plasma membrane proteins with a range of anchoring motifs in HeLa cells at 37°C. Under high-oxygen conditions, diffusion of all proteins is heterogeneous and confined. When oxygen is reduced with an enzymatic oxygen-scavenging system for ≥ 15 min, diffusion rates increase by > 2-fold, motion becomes unconfined on the timescales and distance scales investigated, and distributions of diffusion coefficients are remarkably consistent with those expected from Brownian motion. More subtle changes in protein mobility are observed in several other laboratory cell lines examined under both high- and low-oxygen conditions. Morphological changes and actin remodeling are observed in HeLa cells placed in a low-oxygen environment for 30 min, but changes are less apparent in the other cell types investigated. This suggests that changes in actin structure are responsible for increased diffusion in hypoxic HeLa cells, although superresolution localization measurements in chemically fixed cells indicate that membrane proteins do not colocalize with F-actin under either experimental condition. These studies emphasize the importance of controls in single-molecule imaging measurements, and indicate that acute response to low oxygen in HeLa cells leads to dramatic changes in plasma membrane structure. It is possible that these changes are either a cause or consequence of phenotypic changes in solid tumor cells associated with increased drug resistance and malignancy.
Collapse
|
9
|
Suzuki R, Scheffel J, Rivera J. New insights on the signaling and function of the high-affinity receptor for IgE. Curr Top Microbiol Immunol 2015; 388:63-90. [PMID: 25553795 DOI: 10.1007/978-3-319-13725-4_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clustering of the high-affinity receptor for immunoglobulin E (FcεRI) through the interaction of receptor-bound immunoglobulin E (IgE) antibodies with their cognate antigen is required to couple IgE antibody production to cellular responses and physiological consequences. IgE-induced responses through FcεRI are well known to defend the host against certain infectious agents and to lead to unwanted allergic responses to normally innocuous substances. However, the cellular and/or physiological response of individuals that produce IgE antibodies may be markedly different and such antibodies (even to the same antigenic epitope) can differ in their antigen-binding affinity. How affinity variation in the interaction of FcεRI-bound IgE antibodies with antigen is interpreted into cellular responses and how the local environment may influence these responses is of interest. In this chapter, we focus on recent advances that begin to unravel how FcεRI distinguishes differences in the affinity of IgE-antigen interactions and how such discrimination along with surrounding environmental stimuli can shape the (patho) physiological response.
Collapse
Affiliation(s)
- Ryo Suzuki
- Molecular Immunology Section, Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | |
Collapse
|
10
|
Brown AI, Kim PK, Rutenberg AD. PEX5 and ubiquitin dynamics on mammalian peroxisome membranes. PLoS Comput Biol 2014; 10:e1003426. [PMID: 24453954 PMCID: PMC3894153 DOI: 10.1371/journal.pcbi.1003426] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/19/2013] [Indexed: 12/04/2022] Open
Abstract
Peroxisomes are membrane-bound organelles within eukaryotic cells that post-translationally import folded proteins into their matrix. Matrix protein import requires a shuttle receptor protein, usually PEX5, that cycles through docking with the peroxisomal membrane, ubiquitination, and export back into the cytosol followed by deubiquitination. Matrix proteins associate with PEX5 in the cytosol and are translocated into the peroxisome lumen during the PEX5 cycle. This cargo translocation step is not well understood, and its energetics remain controversial. We use stochastic computational models to explore different ways the AAA ATPase driven removal of PEX5 may couple with cargo translocation in peroxisomal importers of mammalian cells. The first model considered is uncoupled, in which translocation is spontaneous, and does not immediately depend on PEX5 removal. The second is directly coupled, in which cargo translocation only occurs when its PEX5 is removed from the peroxisomal membrane. The third, novel, model is cooperatively coupled and requires two PEX5 on a given importomer for cargo translocation — one PEX5 with associated cargo and one with ubiquitin. We measure both the PEX5 and the ubiquitin levels on the peroxisomes as we vary the matrix protein cargo addition rate into the cytosol. We find that both uncoupled and directly coupled translocation behave identically with respect to PEX5 and ubiquitin, and the peroxisomal ubiquitin signal increases as the matrix protein traffic increases. In contrast, cooperatively coupled translocation behaves dramatically differently, with a ubiquitin signal that decreases with increasing matrix protein traffic. Recent work has shown that ubiquitin on mammalian peroxisome membranes can lead to selective degradation by autophagy, or ‘pexophagy.’ Therefore, the high ubiquitin level for low matrix cargo traffic with cooperatively coupled protein translocation could be used as a disuse signal to mediate pexophagy. This mechanism may be one way that cells could regulate peroxisome numbers. Peroxisomes are small organelles that must continually import matrix proteins to contribute to cholesterol and bile acid synthesis, among other important functions. Cargo matrix proteins are shuttled to the peroxisomal membrane, but the only source of energy that has been identified to translocate the cargo into the peroxisome is consumed during the removal of the shuttle protein. Ubiquitin is used to recycle peroxisomal shuttle proteins, but is more generally used in cells to signal degradation of damaged or unneeded cellular components. How shuttle removal and cargo translocation are coupled energetically has been difficult to determine directly, so we investigate how different models of coupling would affect the measurable levels of ubiquitin on mammalian peroxisomes. We find that for the simplest models of coupling, ubiquitin levels decrease as cargo levels decrease. Conversely, for a novel cooperative model of coupling we find that ubiquitin levels increase as cargo levels decrease. This effect could allow the cell to degrade peroxisomes when they are not used, or to avoid degrading peroxisomes as cargo levels increase. Regardless of which model is found to be right, we have shown that ubiquitination levels of peroxisomes should respond to the changing traffic of matrix proteins into peroxisomes.
Collapse
Affiliation(s)
- Aidan I. Brown
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Peter K. Kim
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrew D. Rutenberg
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
11
|
Kiselev VY, Marenduzzo D, Goryachev AB. Lateral dynamics of proteins with polybasic domain on anionic membranes: a dynamic Monte-Carlo study. Biophys J 2011; 100:1261-70. [PMID: 21354399 DOI: 10.1016/j.bpj.2011.01.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 01/13/2011] [Indexed: 10/18/2022] Open
Abstract
Positively charged polybasic domains are essential for recruiting multiple signaling proteins, such as Ras GTPases and Src kinase, to the negatively charged cellular membranes. Much less, however, is known about the influence of electrostatic interactions on the lateral dynamics of these proteins. We developed a dynamic Monte-Carlo automaton that faithfully simulates lateral diffusion of the adsorbed positively charged oligopeptides as well as the dynamics of mono- (phosphatidylserine) and polyvalent (PIP(2)) anionic lipids within the bilayer. In agreement with earlier results, our simulations reveal lipid demixing that leads to the formation of a lipid shell associated with the peptide. The computed association times and average numbers of bound lipids demonstrate that tetravalent PIP(2) interacts with the peptide much more strongly than monovalent lipid. On the spatially homogeneous membrane, the lipid shell affects the behavior of the peptide only by weakly reducing its lateral mobility. However, spatially heterogeneous distributions of monovalent lipids are found to produce peptide drift, the velocity of which is determined by the total charge of the peptide-lipid complex. We hypothesize that this predicted phenomenon may affect the spatial distribution of proteins with polybasic domains in the context of cell-signaling events that alter the local density of monovalent anionic lipids.
Collapse
Affiliation(s)
- Vladimir Yu Kiselev
- Centre for Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | |
Collapse
|
12
|
Diffusion in macromolecular crowded media: Monte Carlo simulation of obstructed diffusion vs. FRAP experiments. Theor Chem Acc 2010. [DOI: 10.1007/s00214-010-0840-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Macháň R, Hof M. Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1377-91. [DOI: 10.1016/j.bbamem.2010.02.014] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 11/25/2022]
|
14
|
Pastor I, Vilaseca E, Madurga S, Garcés JL, Cascante M, Mas F. Diffusion of α-Chymotrypsin in Solution-Crowded Media. A Fluorescence Recovery after Photobleaching Study. J Phys Chem B 2010; 114:4028-34. [DOI: 10.1021/jp910811j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Isabel Pastor
- Department of Physical Chemistry and Research Institute of Theoretical and Computational Chemistry (IQTCUB) of University of Barcelona, C/ Martí i Franquès, 1. E-08028 Barcelona, Spain, Department of Chemistry, University of Lleida (UdL), Lleida, Spain, and Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB) of University of Barcelona and IDIBAPS, Barcelona, Spain
| | - Eudald Vilaseca
- Department of Physical Chemistry and Research Institute of Theoretical and Computational Chemistry (IQTCUB) of University of Barcelona, C/ Martí i Franquès, 1. E-08028 Barcelona, Spain, Department of Chemistry, University of Lleida (UdL), Lleida, Spain, and Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB) of University of Barcelona and IDIBAPS, Barcelona, Spain
| | - Sergio Madurga
- Department of Physical Chemistry and Research Institute of Theoretical and Computational Chemistry (IQTCUB) of University of Barcelona, C/ Martí i Franquès, 1. E-08028 Barcelona, Spain, Department of Chemistry, University of Lleida (UdL), Lleida, Spain, and Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB) of University of Barcelona and IDIBAPS, Barcelona, Spain
| | - Josep Lluís Garcés
- Department of Physical Chemistry and Research Institute of Theoretical and Computational Chemistry (IQTCUB) of University of Barcelona, C/ Martí i Franquès, 1. E-08028 Barcelona, Spain, Department of Chemistry, University of Lleida (UdL), Lleida, Spain, and Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB) of University of Barcelona and IDIBAPS, Barcelona, Spain
| | - Marta Cascante
- Department of Physical Chemistry and Research Institute of Theoretical and Computational Chemistry (IQTCUB) of University of Barcelona, C/ Martí i Franquès, 1. E-08028 Barcelona, Spain, Department of Chemistry, University of Lleida (UdL), Lleida, Spain, and Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB) of University of Barcelona and IDIBAPS, Barcelona, Spain
| | - Francesc Mas
- Department of Physical Chemistry and Research Institute of Theoretical and Computational Chemistry (IQTCUB) of University of Barcelona, C/ Martí i Franquès, 1. E-08028 Barcelona, Spain, Department of Chemistry, University of Lleida (UdL), Lleida, Spain, and Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB) of University of Barcelona and IDIBAPS, Barcelona, Spain
| |
Collapse
|
15
|
Andrews NL, Pfeiffer JR, Martinez AM, Haaland DM, Davis RW, Kawakami T, Oliver JM, Wilson BS, Lidke DS. Small, mobile FcepsilonRI receptor aggregates are signaling competent. Immunity 2009; 31:469-79. [PMID: 19747859 DOI: 10.1016/j.immuni.2009.06.026] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/15/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
Abstract
Crosslinking of IgE-bound FcepsilonRI triggers mast cell degranulation. Previous fluorescence recovery after photobleaching (FRAP) and phosphorescent anisotropy studies suggested that FcepsilonRI must immobilize to signal. Here, single quantum dot (QD) tracking and hyperspectral microscopy methods were used for defining the relationship between receptor mobility and signaling. QD-IgE-FcepsilonRI aggregates of at least three receptors remained highly mobile over extended times at low concentrations of antigen that induced Syk kinase activation and near-maximal secretion. Multivalent antigen, presented as DNP-QD, also remained mobile at low doses that supported secretion. FcepsilonRI immobilization was marked at intermediate and high antigen concentrations, correlating with increases in cluster size and rates of receptor internalization. The kinase inhibitor PP2 blocked secretion without affecting immobilization or internalization. We propose that immobility is a feature of highly crosslinked immunoreceptor aggregates and a trigger for receptor internalization, but is not required for tyrosine kinase activation leading to secretion.
Collapse
Affiliation(s)
- Nicholas L Andrews
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Imaging membrane dynamics is an important goal, motivated by the abundance of biochemical and biophysical events that are orchestrated at, or by, cellular membranes. The short length scales, fast timescales, and environmental requirements of membrane phenomena present challenges to imaging experiments. Several technical advances offer means to overcome these challenges, and we describe here three powerful techniques applicable to membrane imaging: total internal reflection fluorescence (TIRF) microscopy, fluorescence interference contrast (FLIC) microscopy, and fluorescence correlation spectroscopy (FCS). For each, we discuss the physics underpinning the approach, its practical implementation, and recent examples highlighting its achievements in exploring the membrane environment.
Collapse
Affiliation(s)
- Jay T Groves
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
17
|
Andrews NL, Lidke KA, Pfeiffer JR, Burns AR, Wilson BS, Oliver JM, Lidke DS. Actin restricts FcepsilonRI diffusion and facilitates antigen-induced receptor immobilization. Nat Cell Biol 2008; 10:955-63. [PMID: 18641640 DOI: 10.1038/ncb1755] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 06/23/2008] [Indexed: 01/10/2023]
Abstract
The actin cytoskeleton has been implicated in restricting diffusion of plasma membrane components. Here, simultaneous observations of quantum dot-labelled FcepsilonRI motion and GFP-tagged actin dynamics provide direct evidence that actin filament bundles define micron-sized domains that confine mobile receptors. Dynamic reorganization of actin structures occurs over seconds, making the location and dimensions of actin-defined domains time-dependent. Multiple FcepsilonRI often maintain extended close proximity without detectable correlated motion, suggesting that they are co-confined within membrane domains. FcepsilonRI signalling is activated by crosslinking with multivalent antigen. We show that receptors become immobilized within seconds of crosslinking. Disruption of the actin cytoskeleton results in delayed immobilization kinetics and increased diffusion of crosslinked clusters. These results implicate actin in membrane partitioning that not only restricts diffusion of membrane proteins, but also dynamically influences their long-range mobility, sequestration and response to ligand binding.
Collapse
Affiliation(s)
- Nicholas L Andrews
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Felix SP, Mayerhoffer RO, Damatta RA, Verícimo MA, Nascimento VV, Machado OLT. Mapping IgE-binding epitopes of Ric c 1 and Ric c 3, allergens from Ricinus communis, by mast cell degranulation assay. Peptides 2008; 29:497-504. [PMID: 18262682 DOI: 10.1016/j.peptides.2007.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 12/06/2007] [Accepted: 12/13/2007] [Indexed: 11/30/2022]
Abstract
Ric c 1 and Ric c 3 are the major castor bean allergens. In order to identify continuous IgE-epitopes in Ric c 1 and Ric c 3, pools of sera from rats immunized with a pool of 2S albumin from these seeds, Ric c 1 and Ric c 3 overlapping synthetic peptides, were used to screen for IgE-binding epitopes. The allergenic properties were monitored by mast cell degranulation assays, histamine quantification and human-IgE binding. Large and small chains isolated from these proteins present allergenic properties. Four continuous epitopes were identified in Ric c 3 and two in Ric c 1. This knowledge may allow the induction of protective antibody responses to antagonize the IgE recognition.
Collapse
Affiliation(s)
- S P Felix
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Darcy Ribeiro, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Davey AM, Krise KM, Sheets ED, Heikal AA. Molecular Perspective of Antigen-mediated Mast Cell Signaling. J Biol Chem 2008; 283:7117-27. [DOI: 10.1074/jbc.m708879200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
20
|
Marco E, Wedlich-Soldner R, Li R, Altschuler SJ, Wu LF. Endocytosis optimizes the dynamic localization of membrane proteins that regulate cortical polarity. Cell 2007; 129:411-22. [PMID: 17448998 PMCID: PMC2000346 DOI: 10.1016/j.cell.2007.02.043] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 12/15/2006] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
Diverse cell types require the ability to maintain dynamically polarized membrane-protein distributions through balancing transport and diffusion. However, design principles underlying dynamically maintained cortical polarity are not well understood. Here we constructed a mathematical model for characterizing the morphology of dynamically polarized protein distributions. We developed analytical approaches for measuring all model parameters from single-cell experiments. We applied our methods to a well-characterized system for studying polarized membrane proteins: budding yeast cells expressing activated Cdc42. We found that a balance of diffusion, directed transport, and endocytosis was sufficient for accurately describing polarization morphologies. Surprisingly, the model predicts that polarized regions are defined with a precision that is nearly optimal for measured endocytosis rates and that polarity can be dynamically stabilized through positive feedback with directed transport. Our approach provides a step toward understanding how biological systems shape spatially precise, unambiguous cortical polarity domains using dynamic processes.
Collapse
Affiliation(s)
- Eugenio Marco
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Roland Wedlich-Soldner
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Rong Li
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- The Stowers Institute for Medical Research, Kansas City, MO 64112, USA
| | - Steven J. Altschuler
- Department of Pharmacology and Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lani F. Wu
- Department of Pharmacology and Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
21
|
Kyoung M, Karunwi K, Sheets ED. A versatile multimode microscope to probe and manipulate nanoparticles and biomolecules. J Microsc 2007; 225:137-46. [PMID: 17359248 DOI: 10.1111/j.1365-2818.2007.01725.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We describe a flexible, multifaceted optical setup that allows quantitative measurement and manipulation of biomolecules and nanoparticles in biomimetic and cellular systems. We have implemented integrated biophotonics techniques (i.e. differential interference contrast, wide-field fluorescence, prism- and objective-based total internal reflection excitation, single particle tracking, fluorescence correlation spectroscopy and dynamic holographic optical trapping) on a single platform. The adaptability of this versatile, custom-designed system allows us to simultaneously monitor cell morphology, while measuring lateral diffusion of biomolecules or controlling their cellular location or interaction partners.
Collapse
Affiliation(s)
- M Kyoung
- Department of Chemistry, Pennsylvania State University, University Park PA 16802, USA
| | | | | |
Collapse
|
22
|
Davey AM, Walvick RP, Liu Y, Heikal AA, Sheets ED. Membrane order and molecular dynamics associated with IgE receptor cross-linking in mast cells. Biophys J 2006; 92:343-55. [PMID: 17040981 PMCID: PMC1697873 DOI: 10.1529/biophysj.106.088815] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cholesterol-rich microdomains (or "lipid rafts") within the plasma membrane have been hypothesized to exist in a liquid-ordered phase and play functionally important roles in cell signaling; however, these microdomains defy detection using conventional imaging. To visualize domains and relate their nanostructure and dynamics to mast cell signaling, we use two-photon (760 nm and 960 nm) fluorescence lifetime imaging microscopy and fluorescence polarization anisotropy imaging, with comparative one-photon anisotropy imaging and single-point lifetime and anisotropy decay measurements. The inherent sensitivity of ultrafast excited-state dynamics and rotational diffusion to the immediate surroundings of a fluorophore allows for real-time monitoring of membrane structure and organization. When the high affinity receptor for IgE (FcepsilonRI) is extensively cross-linked with anti-IgE, molecules associated with cholesterol-rich microdomains (e.g., saturated lipids (the lipid analog diI-C(18) or glycosphingolipids)) and lipid-anchored proteins coredistribute with cross-linked IgE-FcepsilonRI. We find an enhancement in fluorescence lifetime and anisotropy of diI-C(18) and Alexa 488-labeled IgE-FcepsilonRI in the domains where these molecules colocalize. Our results suggest that fluorescence lifetime and, particularly, anisotropy permit us to correlate the recruitment of lipid molecules into more ordered domains that serve as platforms for IgE-mediated signaling.
Collapse
Affiliation(s)
- Angel M Davey
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | |
Collapse
|
23
|
Sutter JU, Campanoni P, Tyrrell M, Blatt MR. Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane. THE PLANT CELL 2006; 18:935-54. [PMID: 16531497 PMCID: PMC1425843 DOI: 10.1105/tpc.105.038950] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 02/13/2006] [Accepted: 02/17/2006] [Indexed: 05/07/2023]
Abstract
Recent findings indicate that proteins in the SNARE superfamily are essential for cell signaling, in addition to facilitating vesicle traffic in plant cell homeostasis, growth, and development. We previously identified SNAREs SYP121/Syr1 from tobacco (Nicotiana tabacum) and the Arabidopsis thaliana homolog SYP121 associated with abscisic acid and drought stress. Disrupting tobacco SYP121 function by expressing a dominant-negative Sp2 fragment had severe effects on growth, development, and traffic to the plasma membrane, and it blocked K(+) and Cl(-) channel responses to abscisic acid in guard cells. These observations raise questions about SNARE control in exocytosis and endocytosis of ion channel proteins and their organization within the plane of the membrane. We have used a dual, in vivo tagging strategy with a photoactivatable green fluorescent protein and externally exposed hemagglutinin epitopes to monitor the distribution and trafficking dynamics of the KAT1 K(+) channel transiently expressed in tobacco leaves. KAT1 is localized to the plasma membrane within positionally stable microdomains of approximately 0.5 microm in diameter; delivery of the K(+) channel, but not of the PMA2 H(+)-ATPase, to the plasma membrane is suppressed by Sp2 fragments of tobacco and Arabidopsis SYP121, and Sp2 expression leads to profound changes in KAT1 distribution and mobility within the plane of the plasma membrane. These results offer direct evidence for SNARE-mediated traffic of the K(+) channel and a role in its distribution within subdomains of the plasma membrane, and they implicate a role for SNAREs in positional anchoring of the K(+) channel protein.
Collapse
Affiliation(s)
- Jens-Uwe Sutter
- Laboratory of Plant Physiology and Biophysics, Institute of Biomedical and Life Sciences-Plant Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | |
Collapse
|
24
|
Toomre D. Spying on IgE receptor signaling: simply complex, or not? J Cell Biol 2005; 171:415-7. [PMID: 16275748 PMCID: PMC2171246 DOI: 10.1083/jcb.200510105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plasma membrane organization and the potential role, or not, of lipid raft microdomains in signal transduction is a controversial topic. Cross-correlation fluorescent correlation spectroscopy (CC-FCS) shows promise as a new approach to rapidly probe protein–protein interactions in living cells during signal transduction. CC-FCS data from studies of IgE receptor signaling challenge models of large stable lipid raft signaling domains and reveal a new complexity in the dynamic (re)organization of signaling complexes.
Collapse
Affiliation(s)
- Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
25
|
Abstract
Current models for cellular plasma membranes focus on spatial heterogeneity and how this heterogeneity relates to cell function. In particular, putative lipid raft membrane domains have been postulated to exist based in large part on the results that a significant fraction of the membrane is detergent insoluble and that molecules facilitating key membrane processes like signal transduction are often found in the detergent-resistant membrane fraction. Yet, the in vivo existence of lipid rafts remains extremely controversial because, despite being sought for more than a decade, evidence for their presence in intact cell membranes is inconclusive. In this review, a variety of experimental techniques that have been or might be used to look for lipid microdomains in intact cell membranes are described. Experimental results are highlighted and the strengths and limitations of different techniques for microdomain identification and characterization are assessed.
Collapse
Affiliation(s)
- B Christoffer Lagerholm
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | | | |
Collapse
|
26
|
Wu M, Holowka D, Craighead HG, Baird B. Visualization of plasma membrane compartmentalization with patterned lipid bilayers. Proc Natl Acad Sci U S A 2004; 101:13798-803. [PMID: 15356342 PMCID: PMC518836 DOI: 10.1073/pnas.0403835101] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Micrometer-size patterned lipid bilayers containing liganded lipids are used to control the location and size of receptor clusters and enable direct visualization of structural reorganization of cellular components. Subsequent to concentration of Fcepsilon receptor I, the mast cell receptor for IgE, and colocalized tyrosine phosphorylation activity, Lyn kinase and other proteins anchored to the inner leaflet of the plasma membrane redistribute selectively with the receptor clusters in a process that depends on actin polymerization. Surprisingly, outer leaflet components characteristically associated with lipid rafts do not detectably coredistribute with these inner leaflet components. Cell activation using patterned surfaces provides unique insights into cell membrane structural organization, revealing dynamic, large-scale uncoupling of inner and outer leaflet components of lipid rafts.
Collapse
Affiliation(s)
- Min Wu
- Department of Chemistry and Chemical Biology and School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|