1
|
Li Q, Zhang S, Liu F, Su H, Sheng X. Quantum chemical modeling of enantioselective sulfoxidation and epoxidation reactions by indole monooxygenase VpIndA1. Phys Chem Chem Phys 2024; 26:16521-16528. [PMID: 38809594 DOI: 10.1039/d4cp00552j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Indole monooxygenases (IMOs) are enzymes from the family of Group E monooxygenases, requiring flavin adenine dinucleotide (FAD) for their activities. IMOs play important roles in both sulfoxidation and epoxidation reactions. The broad substrate range and high selectivity of IMOs make them promising biocatalytic tools for synthesizing chiral compounds. In the present study, quantum chemical calculations using the cluster approach were performed to investigate the reaction mechanism and the enantioselectivity of the IMO from Variovorax paradoxus EPS (VpIndA1). The sulfoxidation of methyl phenyl sulfide (MPS) and the epoxidation of indene were chosen as the representative reactions. The calculations confirmed that the FADOOH intermediate is the catalytic species in the VpIndA1 reactions. The oxidation of MPS adopts a one-step mechanism involving the direct oxygen-transfer from FADOOH to the substrate and the proton transfer from the -OH group back to FAD, while the oxidation of indene follows a stepwise mechanism involving a carbocation intermediate. It was computationally predicted that VpIndA1 prefers the formation of (S)-product for the MPS sulfoxidation and (1S,2R)-product for the indene epoxidation, consistent with the experimental observations. Importantly, the factors controlling the stereo-preference of the two reactions are identified. The findings in the present study provide valuable insights into the VpIndA1-catalyzed reactions, which are essential for the rational design of this enzyme and other IMOs for industrial applications. It is also worth emphasizing that the quantum chemical cluster approach is again demonstrated to be powerful in studying the enantioselectivity of enzymatic reactions.
Collapse
Affiliation(s)
- Qinrou Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.
| | - Shiqing Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, P. R. China
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Hao Su
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, P. R. China
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, P. R. China
| |
Collapse
|
2
|
Champagne SE, Chiang CH, Gemmel PM, Brooks CL, Narayan ARH. Biocatalytic Stereoselective Oxidation of 2-Arylindoles. J Am Chem Soc 2024; 146:2728-2735. [PMID: 38237569 PMCID: PMC11214688 DOI: 10.1021/jacs.3c12393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
3-Hydroxyindolenines can be used to access several structural motifs that are featured in natural products and pharmaceutical compounds, yet the chemical synthesis of 3-hydroxyindolenines is complicated by overoxidation, rearrangements, and complex product mixtures. The selectivity possible in enzymatic reactions can overcome these challenges and deliver enantioenriched products. Herein, we present the development of an asymmetric biocatalytic oxidation of 2-arylindole substrates aided by a curated library of flavin-dependent monooxygenases (FDMOs) sampled from an ancestral sequence space, a sequence similarity network, and a deep-learning-based latent space model. From this library of FDMOs, a previously uncharacterized enzyme, Champase, from the Valley fever fungus, Coccidioides immitis strain RS, was found to stereoselectively catalyze the oxidation of a variety of substituted indole substrates. The promiscuity of this enzyme is showcased by the oxidation of a wide variety of substituted 2-arylindoles to afford the respective 3-hydroxyindolenine products in moderate to excellent yields and up to 95:5 er.
Collapse
Affiliation(s)
- Sarah E. Champagne
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Chang-Hwa Chiang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Philipp M. Gemmel
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Charles L. Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Enhanced Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alison R. H. Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
3
|
Guo F, Tian Y, Ji S, Min H, Ding W, Yu H, Li Y, Ji L. Environmental biotransformation mechanisms by flavin-dependent monooxygenase: A computational study. CHEMOSPHERE 2023; 325:138403. [PMID: 36921778 DOI: 10.1016/j.chemosphere.2023.138403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
The enzyme-catalyzed metabolic biotransformation of xenobiotics plays a significant role in toxicology evolution and subsequently environmental health risk assessment. Recent studies noted that the phase I human flavin-dependent monooxygenase (e.g., FMO3) can catalyze xenobiotics into more toxic metabolites. However, details of the metabolic mechanisms are insufficient. To fill the mechanism in the gaps, the systemic density functional theory calculations were performed to elucidate diverse FMO-catalyzed oxidation reactions toward environmental pollutants, including denitrification (e.g., nitrophenol), N-oxidation (e.g., nicotine), desulfurization (e.g., fonofos), and dehalogenation (e.g., pentachlorophenol). Similar to the active center compound 0 of cytochrome P450, FMO mainly catalyzed reactions with the structure of the tricyclic isoalloxazine C-4a-hydroperoxide (FADHOOH). As will be shown, FMO-catalyzed pathways are more favorable with a concerted than stepwise mechanism; Deprotonation is necessary to initiate the oxidation reactions for phenolic substrates; The regioselectivity of nicotine by FMO prefers the N-oxidation other than N-demethylation pathway; Formation of the P-S-O triangle ring is the key step for desulfurization of fonofos by FMO. We envision that these fundamental mechanisms catalyzed by FMO with a computational method can be extended to other xenobiotics of similar structures, which may aid the high-throughput screening and provide theoretical predictions in the future.
Collapse
Affiliation(s)
- Fangjie Guo
- Quality and Safety Engineering Institute of Food and Drug, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yilin Tian
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Shujing Ji
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Hao Min
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Wen Ding
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yingqi Li
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining 314400, China
| | - Li Ji
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China.
| |
Collapse
|
4
|
Bach RD, Schlegel HB. Mechanism of Orbital Interactions in the Sharpless Epoxidation with Ti(IV) Peroxides: A DFT Study. J Phys Chem A 2021; 125:10541-10556. [PMID: 34851654 DOI: 10.1021/acs.jpca.1c08447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The M06-2X DFT functional has been employed to examine monomeric titanium(IV) hydroperoxo catalysts that model the individual steps in the dimeric titanium(IV)-catalyzed Sharpless reaction. This is the first example of a transition structure for titanium(IV) tert-butyl hydroperoxide-catalyzed epoxidation that describes the molecular motion required for oxygen atom transfer. These epoxidation catalysts have been examined for both bimolecular reactions with E-2-butene and the intramolecular epoxidation of allyl alcohol. The transition structure for the bimolecular peroxyacetic acid epoxidation of E-2-butene has been shown to be spiro in nature, and likewise, the intramolecular epoxidation of allyl alcohol is also nearly spiro. The significance of the O-C-C═C dihedral angle of allyl alcohol is examined for the Ti(IV) tert-butyl hydroperoxide epoxidation mechanism. Evidence is presented that supports a hexacoordinate titanium peroxo environment that exists in the dimeric form of the Sharpless catalyst. The mechanism for a 1,3-rearrangement of the alkoxide ligand in a titanium hydroperoxide to the Ti center in concert with oxygen atom transfer of the proximal oxygen to the C═C bond of the substrate is presented. The dimerization of Ti(IV)-(R,R)-diethyl tartrate-diisopropoxide and its hydrolysis have been calculated. The mechanism for rapid ligand exchange with alkyl hydroperoxides involving the Ti(O-i-Pr)4 precursor is examined to show how the active epoxidation catalyst is produced.
Collapse
Affiliation(s)
- Robert D Bach
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
5
|
Bach RD. Structure and Mechanism for Alkane Oxidation and Alkene Epoxidation with Hydroperoxides, α-Hydroxy Hydroperoxides, and Peroxyacids: A Theoretical Study. J Phys Chem A 2019; 123:9520-9530. [DOI: 10.1021/acs.jpca.9b06803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert D. Bach
- Department of Chemistry and Biochemistry, University of Delaware, 210 South College Avenue, Newark, Delaware 19716, United States
| |
Collapse
|
6
|
Mihaljević B. Kinetics of oxidation of iron(II) ions with lipid hydroperoxides. INT J CHEM KINET 2019. [DOI: 10.1002/kin.21266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Branka Mihaljević
- Radiation Chemistry and Dosimetry Laboratory, Department of Materials ChemistryRuđer Bošković Institute Zagreb Croatia
| |
Collapse
|
7
|
Özkılıç Y, Tüzün NŞ. Mechanism of Kynurenine 3-Monooxygenase-Catalyzed Hydroxylation Reaction: A Quantum Cluster Approach. J Phys Chem A 2019; 123:3149-3159. [PMID: 30888816 DOI: 10.1021/acs.jpca.8b11831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mechanism of the hydroxylation reaction between l-Kyn and model flavin adenine dinucleotide (FAD)-hydroperoxide was investigated via density functional theory (DFT) calculations in the absence and in the presence of the kynurenine 3-monooxygenase (KMO) enzyme by considering possible pathways that can lead to the product 3-hydroxykynurenine (3-HK). Crystal structure (pdb code: 5NAK )-based calculations involved a quantum cluster model in which the active site of the enzyme with the substrate l-Kyn was represented with 348 atoms. According to the deduced mechanism, KMO-catalyzed hydroxylation reaction takes place with four transformations. In the initial transition state, FAD delivers its peroxy hydroxyl to the l-Kyn ring, creating an sp3-hybridized carbon center. Then, the hydrogen on the hydroxyl moiety is immediately transferred back to the proximal oxygen that remained on FAD. These consequent transformations are in line with the somersault rearrangement previously described for similar enzymatic systems. The second step corresponds to a hydride shift from the sp3-hybridized carbon of the substrate ring to its adjacent carbon, producing the keto form of 3-HK. Then, keto-3-HK is transformed into its enol form (3-HK) with a water-assisted tautomerization. Lastly, FAD is oxidized with a water-assisted dehydration, which also involves 3-HK as a catalyst. In the proposed pathway, Asn54, Pro318, and a crystal water molecule were seen to play significant roles in the proton relays. The energies obtained via the cluster approach were calculated at the B3LYP/6-311+G(2d,2p)//B3LYP/6-31G(d,p) level with solvation (polarizable continuum model) and dispersion (DFT-D3(BJ)) corrections.
Collapse
Affiliation(s)
- Yılmaz Özkılıç
- Department of Chemistry, Faculty of Science and Letters , Istanbul Technical University , Maslak, Istanbul 34469 , Turkey
| | - Nurcan Ş Tüzün
- Department of Chemistry, Faculty of Science and Letters , Istanbul Technical University , Maslak, Istanbul 34469 , Turkey
| |
Collapse
|
8
|
Reyes L, Nicolás-Vázquez MI, Iuga C, Alvarez-Idaboy JR. Reinvestigation of Acetophenones Oxidation by Performic Acid in Formic Acid. J Phys Chem A 2019; 123:1968-1972. [PMID: 30791687 DOI: 10.1021/acs.jpca.8b11256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Baeyer-Villiger (BV) reaction of acetophenones R-COCH3 (R = phenyl, 4-methylphenyl, 3,4-dimethoxyphenyl) with performic acid (PFA) in formic acid (FA) as the catalyst and solvent was reinvestigated using the MPWB1K functional in conjunction with the 6-311G(d,p) and 6-311++G(d,p) basis sets. For the acid-catalyzed addition step, we used the eight-membered ring transition structure proposed in our previous work. The calculated and experimental results obtained for the BV reaction under the mentioned conditions lead to the conclusion that our mechanism is more reliable than the one reported by Liu and co-workers, in which the acid-catalyzed first step involves a transition state with a six-membered ring structure.
Collapse
Affiliation(s)
| | - María Inés Nicolás-Vázquez
- Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México , Cuautitlan 54740 , Estado México , Mexico
| | - Cristina Iuga
- Universidad Autónoma Metropolitana-Xochimilco , Calzada del Hueso 1100 , Mexico D.F. 04960 , Mexico
| | | |
Collapse
|
9
|
Theoretical elucidation of the metabolic mechanisms of phenothiazine neuroleptic chlorpromazine catalyzed by cytochrome P450 isoenzyme 1A2. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1943-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Quantum chemical exploration on the metabolic mechanisms of caffeine by flavin-containing monooxygenase. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.03.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Bach RD. The DMDO Hydroxylation of Hydrocarbons via the Oxygen Rebound Mechanism. J Phys Chem A 2016; 120:840-50. [DOI: 10.1021/acs.jpca.5b12086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert D. Bach
- Department
of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
12
|
Jaladanki CK, Taxak N, Varikoti RA, Bharatam PV. Toxicity Originating from Thiophene Containing Drugs: Exploring the Mechanism using Quantum Chemical Methods. Chem Res Toxicol 2015; 28:2364-76. [PMID: 26574776 DOI: 10.1021/acs.chemrestox.5b00364] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug metabolism of thiophene containing substrates by cytochrome P450s (CYP450) leads to toxic side effects, for example, nephrotoxicity (suprofen, ticlopidine), hepatotoxicity (tienilic acid), thrombotic thrombocytopenic purpura (clopidogrel), and aplastic anemia (ticlopidine). The origin of toxicity in these cases has been attributed to two different CYP450 mediated metabolic reactions: S-oxidation and epoxidation. In this work, the molecular level details of the bioinorganic chemistry associated with the generation of these competitive reactions are reported. Density functional theory was utilized (i) to explore the molecular mechanism for S-oxidation and epoxidation using the radical cationic center Cpd I [(iron(IV)-oxo-heme porphine system with SH(-) as the axial ligand, to mimic CYP450s] as the model oxidant, (ii) to establish the 3D structures of the reactants, transition states, and products on both the metabolic pathways, and (iii) to examine the potential energy (PE) profile for both the pathways to determine the energetically preferred toxic metabolite formation. The energy barrier required for S-oxidation was observed to be 14.75 kcal/mol as compared to that of the epoxidation reaction (13.23 kcal/mol) on the doublet PE surface of Cpd I. The formation of the epoxide metabolite was found to be highly exothermic (-23.24 kcal/mol), as compared to S-oxidation (-8.08 kcal/mol). Hence, on a relative scale the epoxidation process was observed to be thermodynamically and kinetically more favorable. The energy profiles associated with the reactions of the S-oxide and epoxide toxic metabolites were also explored. This study helps in understanding the CYP450-catalyzed toxic reactions of drugs containing the thiophene ring at the atomic level.
Collapse
Affiliation(s)
- Chaitanya K Jaladanki
- Department of Medicinal Chemistry and ‡Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER) , Sector-67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| | - Nikhil Taxak
- Department of Medicinal Chemistry and ‡Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER) , Sector-67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| | - Rohith A Varikoti
- Department of Medicinal Chemistry and ‡Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER) , Sector-67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry and ‡Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER) , Sector-67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| |
Collapse
|
13
|
Badieyan S, Bach RD, Sobrado P. Mechanism of N-Hydroxylation Catalyzed by Flavin-Dependent Monooxygenases. J Org Chem 2015; 80:2139-47. [DOI: 10.1021/jo502651v] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Somayesadat Badieyan
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Robert D. Bach
- Departments
of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Pablo Sobrado
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia
Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
14
|
Rydberg P, Jørgensen FS, Olsen L. Use of density functional theory in drug metabolism studies. Expert Opin Drug Metab Toxicol 2013; 10:215-27. [PMID: 24295134 DOI: 10.1517/17425255.2014.864278] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The cytochrome P450 enzymes (CYPs) metabolize many drug compounds. They catalyze a wide variety of reactions, and potentially, a large number of different metabolites can be generated. Density functional theory (DFT) has, over the past decade, been shown to be a powerful tool to rationalize and predict the possible metabolites generated by the CYPs as well as other drug-metabolizing enzymes. AREAS COVERED We review applications of DFT on reactions performed by the CYPs and other drug-metabolizing enzymes able to perform oxidation reactions, with an emphasis on predicting which metabolites are produced. We also cover calculations of binding energies for complexes in which the ligands interact directly with the heme iron atom. EXPERT OPINION DFT is a useful tool for prediction of the site of metabolism. The use of small models of the enzymes work surprisingly well for most CYP isoforms. This is probably due to the fact that the binding of the substrates is not the major determinant. When binding of the substrate plays a significant role, the well-known issue of determining the free energy of binding is the challenge. How approaches taking the protein environment into account, like docking, MD and QM/MM, can be used are discussed.
Collapse
Affiliation(s)
- Patrik Rydberg
- University of Copenhagen, Department of Drug Design and Pharmacology , Denmark
| | | | | |
Collapse
|
15
|
Bach RD, Mattevi A. Mechanistic Aspects Regarding the Elimination of H2O2 from C(4a)-Hydroperoxyflavin. The Role of a Proton Shuttle Required for H2O2 Elimination. J Org Chem 2013; 78:8585-93. [DOI: 10.1021/jo401274u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Robert D. Bach
- Department of Chemistry and
Biochemistry, University of Delaware, Newark,
Delaware 19716, United States
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
16
|
Khatmullin R, Zhou D, Corrigan T, Mirzakulova E, Glusac KD. Thermolysis and photolysis of 2-ethyl-4-nitro-1(2H)-isoquinolinium hydroperoxide. J PHYS ORG CHEM 2013. [DOI: 10.1002/poc.3107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Renat Khatmullin
- Department of Chemistry; Bowling Green State University; Bowling Green; OH; 43403; USA
| | - Dapeng Zhou
- Department of Chemistry; Bowling Green State University; Bowling Green; OH; 43403; USA
| | - Thomas Corrigan
- Department of Chemistry; Bowling Green State University; Bowling Green; OH; 43403; USA
| | - Ekaterina Mirzakulova
- Department of Chemistry; Bowling Green State University; Bowling Green; OH; 43403; USA
| | - Ksenija D. Glusac
- Department of Chemistry; Bowling Green State University; Bowling Green; OH; 43403; USA
| |
Collapse
|
17
|
Chen S, Hossain MS, Foss FW. Organocatalytic Dakin Oxidation by Nucleophilic Flavin Catalysts. Org Lett 2012; 14:2806-9. [DOI: 10.1021/ol3010326] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuai Chen
- The University of Texas at Arlington, Department of Chemistry and Biochemistry, Arlington, Texas 76019-0065, United States
| | - Mohammad S. Hossain
- The University of Texas at Arlington, Department of Chemistry and Biochemistry, Arlington, Texas 76019-0065, United States
| | - Frank W. Foss
- The University of Texas at Arlington, Department of Chemistry and Biochemistry, Arlington, Texas 76019-0065, United States
| |
Collapse
|
18
|
Bach RD. Role of the Somersault Rearrangement in the Oxidation Step for Flavin Monooxygenases (FMO). A Comparison between FMO and Conventional Xenobiotic Oxidation with Hydroperoxides. J Phys Chem A 2011; 115:11087-100. [DOI: 10.1021/jp208087u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert D. Bach
- Department of Chemistry and Biochemistry, University of Delaware, Delaware, United States
| |
Collapse
|
19
|
Tian B, Strid Å, Eriksson LA. Catalytic Roles of Active-Site Residues in 2-Methyl-3-hydroxypyridine-5-carboxylic Acid Oxygenase: An ONIOM/DFT Study. J Phys Chem B 2011; 115:1918-26. [DOI: 10.1021/jp111525p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Boxue Tian
- School of Chemistry, National University of Ireland—Galway, Galway, Ireland
| | - Åke Strid
- Örebro Life Science Center, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | - Leif A. Eriksson
- School of Chemistry, National University of Ireland—Galway, Galway, Ireland
| |
Collapse
|
20
|
Taxak N, Parmar V, Patel DS, Kotasthane A, Bharatam PV. S-Oxidation of Thiazolidinedione with Hydrogen Peroxide, Peroxynitrous Acid, and C4a-Hydroperoxyflavin: A Theoretical Study. J Phys Chem A 2011; 115:891-8. [DOI: 10.1021/jp109935k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nikhil Taxak
- Department of Medicinal Chemistry, and ‡Centre for Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar (Mohali), 160062, Punjab, India
| | - Vinod Parmar
- Department of Medicinal Chemistry, and ‡Centre for Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar (Mohali), 160062, Punjab, India
| | - Dhilon S. Patel
- Department of Medicinal Chemistry, and ‡Centre for Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar (Mohali), 160062, Punjab, India
| | - Anuja Kotasthane
- Department of Medicinal Chemistry, and ‡Centre for Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar (Mohali), 160062, Punjab, India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry, and ‡Centre for Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar (Mohali), 160062, Punjab, India
| |
Collapse
|
21
|
Tian B, Tu Y, Strid A, Eriksson LA. Hydroxylation and ring-opening mechanism of an unusual flavoprotein monooxygenase, 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase: a theoretical study. Chemistry 2010; 16:2557-66. [PMID: 20066695 DOI: 10.1002/chem.200902253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hybrid meta-GGA density functional theory (the MPWB1K functional) was used to study the hydroxylation and ring-opening mechanism of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase (MHPCO). This enzyme catalyses the conversion of 2-methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) to alpha-(N-acetylaminomethylene)succinic acid (AAMS), which is the essential ring-opening step in the bacterial degradation of vitamin B(6). MHPCO belongs to the flavin-containing aromatic hydroxylases family. However, MHPCO is capable of catalysing a subsequent aromatic ring-cleavage reaction to give acyclic products rather than hydroxylated aromatic ones. Our calculations show that the re-aromatisation of the hydroxylated intermediate occurs spontaneously in aqueous solution; this implies that the ring-opening process occurs inside the enzyme's active site, in which limited water is available. The instability of the hydroxylated intermediate of MHPCO is the main reason why acyclic products are formed. Previously proposed mechanisms for the ring-opening step were studied, and were shown to be less likely to occur (DeltaDeltaG(not equal298)>35 kcal mol(-1)). Two new pathways with reasonable barrier heights (DeltaDeltaG(not equal 298)<15 kcal mol(-1)) are reported herein, which are in accordance with all experimental information present to date.
Collapse
Affiliation(s)
- Boxue Tian
- Orebro Life Science Center School of Science and Technology, Orebro University, 70182 Orebro, Sweden
| | | | | | | |
Collapse
|
22
|
On the mechanism of microsomal prostaglandin E synthase type-2--a theoretical study of endoperoxide reaction with MeS(-). Bioorg Med Chem Lett 2009; 20:338-40. [PMID: 19914067 DOI: 10.1016/j.bmcl.2009.10.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 01/25/2023]
Abstract
The reaction pathways of deprotonation versus nucleophilic substitution involving mPGES-2 enzyme catalysis were investigated by ab initio molecular orbital theory calculations for the reaction of methylthiolate with the endoperoxide core of PGH(2) and by the combined quantum mechanical molecular mechanical methods. The calculations showed that deprotonation mechanism is energetically more favorable than the nucleophilic substitution pathway.
Collapse
|
23
|
Reyes L, Alvarez-Idaboy JR, Mora-Diez N. Substituent effects in the Baeyer-Villiger reaction of acetophenones: a theoretical study. J PHYS ORG CHEM 2009. [DOI: 10.1002/poc.1500] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Orville AM, Lountos GT, Finnegan S, Gadda G, Prabhakar R. Crystallographic, spectroscopic, and computational analysis of a flavin C4a-oxygen adduct in choline oxidase. Biochemistry 2009; 48:720-8. [PMID: 19133805 DOI: 10.1021/bi801918u] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Flavin C4a-OO(H) and C4a-OH adducts are critical intermediates proposed in many flavoenzyme reaction mechanisms, but they are rarely detected even by rapid transient kinetics methods. We observe a trapped flavin C4a-OH or C4a-OO(H) adduct by single-crystal spectroscopic methods and in the 1.86 A resolution X-ray crystal structure of choline oxidase. The microspectrophotometry results show that the adduct forms rapidly in situ at 100 K upon exposure to X-rays. Density functional theory calculations establish the electronic structures for the flavin C4a-OH and C4a-OO(H) adducts and estimate the stabilization energy of several active site hydrogen bonds deduced from the crystal structure. We propose that the enzyme-bound FAD is reduced in the X-ray beam. The aerobic crystals then form either a C4a-OH or C4a-OO(H) adduct, but an insufficient proton inventory prevents their decay at cryogenic temperatures.
Collapse
Affiliation(s)
- Allen M Orville
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973-5000, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
| | | | | | | | | |
Collapse
|
25
|
Luo Y, Maeda S, Ohno K. Decomposition of alkyl hydroperoxide by a copper(I) complex: insights from density functional theory. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.09.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Bach RD, Dmitrenko O, Thorpe C. Mechanism of thiolate-disulfide interchange reactions in biochemistry. J Org Chem 2007; 73:12-21. [PMID: 18052192 DOI: 10.1021/jo702051f] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Both density functional theory (DFT) (B3LYP) and CCSD ab initio calculations were employed in a theoretical investigation of the mechanism of thiolate-disulfide exchange reactions. The reaction pathway for degenerate thiolate-disulfide exchange reactions with dimethyl disulfide has been shown to proceed through a SN2-like transition structure that is very close in energy to the corresponding trisulfur anionic intermediate ([delta-S-S-Sdelta(-)]). When relatively small substituents are involved, the level of theory must be increased to CCSD to make this rather subtle mechanistic distinction. With the more sterically hindered exchange reaction involving t-butyl mercaptide and di-t-butyl disulfide, the potential energy surface exhibits a distinct preference for the S(N)2 displacement pathway with an activation barrier of 9.8 kcal/mol. When corrections for solvent polarity are included (COSMO), an S(N)2 mechanism is also implicated in both polar and nonpolar solvents. DFT studies on thiolate-disulfide exchange, when the substituent is a model peptide, strongly support the intermediacy of a trisulfur intermediate that lies 10.7 kcal/mol below isolated reactants. A well depth of this magnitude should provide a sufficient lifetime of the intermediate to accommodate the requisite conformational adjustments that accompanies formation of the new disulfide bond.
Collapse
Affiliation(s)
- Robert D Bach
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| | | | | |
Collapse
|
27
|
Dmitrenko O, Thorpe C, Bach RD. Mechanism of SN2 disulfide bond cleavage by phosphorus nucleophiles. Implications for biochemical disulfide reducing agents. J Org Chem 2007; 72:8298-307. [PMID: 17914842 PMCID: PMC2613176 DOI: 10.1021/jo071271w] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The B3LYP variant of DFT has been used to study the mechanism of S-S bond scission in dimethyl disulfide by a phosphorus nucleophile, trimethylphospine (TMP). The reaction is highly endothermic in the gas phase and requires significant external stabilization of the charged products. DFT calculations (B3LYP) were performed with explicit (water molecules added) and implicit solvent corrections (COSMO model). The transition structures for this SN2 displacement reaction in a number of model systems have been located and fully characterized. The reaction barriers calculated with different approaches for different systems are quite close (around 11 kcal/mol). Remarkably, the calculations suggest that the reaction is almost barrierless with respect to the preorganized reaction complex and that most of the activation energy is required to rearrange the disulfide and TMP to its most effective orientation for the SMe group transfer way. Different reactivities of different phosphorus nucleophiles were suggested to be the result of steric effects, as manifested largely by varying amounts of hindrance to solvation of the initial product phosphonium ion. These data indicate that the gas-phase addition of a phosphine to the disulfide moiety will most likely form a phosphonium cation-thiolate anion salt, in the presence of four or more water molecules, that provide sufficient H-bonding stabilization to allow displacement of the thiolate anion, a normal uncomplicated SN2 transition state is to be expected.
Collapse
Affiliation(s)
- Olga Dmitrenko
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| | - Robert D. Bach
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
28
|
Affiliation(s)
- Feyissa Gadissa Gelalcha
- Leibniz Institut für Katalyse an der Universität Rostock, e. V. Albert Einstein Str. 29a, D-18059 Rostock, Germany.
| |
Collapse
|
29
|
Ottolina G, Gonzalo GD, Carrea G. Theoretical studies of oxygen atom transfer from flavin to electron-rich substrates. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.theochem.2005.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Reyes L, Castro M, Cruz J, Rubio M. Substituent Effects in the Migration Step of the Baeyer−Villiger Rearrangement. A Theoretical Study. J Phys Chem A 2005; 109:3383-90. [PMID: 16833673 DOI: 10.1021/jp040512q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantum mechanical calculations have been performed on the migration step of the Baeyer-Villiger (BV) rearrangements of some acetophenones, p-RC6H4COCH3 (R = CN, Cl, H, CH3, CH3O) with m-chloroperbenzoic acid. The energy barriers, charge distributions, and frontier molecular orbitals determined for the aryl migration step explain the effects of substituents on the reactivity of these ketones. A plot of the log of relative oxidation rates of the ketones versus their corresponding calculated energy barriers of the migration stage showed a downward deviation for the p-OCH3 derivative. This result is consistent with a change in the rate-determining step, from the aryl migration to the carbonyl addition, in the case of p-methoxyacetophenone, according to the suggestion that the rate-determining step of the BV oxidation can change with variations in the substituent group.
Collapse
Affiliation(s)
- Lino Reyes
- Depto. de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Del. Coyoacan, México, DF, C.P. 04510, México.
| | | | | | | |
Collapse
|
31
|
Bach RD, Dmitrenko O. Model Studies onp-Hydroxybenzoate Hydroxylase. The Catalytic Role of Arg-214 and Tyr-201 in the Hydroxylation Step. J Am Chem Soc 2004; 126:127-42. [PMID: 14709077 DOI: 10.1021/ja036310+] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A model C-(4a)-flavinhydroperoxide (FlHOOH) is described that contains the tricyclic isoalloxazine moiety, the C-4a-hydroperoxide functionality, and a beta-hydroxyethyl group to model the effect of the 2'-OH group of the ribityl side chain of native FADHOOH. The electronic structures of this reduced flavin (H(3)()Fl(red)()), its N1 anion (H(2)()Fl(red)()(-)()), oxidized flavin (HFl(ox)()), and FlHOOH have been fully optimized at the B3LYP/ 6-31+G(d,p) level of theory. This model C-4a-flavinhydroperoxide is used to describe the transition state for the key step in the paradigm aromatic hydroxylase, p-hydroxybenzoate hydroxylase (PHBH): the oxidation of p-hydroxybenzoate (p-OHB). The Tyrosine-201 residue in PHBH is modeled by phenol, and Arginine-214 is modeled by guanidine. Electrophilic aromatic substitution proceeds by an S(N)2-like attack of the aromatic sextet of p-OHB phenolate anion on the distal oxygen of FlHOOH 3. The transition structure for oxygen atom transfer is fully optimized [B3LYP/6-31+G(d,p)] and has a classical activation barrier of 24.9 kcal/mol. These data suggest that the role of the Tyr-201 is to orient the p-OHB substrate and to properly align it for the oxygen transfer step. Although the negatively charged phenolate oxygen does activate the C-3 carbon of p-OHB phenolate anion toward oxidation relative to ortho oxidation of the carboxylate anion, it appears that H-bonding the Tyr-201 residue to this phenolic oxygen stabilizes both the ground state (GS) and the transition state (TS) approximately equally and therefore plays only a minor role, if any, in lowering the activation barrier. Complexation of p-OHB with guanidine has only a modest effect upon the oxidation barriers. When the complex is in the form of a salt-bridge (10a), the barrier is only slightly reduced. When the TSs are placed in THF solvent (COSMO) with full geometry optimization, salt-bridge TS-A is slightly favored (DeltaDeltaE() = 2.3 kcal/mol).
Collapse
Affiliation(s)
- Robert D Bach
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|