Sun S, Meng G, Zhang G, Masse JP, Zhang L. Controlled Growth of SnO2 Hierarchical Nanostructures by a Multistep Thermal Vapor Deposition Process.
Chemistry 2007;
13:9087-92. [PMID:
17676572 DOI:
10.1002/chem.200700448]
[Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Branched and sub-branched SnO(2) hierarchical architectures in which numerous aligned nanowires grew on the surface of nanobelt substrates have been obtained by a multistep thermal vapor deposition route. Branch size and morphology can be controlled by adjusting the temperature and duration of growth. The same approach was used to grow branched ZnO-SnO(2) heterojunction nanostructures. In addition, the third level of SnO(2) nanostructures was obtained by repeating the vapor deposition growth process. This technique provides a general, facile, and convenient approach for preparing even more complex nanoarchitectures, and should open up new opportunities for both fundamental research and applications, such as nanobelt-based three-dimensional nanodevices.
Collapse