1
|
Sit MK, Das S, Samanta K. Machine Learning-Assisted Mixed Quantum-Classical Dynamics without Explicit Nonadiabatic Coupling: Application to the Photodissociation of Peroxynitric Acid. J Phys Chem A 2024; 128:8244-8253. [PMID: 39283987 DOI: 10.1021/acs.jpca.4c02876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
We have devised a hybrid quantum-classical scheme utilizing machine-learned potential energy surfaces (PES), which circumvents the need for explicit computation of nonadiabatic coupling elements. The quantities necessary to account for the nonadiabatic effects are directly obtained from the PESs. The simulation of dynamics is based on the fewest-switches surface-hopping method. We applied this scheme to model the photodissociation of both N-O and O-O bonds in a conformer of peroxynitric acid (HO2NO2). Adiabatic PES data for the six lowest states of this molecule were computed at the CASSCF level for various nuclear configurations. These served as the training data for the machine-learning models for the PESs. The dynamics simulation was initiated on the lowest optically bright singlet excited state (S4) and propagated along the two Jacobi coordinates J → 1 and J → 2 while accounting for the nonadiabatic effects through transitions between PESs. Our analysis revealed that there is a very high chance of dissociation of the N-O bond leading to the HO2 and NO2 fragments.
Collapse
Affiliation(s)
- Mahesh K Sit
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Subhasish Das
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Kousik Samanta
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
2
|
Chen IY, Chang CW, Fittschen C, Luo PL. Accurate Kinetic Studies of OH + HO 2 Radical-Radical Reaction through Direct Measurement of Precursor and Radical Concentrations with High-Resolution Time-Resolved Dual-Comb Spectroscopy. J Phys Chem Lett 2024; 15:3733-3739. [PMID: 38547368 PMCID: PMC11017308 DOI: 10.1021/acs.jpclett.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
The radical-radical reaction between OH and HO2 has been considered for a long time as an important reaction in tropospheric photochemistry and combustion chemistry. However, a significant discrepancy of an order of magnitude for rate coefficients of this reaction is found between two recent experiments. Herein, we investigate the reaction OH + HO2 via direct spectral quantification of both the precursor (H2O2) and free radicals (OH and HO2) upon the 248 nm photolysis of H2O2 using infrared two-color time-resolved dual-comb spectroscopy. With quantitative and kinetic analysis of concentration profiles of both OH and HO2 at varied conditions, the rate coefficient kOH+HO2 is determined to be (1.10 ± 0.12) × 10-10 cm3 molecule-1 s-1 at 296 K. Moreover, we explore the kinetics of this reaction under conditions in the presence of water, but no enhancement in the kOH+HO2 can be observed. This work as an independent experiment plays a crucial role in revisiting this prototypical radical-radical reaction.
Collapse
Affiliation(s)
- I-Yun Chen
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 106319, Taiwan
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Che-Wei Chang
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 106319, Taiwan
- Molecular
Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, 11529 Taipei, Taiwan
- International
Graduate Program of Molecular Science and Technology, National Taiwan University, 10617 Taipei, Taiwan
| | - Christa Fittschen
- University
Lille, CNRS, UMR 8522, PC2A−Physicochimie
des Processus de Combustion et de l’Atmosphère, F-59000 Lille, France
| | - Pei-Ling Luo
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 106319, Taiwan
| |
Collapse
|
3
|
Chang CW, Chen IY, Fittschen C, Luo PL. Measurements of absolute line strength of the ν1 fundamental transitions of OH radical and rate coefficient of the reaction OH + H2O2 with mid-infrared two-color time-resolved dual-comb spectroscopy. J Chem Phys 2023; 159:184203. [PMID: 37962448 DOI: 10.1063/5.0176311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Absolute line strengths of several transitions in the ν1 fundamental band of the hydroxyl radical (OH) have been measured by simultaneous determination of hydrogen peroxide (H2O2) and OH upon laser photolysis of H2O2. Based on the well-known quantum yield for the generation of OH radicals in the 248-nm photolysis of H2O2, the line strength of the OH radicals can be accurately derived by adopting the line strength of the well-characterized transitions of H2O2 and analyzing the difference absorbance time traces of H2O2 and OH obtained upon laser photolysis. Employing a synchronized two-color dual-comb spectrometer, we measured high-resolution time-resolved absorption spectra of H2O2 near 7.9 µm and the OH radical near 2.9 µm, simultaneously, under varied conditions. In addition to the studies of the line strengths of the selected H2O2 and OH transitions, the kinetics of the reaction between OH and H2O2 were investigated. A pressure-independent rate coefficient kOH+H2O2 was determined to be [1.97 (+0.10/-0.15)] × 10-12 cm3 molecule-1 s-1 at 296 K and compared with other experimental results. By carefully analyzing both high-resolution spectra and temporal absorbance profiles of H2O2 and OH, the uncertainty of the obtained OH line strengths can be achieved down to <10% in this work. Moreover, the proposed two-color time-resolved dual-comb spectroscopy provides a new approach for directly determining the line strengths of transient free radicals and holds promise for investigations on their self-reaction kinetics as well as radical-radical reactions.
Collapse
Affiliation(s)
- Che-Wei Chang
- Institute of Atomic and Molecular Sciences Academia Sinica, Taipei 106319, Taiwan
| | - I-Yun Chen
- Institute of Atomic and Molecular Sciences Academia Sinica, Taipei 106319, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106319, Taiwan
| | - Christa Fittschen
- University Lille, CNRS, UMR 8522, PC2A-Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France
| | - Pei-Ling Luo
- Institute of Atomic and Molecular Sciences Academia Sinica, Taipei 106319, Taiwan
| |
Collapse
|
4
|
|
5
|
Jara-Toro RA, Barrera JA, Aranguren-Abrate JP, Taccone RA, Pino GA. Rate Coefficient and Mechanism of the OH-Initiated Degradation of 1-Chlorobutane: Atmospheric Implications. J Phys Chem A 2020; 124:229-239. [PMID: 31825215 DOI: 10.1021/acs.jpca.9b10426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we investigate the degradation process of 1-chlorobutane, initiated by OH radicals, under atmospheric conditions (air pressure of 750 Torr and 296 K) from both experimental and theoretical approaches. In the first one, a relative kinetic method was used to obtain the rate coefficient for this reaction, while the products were identified for the first time (1-chloro-2-butanone, 1-chloro-2-butanol, 4-chloro-2-butanone, 3-hydroxy-butanaldehyde, and 3-chloro-2-butanol) using mass spectrometry, allowing suggesting a reaction mechanism. The theoretical calculations, for the reactive process, were computed using the BHandHLYP/6-311++G(d,p) level of theory, and the energies for all of the stationary points were refined at the CCSD(T) level. Five conformers for 1-chlorobutane and 33 reactive channels with OH radicals were found, which were considered to calculate the thermal rate coefficient (as the sum of the site-specific rate coefficients using canonical transition state theory). The theoretical rate coefficient (1.8 × 10-12 cm3 molecule-1 s-1) is in good agreement with the experimental value (2.22 ± 0.50) × 10-12 cm3 molecule-1 s-1 determined in this work. Finally, environmental impact indexes were calculated and a discussion on the atmospheric implications due to the emissions of this compound into the troposphere was given.
Collapse
Affiliation(s)
- Rafael A Jara-Toro
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas-Universidad Nacional de Córdoba , Ciudad Universitaria , Haya de la Torre y Medina Allende , X5000HUA Córdoba , Argentina.,Centro Láser de Ciencias Moleculares-Universidad Nacional de Córdoba , Ciudad Universitaria , Haya de la Torre s/n, Pabellón Argentina , X5000HUA Córdoba , Argentina
| | - Javier A Barrera
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas-Universidad Nacional de Córdoba , Ciudad Universitaria , Haya de la Torre y Medina Allende , X5000HUA Córdoba , Argentina.,Centro Láser de Ciencias Moleculares-Universidad Nacional de Córdoba , Ciudad Universitaria , Haya de la Torre s/n, Pabellón Argentina , X5000HUA Córdoba , Argentina
| | - Juan P Aranguren-Abrate
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas-Universidad Nacional de Córdoba , Ciudad Universitaria , Haya de la Torre y Medina Allende , X5000HUA Córdoba , Argentina.,Centro Láser de Ciencias Moleculares-Universidad Nacional de Córdoba , Ciudad Universitaria , Haya de la Torre s/n, Pabellón Argentina , X5000HUA Córdoba , Argentina
| | - Raúl A Taccone
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas-Universidad Nacional de Córdoba , Ciudad Universitaria , Haya de la Torre y Medina Allende , X5000HUA Córdoba , Argentina.,Centro Láser de Ciencias Moleculares-Universidad Nacional de Córdoba , Ciudad Universitaria , Haya de la Torre s/n, Pabellón Argentina , X5000HUA Córdoba , Argentina
| | - Gustavo A Pino
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas-Universidad Nacional de Córdoba , Ciudad Universitaria , Haya de la Torre y Medina Allende , X5000HUA Córdoba , Argentina.,Centro Láser de Ciencias Moleculares-Universidad Nacional de Córdoba , Ciudad Universitaria , Haya de la Torre s/n, Pabellón Argentina , X5000HUA Córdoba , Argentina
| |
Collapse
|
6
|
Zhang T, Wen M, Zeng Z, Lu Y, Wang Y, Wang W, Shao X, Wang Z, Makroni L. Effect of NH 3 and HCOOH on the H 2O 2 + HO → HO 2 + H 2O reaction in the troposphere: competition between the one-step and stepwise mechanisms. RSC Adv 2020; 10:9093-9102. [PMID: 35496523 PMCID: PMC9050117 DOI: 10.1039/d0ra00024h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/13/2020] [Indexed: 11/21/2022] Open
Abstract
The H2O2 + HO → HO2 + H2O reaction is an important reservoir for both radicals of HO and HO2 catalyzing the destruction of O3. Here, this reaction assisted by NH3 and HCOOH catalysts was explored using the CCSD(T)-F12a/cc-pVDZ-F12//M06-2X/aug-cc-pVTZ method and canonical variational transition state theory with small curvature tunneling. Two possible sets of mechanisms, (i) one-step routes and (ii) stepwise processes, are possible. Our results show that in the presence of both NH3 and HCOOH catalysts under relevant atmospheric temperature, mechanism (i) is favored both energetically and kinetically than the corresponding mechanism (ii). At 298 K, the relative rate for mechanism (i) in the presence of NH3 (10, 2900 ppbv) and HCOOH (10 ppbv) is respectively 3–5 and 2–4 orders of magnitude lower than that of the water-catalyzed reaction. This is due to a comparatively lower concentration of NH3 and HCOOH than H2O which indicates the positive water effect under atmospheric conditions. Although NH3 and HCOOH catalysts play a negligible role in the reservoir for both radicals of HO and HO2 catalyzing the destruction of O3, the current study provides a comprehensive example of how acidic and basic catalysts assisted the gas-phase reactions. The H2O2 + HO → HO2 + H2O reaction is an important reservoir for both radicals of HO and HO2 catalyzing the destruction of O3.![]()
Collapse
Affiliation(s)
- Tianlei Zhang
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Mingjie Wen
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Zhaopeng Zeng
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Yousong Lu
- Key Laboratory for Macromolecular Science of Shaanxi Province
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an
- P. R. China
| | - Yan Wang
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Wei Wang
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Xianzhao Shao
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Zhiyin Wang
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Lily Makroni
- Key Laboratory for Macromolecular Science of Shaanxi Province
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an
- P. R. China
| |
Collapse
|
7
|
Yan C, Krasnoperov LN. Pressure-Dependent Kinetics of the Reaction between CH3O2 and OH: TRIOX Formation. J Phys Chem A 2019; 123:8349-8357. [DOI: 10.1021/acs.jpca.9b03861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chao Yan
- Department of Mechanical Aerospace Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Lev N. Krasnoperov
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| |
Collapse
|
8
|
|
9
|
Chen D, Huey LG, Tanner DJ, Li J, Ng NL, Wang Y. Derivation of Hydroperoxyl Radical Levels at an Urban Site via Measurement of Pernitric Acid by Iodide Chemical Ionization Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3355-3363. [PMID: 28212018 DOI: 10.1021/acs.est.6b05169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hydroperoxyl radical (HO2) is a key species to atmospheric chemistry. At warm temperatures, the HO2 and NO2 come to a rapid steady state with pernitric acid (HO2NO2). This paper presents the derivation of HO2 from observations of HO2NO2 and NO2 in metropolitan Atlanta, US, in winter 2014 and summer 2015. HO2 was observed to have a diurnal cycle with morning concentrations suppressed by high NO from the traffic. At night, derived HO2 levels were nonzero and exhibited correlations with O3 and NO3, consistent with previous studies that ozonolysis and oxidation by NO3 are sources of nighttime HO2. Measured and model calculated HO2 were in reasonable agreement: Without the constraint of measured HO2NO2, the model reproduced HO2 with a model-to-observed ratio (M/O) of 1.27 (r = 0.54) for winter, 2014, and 0.70 (r = 0.80) for summer, 2015. Adding measured HO2NO2 as a constraint, the model predicted HO2 with M/O = 1.13 (r = 0.77) for winter 2014 and 0.90 (r = 0.97) for summer 2015. These results demonstrate the feasibility of deriving HO2 from HO2NO2 measurements in warm regions where HO2NO2 has a short lifetime.
Collapse
Affiliation(s)
- Dexian Chen
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - L Gregory Huey
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - David J Tanner
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Jianfeng Li
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Nga L Ng
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
- School of Chemical and Biochemical Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Yuhang Wang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
10
|
Yan C, Kocevska S, Krasnoperov LN. Kinetics of the Reaction of CH3O2 Radicals with OH Studied over the 292–526 K Temperature Range. J Phys Chem A 2016; 120:6111-21. [DOI: 10.1021/acs.jpca.6b04213] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Yan
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology,
University Heights, Newark, New Jersey 07102, United States
| | - Stefani Kocevska
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology,
University Heights, Newark, New Jersey 07102, United States
| | - Lev N. Krasnoperov
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology,
University Heights, Newark, New Jersey 07102, United States
| |
Collapse
|
11
|
Wei WM, Zheng RH, Wu YK, Yang F, Hong S. Theoretical Study on Dissociation Potential Energy Surface of Peroxynitric Acid. CHINESE J CHEM PHYS 2014. [DOI: 10.1063/1674-0068/27/06/659-662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
12
|
Altinay G, Macdonald RG. Determination of the Rate Constant for the OH(X2Π) + OH(X2Π) → H2O + O(3P) Reaction Over the Temperature Range 295 to 701 K. J Phys Chem A 2013; 118:38-54. [DOI: 10.1021/jp409344q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gokhan Altinay
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439-4381, United States
| | - R. Glen Macdonald
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439-4381, United States
| |
Collapse
|
13
|
Sangwan M, Krasnoperov LN. Kinetics of the Gas Phase Reaction CH3 + HO2. J Phys Chem A 2013; 117:2916-23. [DOI: 10.1021/jp4000889] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manuvesh Sangwan
- Department of Chemistry
and Environmental Science, New Jersey Institute of Technology, University Heights,
Newark, New Jersey 07102, United States
| | - Lev N. Krasnoperov
- Department of Chemistry
and Environmental Science, New Jersey Institute of Technology, University Heights,
Newark, New Jersey 07102, United States
| |
Collapse
|
14
|
Sangwan M, Chesnokov EN, Krasnoperov LN. Reaction CH3 + OH Studied over the 294–714 K Temperature and 1–100 bar Pressure Ranges. J Phys Chem A 2012; 116:8661-70. [DOI: 10.1021/jp305070c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manuvesh Sangwan
- Department of Chemistry
and Environmental Science, New Jersey Institute of Technology, University Heights, Newark, New Jersey
07102, United States
| | | | - Lev N. Krasnoperov
- Department of Chemistry
and Environmental Science, New Jersey Institute of Technology, University Heights, Newark, New Jersey
07102, United States
| |
Collapse
|
15
|
Sangwan M, Chesnokov EN, Krasnoperov LN. Reaction OH + OH Studied over the 298–834 K Temperature and 1 - 100 bar Pressure Ranges. J Phys Chem A 2012; 116:6282-94. [DOI: 10.1021/jp211805v] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manuvesh Sangwan
- Department of Chemistry
and Environmental Science, New Jersey Institute of Technology, University Heights, Newark, New Jersey
07102, United States
| | | | - Lev N. Krasnoperov
- Department of Chemistry
and Environmental Science, New Jersey Institute of Technology, University Heights, Newark, New Jersey
07102, United States
| |
Collapse
|
16
|
Wei WM, Zheng RH, Jing YY, Liu YT, Hu JC, Ye Y, Shi Q. Theoretical Study on Raman Spectra of Aqueous Peroxynitric Acid. CHINESE J CHEM PHYS 2011. [DOI: 10.1088/1674-0068/24/05/625-630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Szakács P, Csontos J, Das S, Kállay M. High-Accuracy Theoretical Thermochemistry of Atmospherically Important Nitrogen Oxide Derivatives. J Phys Chem A 2011; 115:3144-53. [DOI: 10.1021/jp112116x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Péter Szakács
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest P.O. Box 91, H-1521 Hungary
| | - József Csontos
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest P.O. Box 91, H-1521 Hungary
| | - Sanghamitra Das
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest P.O. Box 91, H-1521 Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest P.O. Box 91, H-1521 Hungary
| |
Collapse
|
18
|
Slusher DL, Neff WD, Kim S, Huey LG, Wang Y, Zeng T, Tanner DJ, Blake DR, Beyersdorf A, Lefer BL, Crawford JH, Eisele FL, Mauldin RL, Kosciuch E, Buhr MP, Wallace HW, Davis DD. Atmospheric chemistry results from the ANTCI 2005 Antarctic plateau airborne study. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012605] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Rajakumar B, McCabe DC, Talukdar RK, Ravishankara AR. Rate coefficients for the reactions of OH with n
-propanol and iso
-propanol between 237 and 376 K. INT J CHEM KINET 2009. [DOI: 10.1002/kin.20456] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Stark H, Brown SS, Burkholder JB, Aldener M, Riffault V, Gierczak T, Ravishankara AR. Overtone Dissociation of Peroxynitric Acid (HO2NO2): Absorption Cross Sections and Photolysis Products. J Phys Chem A 2008; 112:9296-303. [DOI: 10.1021/jp802259z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Harald Stark
- NOAA, Earth System Research Laboratory, 325 Broadway, Boulder, Colorado 80305
| | - Steven S. Brown
- NOAA, Earth System Research Laboratory, 325 Broadway, Boulder, Colorado 80305
| | - James B. Burkholder
- NOAA, Earth System Research Laboratory, 325 Broadway, Boulder, Colorado 80305
| | - Mattias Aldener
- NOAA, Earth System Research Laboratory, 325 Broadway, Boulder, Colorado 80305
| | - Veronique Riffault
- NOAA, Earth System Research Laboratory, 325 Broadway, Boulder, Colorado 80305
| | - Tomasz Gierczak
- NOAA, Earth System Research Laboratory, 325 Broadway, Boulder, Colorado 80305
| | - A. R. Ravishankara
- NOAA, Earth System Research Laboratory, 325 Broadway, Boulder, Colorado 80305
| |
Collapse
|
21
|
Tian Y, He TJ, He L, Liu FC, Chen DM. Theoretical Study on Mechanism of Reaction of OH with HO2NO2. CHINESE J CHEM PHYS 2008. [DOI: 10.1088/1674-0068/21/01/32-38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Papadimitriou VC, Talukdar RK, Portmann RW, Ravishankara AR, Burkholder JB. CF3CFCH2and (Z)-CF3CFCHF: temperature dependent OH rate coefficients and global warming potentials. Phys Chem Chem Phys 2008; 10:808-20. [DOI: 10.1039/b714382f] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Ginovska B, Camaioni DM, Dupuis M. Reaction pathways and excited states in H2O2+OH→HO2+H2O: A new ab initio investigation. J Chem Phys 2007; 127:084309. [PMID: 17764250 DOI: 10.1063/1.2755765] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mechanism of the hydrogen abstraction reaction H(2)O(2)+OH-->HO(2)+H(2)O in gas phase was revisited using density functional theory and other highly correlated wave function theories. We located two pathways for the reaction, both going through the same intermediate complex OH-H(2)O(2), but via two distinct transition state structures that differ by the orientation of the hydroxyl hydrogen relative to the incipient hydroperoxy hydrogen. The first two excited states were calculated for selected points on the pathways. An avoided crossing between the two excited states was found on the product side of the barrier to H transfer on the ground state surface, near the transition states. We report on the calculation of the rate of the reaction in the gas phase for temperatures in the range of 250-500 K. The findings suggest that the strong temperature dependence of the rate at high temperatures is due to reaction on the low-lying excited state surface over a barrier that is much larger than on the ground state surface.
Collapse
Affiliation(s)
- Bojana Ginovska
- School of Electrical Engineering and Computer Science, Washington State University Tri-Cities, Richland, Washington 99354, USA
| | | | | |
Collapse
|
24
|
Davis ME, Talukdar RK, Notte G, Ellison GB, Burkholder JB. Rate coefficients for the OH + pinonaldehyde (C10H16O2) reaction between 297 and 374 K. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:3959-65. [PMID: 17612175 DOI: 10.1021/es070048d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The rate coefficientforthe reaction of OH with pinonaldehyde (C10H16O2, 3-acetyl-2,2-dimethyl-cyclobutyl-ethanal), a product of the atmospheric oxidation of alpha-pinene, was measured under pseudo-first-order conditions in OH at temperatures between 297 and 374 K at 55 and 96 Torr (He). Laser induced fluorescence (LIF) was used to monitor OH in the presence of pinonaldehyde following its production by 248 nm pulsed laser photolysis of H2O2. The reaction exhibits a negative temperature dependence with an Arrhenius expression of k1(T) = (4.5 +/- 1.3) x 10(-12) exp((600 +/- 100)/ 7) cm3 molecule(-1) s(-1); k1(297 K) = (3.46 +/- 0.4) x 10(-11) cm3 molecule(-1) s(-1). There was no observed dependence of the rate coefficient on pressure. Our results are compared with previous relative rate determinations of k1 near 297 K and the discrepancies are discussed. The state of knowledge for the atmospheric processing of pinonaldehyde is reviewed, and its role as a marker for alpha-pinene (monoterpene) chemistry in the atmosphere is discussed.
Collapse
Affiliation(s)
- Maxine E Davis
- Earth System Research Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, Colorado 80305-3328, USA
| | | | | | | | | |
Collapse
|
25
|
Kim S, Huey LG, Stickel RE, Tanner DJ, Crawford JH, Olson JR, Chen G, Brune WH, Ren X, Lesher R, Wooldridge PJ, Bertram TH, Perring A, Cohen RC, Lefer BL, Shetter RE, Avery M, Diskin G, Sokolik I. Measurement of HO2NO2in the free troposphere during the Intercontinental Chemical Transport Experiment–North America 2004. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007676] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Gierczak T, Burkholder JB, Ravishankara AR. Rate coefficients for the reaction of OH with OClO between 242 and 392 K. INT J CHEM KINET 2006. [DOI: 10.1002/kin.20158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Gierczak T, Jiménez E, Riffault V, Burkholder JB, Ravishankara AR. Thermal Decomposition of HO2NO2 (Peroxynitric Acid, PNA): Rate Coefficient and Determination of the Enthalpy of Formation. J Phys Chem A 2005; 109:586-96. [PMID: 16833383 DOI: 10.1021/jp046632f] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rate coefficients for the gas-phase thermal decomposition of HO(2)NO(2) (peroxynitric acid, PNA) are reported at temperatures between 331 and 350 K at total pressures of 25 and 50 Torr of N(2). Rate coefficients were determined by measuring the steady-state OH concentration in a mixture of known concentrations of HO(2)NO(2) and NO. The measured thermal decomposition rate coefficients k(-)(1)(T,P) are used in combination with previously published rate coefficient data for the HO(2)NO(2) formation reaction to yield a standard enthalpy for reaction 1 of Delta(r)H degrees (298K) = -24.0 +/- 0.5 kcal mol(-1) (uncertainties are 2sigma values and include estimated systematic errors). A HO(2)NO(2) standard heat of formation, Delta(f)H degrees (298K)(HO(2)NO(2)), of -12.6 +/- 1.0 kcal mol(-1) was calculated from this value. Some of the previously reported data on the thermal decomposition of HO(2)NO(2) have been reanalyzed and shown to be in good agreement with our reported value.
Collapse
Affiliation(s)
- Tomasz Gierczak
- Aeronomy Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305-3328, USA
| | | | | | | | | |
Collapse
|
28
|
Jiménez E, Gierczak T, Stark H, Burkholder JB, Ravishankara AR. Quantum yields of OH, HO2and NO3in the UV photolysis of HO2NO2. Phys Chem Chem Phys 2005; 7:342-8. [DOI: 10.1039/b413429j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
Rajakumar B, Burkholder JB, Portmann RW, Ravishankara AR. Rate coefficients for the OH + CFH2CH2OH reaction between 238 and 355 K. Phys Chem Chem Phys 2005; 7:2498-505. [PMID: 15962035 DOI: 10.1039/b503332b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rate coefficient for the reaction OH + CFH2CH2OH --> products (k1) between 238 and 355 K was measured using the pulsed laser photolysis-laser induced fluorescence (PLP-LIF) technique to be (5.15 +/- 0.88)x 10(-12) exp[-(330 +/- 45)/T] cm3 molecule(-1) s(-1); k1(298 K)= 1.70 x 10(-12) cm3 molecule(-1) s(-1). The quoted uncertainties are 2sigma(95% confidence level) and include estimated systematic errors. The present results are discussed in relation to the measured rate coefficients for the reaction of OH with other fluorinated alcohols and those calculated using recently reported structure additivity relationships for fluorinated compounds (K. Tokuhashi, H. Nagai, A. Takahashi, M. Kaise, S. Kondo, A. Sekiya, M. Takahashi, Y. Gotoh and A. Suga, J. Phys. Chem. A, 1999, 103, 2664-2672, ). Infrared absorption cross sections for CFH2CH2OH are reported and they are used to calculate the global warming potentials (GWP) for CFH2CH2OH of approximately 8, approximately 2, and approximately 1, respectively, for the 20, 100 and 500 year horizons. A brief discussion of the atmospheric degradation of CFH2CH2OH is provided. It is concluded that CFH2CH2OH is an acceptable substitute for CFCs in terms of its impact on Earth's climate and the composition of the atmosphere. The room temperature rate coefficient for the reaction OH + CFH2CH2OH --> products (k10) was measured to be 3.26 x 10(-12) cm3 molecule(-1) s(-1), in good agreement with recent measurements from this laboratory.
Collapse
Affiliation(s)
- B Rajakumar
- Aeronomy Laboratory, National Oceanic and Atmospheric Administration, 325, Broadway, Boulder, CO, 80305-3328, USA.
| | | | | | | |
Collapse
|