1
|
Chaudhary S, Kaur H, Kaur H, Rana B, Tomar D, Jena KC. Probing the Bovine Hemoglobin Adsorption Process and its Influence on Interfacial Water Structure at the Air-Water Interface. APPLIED SPECTROSCOPY 2021; 75:1497-1509. [PMID: 34346774 DOI: 10.1177/00037028211035157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
*These authors contributed equally to this work.The molecular-level insight of protein adsorption and its kinetics at interfaces is crucial because of its multifold role in diverse fundamental biological processes and applications. In the present study, the sum frequency generation (SFG) vibrational spectroscopy has been employed to demonstrate the adsorption process of bovine hemoglobin (BHb) protein molecules at the air-water interface at interfacial isoelectric point of the protein. It has been observed that surface coverage of BHb molecules significantly influences the arrangement of the protein molecules at the interface. The time-dependent SFG studies at two different frequencies in the fingerprint region elucidate the kinetics of protein denaturation process and its influence on the hydrogen-bonding network of interfacial water molecules at the air-water interface. The initial growth kinetics suggests the synchronized behavior of protein adsorption process with the structural changes in the interfacial water molecules. Interestingly, both the events carry similar characteristic time constants. However, the conformational changes in the protein structure due to the denaturation process stay for a long time, whereas the changes in water structure reconcile quickly. It is revealed that the protein denaturation process is followed by the advent of strongly hydrogen-bonded water molecules at the interface. In addition, we have also carried out the surface tension kinetics measurements to complement the findings of our SFG spectroscopic results.
Collapse
Affiliation(s)
- Shilpi Chaudhary
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, India
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh, India
| | - Harsharan Kaur
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Harpreet Kaur
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, India
| | - Bhawna Rana
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, India
| | - Deepak Tomar
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, India
| | - Kailash C Jena
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, India
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| |
Collapse
|
2
|
Hosseinpour S, Roeters SJ, Bonn M, Peukert W, Woutersen S, Weidner T. Structure and Dynamics of Interfacial Peptides and Proteins from Vibrational Sum-Frequency Generation Spectroscopy. Chem Rev 2020; 120:3420-3465. [DOI: 10.1021/acs.chemrev.9b00410] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saman Hosseinpour
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | | | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Sander Woutersen
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 EP Amsterdam, The Netherlands
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
3
|
McDermott ML, Petersen PB. Robust Self-Referencing Method for Chiral Sum Frequency Generation Spectroscopy. J Phys Chem B 2015; 119:12417-23. [DOI: 10.1021/acs.jpcb.5b08176] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Luke McDermott
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Poul B. Petersen
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Keszthelyi T, Holló G, Nyitrai G, Kardos J, Héja L. Bilayer Charge Reversal and Modification of Lipid Organization by Dendrimers as Observed by Sum-Frequency Vibrational Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7815-7825. [PMID: 26099064 DOI: 10.1021/acs.langmuir.5b00734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polyamidoamine (PAMAM) dendrimers are hyperbranched, nanosized polymers with promising biomedical applications as nanocarriers in targeted drug delivery and gene therapy. For the development of safe dendrimer-based biomedical applications it is necessary to gain an understanding of the detailed mechanism of the interactions of both cationic and anionic dendrimers with cell membranes. To characterize dendrimer-membrane interactions we applied solid-supported lipid bilayers as biomembrane models and utilized infrared-visible sum-frequency vibrational spectroscopy to independently probe the interactions of cationic G5-NH2 and anionic G4.5-COONa dendrimers with the two leaflets of the lipid bilayers. Interaction with both dendrimers led to changes in the interfacial water structure and charge density as evidenced by the changes in the OH band intensities in the sum-frequency spectra of the bilayers. Interaction with the G5-NH2 dendrimer also led to a unique inversion of the sign of the OH-stretch amplitudes, in addition to a decrease in their absolute values. We suggest that the positively charged amino groups on the G5-NH2 dendrimer surface bind to the negatively charged bilayer, while uncompensated positive charges not involved in the binding cause a reversal of the electric field and thus an opposite orientation of the interfacial water molecules. More subtle but nonetheless significant changes were seen in the relative magnitudes of the CH amplitudes. The methyl antisymmetric to symmetric stretch amplitude ratios are altered, implying changes in the tilt angles of the phospholipid alkyl chains. The conformational order of the phospholipid alkyl chains of both leaflets is also influenced by the G5-NH2 dendrimer while G4.5-COONa has no effect on the alkyl chain conformation.
Collapse
Affiliation(s)
- Tamás Keszthelyi
- †Institute of Materials and Environmental Chemistry and ‡Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Gábor Holló
- †Institute of Materials and Environmental Chemistry and ‡Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Gabriella Nyitrai
- †Institute of Materials and Environmental Chemistry and ‡Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Julianna Kardos
- †Institute of Materials and Environmental Chemistry and ‡Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - László Héja
- †Institute of Materials and Environmental Chemistry and ‡Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
5
|
Roy S, Covert PA, FitzGerald WR, Hore DK. Biomolecular Structure at Solid–Liquid Interfaces As Revealed by Nonlinear Optical Spectroscopy. Chem Rev 2014; 114:8388-415. [DOI: 10.1021/cr400418b] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sandra Roy
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6 Canada
| | - Paul A. Covert
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6 Canada
| | - William R. FitzGerald
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6 Canada
| | - Dennis K. Hore
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6 Canada
| |
Collapse
|
6
|
Keszthelyi T, Hill K, Kiss É. Interaction of Phospholipid Langmuir Monolayers with an Antibiotic Peptide Conjugate. J Phys Chem B 2013; 117:6969-79. [DOI: 10.1021/jp401533c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tamás Keszthelyi
- Institute of Molecular Pharmacology,
Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1025 Budapest, Pusztaszeri út
59-67, Hungary
| | - Katalin Hill
- Laboratory
of Interfaces and
Nanostructures, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest
112, Hungary
| | - Éva Kiss
- Laboratory
of Interfaces and
Nanostructures, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest
112, Hungary
| |
Collapse
|
7
|
Sodium selective ion channel formation in living cell membranes by polyamidoamine dendrimer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1873-80. [PMID: 23597947 DOI: 10.1016/j.bbamem.2013.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 12/23/2022]
Abstract
Polyamidoamine (PAMAM) dendrimers are highly charged hyperbranched protein-like polymers that are known to interact with cell membranes. In order to disclose the mechanisms of dendrimer-membrane interaction, we monitored the effect of PAMAM generation five (G5) dendrimer on the membrane permeability of living neuronal cells followed by exploring the underlying structural changes with infrared-visible sum frequency vibrational spectroscopy (SVFS), small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). G5 dendrimers were demonstrated to irreversibly increase the membrane permeability of neurons that could be blocked in low-[Na(+)], but not in low-[Ca(2+)] media suggesting the formation of specific Na(+) permeable channels. SFVS measurements on silica supported DPPG-DPPC bilayers suggested G5-specific trans-polarization of the membrane. SAXS data and freeze-fracture TEM imaging of self-organized DPPC vesicle systems demonstrated disruption of DPPC vesicle layers by G5 through polar interactions between G5 terminal amino groups and the anionic head groups of DPPC. We propose a nanoscale mechanism by which G5 incorporates into the membrane through multiple polar interactions that disrupt proximate membrane bilayer and shape a unique hydrophilic Na(+) ion permeable channel around the dendrimer. In addition, we tested whether these artificial Na(+) channels can be exploited as antibiotic tools. We showed that G5 quickly arrest the growth of resistant bacterial strains below 10μg/ml concentration, while they show no detrimental effect on red blood cell viability, offering the chance for the development of new generation anti-resistant antibiotics.
Collapse
|
8
|
Costa D, Garrain PA, Baaden M. Understanding small biomolecule-biomaterial interactions: A review of fundamental theoretical and experimental approaches for biomolecule interactions with inorganic surfaces. J Biomed Mater Res A 2012; 101:1210-22. [DOI: 10.1002/jbm.a.34416] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 08/07/2012] [Accepted: 08/12/2012] [Indexed: 12/13/2022]
|
9
|
In vitroobservation of dynamic ordering processes in the extracellular matrix of living, adherent cells. Biointerphases 2011; 6:171-9. [DOI: 10.1116/1.3651142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Holinga GJ, York RL, Onorato RM, Thompson CM, Webb NE, Yoon AP, Somorjai GA. An SFG Study of Interfacial Amino Acids at the Hydrophilic SiO2 and Hydrophobic Deuterated Polystyrene Surfaces. J Am Chem Soc 2011; 133:6243-53. [DOI: 10.1021/ja1101954] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- George J. Holinga
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States, and Materials Science Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - Roger L. York
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States, and Materials Science Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - Robert M. Onorato
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States, and Materials Science Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - Christopher M. Thompson
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States, and Materials Science Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - Nic E. Webb
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States, and Materials Science Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - Alfred P. Yoon
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States, and Materials Science Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - Gabor A. Somorjai
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States, and Materials Science Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Hakkel O, Pászti Z, Berkó A, Frey K, Guczi L. In situ sum frequency generation vibrational spectroscopy study of CO adsorption on Au surfaces promoted by Ar+ sputtering and FeOx additives. Catal Today 2010. [DOI: 10.1016/j.cattod.2010.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Pászti Z, Hakkel O, Keszthelyi T, Berkó A, Balázs N, Bakó I, Guczi L. Interaction of carbon monoxide with Au(111) modified by ion bombardment: a surface spectroscopy study under elevated pressure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:16312-16324. [PMID: 20973580 DOI: 10.1021/la1014913] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Gold based model systems exhibiting the structural versatility of nanoparticle ensembles and being accessible for surface spectroscopic investigations are expected to provide new information about the adsorption of carbon monoxide, a key process influencing the CO oxidation activity of this noble metal in nanoparticulate form. Accordingly, in the present work the interaction of CO is studied with an ion bombardment modified Au(111) surface by means of a combination of photoelectron spectroscopy (XPS and UPS), sum frequency generation vibrational spectroscopy (SFG), and scanning tunneling microscopy (STM). While no adsorption was found on intact Au(111), data collected on the ion bombarded surface at cryogenic temperatures indicated the presence of stable CO adsorbates below 190 K. A quantitative evaluation of the C 1s XPS spectra and the surface morphology explored by STM revealed that the step edge sites created by ion bombardment are responsible for CO adsorption. The identification of the CO binding sites was confirmed by density functional theory (DFT) calculations. Annealing experiments up to room temperature showed that at temperatures above 190 K unstable adsorbates are formed on the surface under dynamic exposure conditions that disappeared immediately when gaseous CO was removed from the system. Spectroscopic data as well as STM records revealed that prolonged CO exposure at higher pressures of up to 1 mbar around room temperature facilitates massive atomic movements on the roughened surface, leading to its strong reordering toward the structure of the intact Au(111) surface, accompanied by the loss of the CO binding capacity.
Collapse
Affiliation(s)
- Zoltán Pászti
- Chemical Research Center, Hungarian Academy of Sciences, P.O. Box 17, H-1525 Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
13
|
Boughton AP, Andricioaei I, Chen Z. Surface orientation of magainin 2: molecular dynamics simulation and sum frequency generation vibrational spectroscopic studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:16031-6. [PMID: 20857957 PMCID: PMC2953566 DOI: 10.1021/la1024394] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We combined molecular dynamics based free energy calculations with sum frequency generation (SFG) spectroscopy to study the orientational distribution of solvated peptides near hydrophobic surfaces. Using a simplified atomistic model of the polystyrene (PS) surface, molecular dynamics simulations have been applied to compute the orientational probability of an α-helical peptide, magainin 2, with respect to the PS/water interface. Free energy calculations revealed that the preferred (horizontal) peptide orientation was driven by the favorable interactions between the hydrophobic PS surface and the hydrophobic residues on the helix, and additional simulations examined the importance of small aggregate formation. Concentration-dependent measurements obtained via SFG vibrational spectroscopy suggest that, at very low peptide concentrations, magainin molecules tend to lie down at the PS/solution interface, which correlates well with the simulation results. When the concentration is increased, peptides exhibit behavior not captured by MD simulations using single helical peptides. A combination of simulations and experiments was shown to yield more reliable results with molecular-level insights into interaction between peptides and polymer surfaces.
Collapse
Affiliation(s)
- Andrew P. Boughton
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109 USA
| | - Ioan Andricioaei
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109 USA
| |
Collapse
|
14
|
Hill K, Pénzes CB, Schnöller D, Horváti K, Bősze S, Hudecz F, Keszthelyi T, Kiss É. Characterisation of the membrane affinity of an isoniazide peptide conjugate by tensiometry, atomic force microscopy and sum-frequency vibrational spectroscopy, using a phospholipid Langmuir monolayer model. Phys Chem Chem Phys 2010; 12:11498-506. [DOI: 10.1039/c002737e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Salafsky JS, Cohen B. A Second-Harmonic-Active Unnatural Amino Acid as a Structural Probe of Biomolecules on Surfaces. J Phys Chem B 2008; 112:15103-7. [DOI: 10.1021/jp803703m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joshua S. Salafsky
- Biodesy, LLC, Burlingame, California 94010, and Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley Laboratory, Berkeley, California 94720
| | - Bruce Cohen
- Biodesy, LLC, Burlingame, California 94010, and Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley Laboratory, Berkeley, California 94720
| |
Collapse
|
16
|
Even MA, Wang J, Chen Z. Structural information of mussel adhesive protein Mefp-3 acquired at various polymer/Mefp-3 solution interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:5795-801. [PMID: 18459751 DOI: 10.1021/la800138x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mytilus edulis foot protein Mefp-3 serves as a primer in the formation of adhesive plaques that attach the mussel to solid surfaces in its immediate environment. The adsorption behavior of this protein on various materials of different hydrophobicity was studied using sum frequency generation (SFG) vibrational spectroscopy. By collecting SFG signals from side chains of these amino acids and from secondary structures of the protein, we have determined that this protein adopts different conformations at different interfaces, depending on hydrophobicity of the contact medium and specific chemical group interactions. We have also demonstrated that SFG has the potential to track the interfacial conformations of a single amino acid in a protein.
Collapse
Affiliation(s)
- Mark A Even
- Department of Chemistry, 930 North University Avenue, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
17
|
Rocha-Mendoza I, Yankelevich DR, Wang M, Reiser KM, Frank CW, Knoesen A. Sum frequency vibrational spectroscopy: the molecular origins of the optical second-order nonlinearity of collagen. Biophys J 2007; 93:4433-44. [PMID: 17766339 PMCID: PMC2098726 DOI: 10.1529/biophysj.107.111047] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 08/14/2007] [Indexed: 11/18/2022] Open
Abstract
The molecular origins of second-order nonlinear effects in type I collagen fibrils have been identified with sum-frequency generation vibrational spectroscopy. The dominant contributing molecular groups are: 1), the methylene groups associated with a Fermi resonance between the fundamental symmetric stretch and the bending overtone of methylene; and 2), the carbonyl and peptide groups associated with the amide I band. The noncentrosymmetrically aligned methylene groups are characterized by a distinctive tilt relative to the axis perpendicular to the main axis of the collagen fiber, a conformation producing a strong achiral contribution to the second-order nonlinear effect. In contrast, the stretching vibration of the carbonyl groups associated with the amide I band results in a strong chiral contribution to the optical second-order nonlinear effect. The length scale of these chiral effects ranges from the molecular to the supramolecular.
Collapse
Affiliation(s)
- Israel Rocha-Mendoza
- Department of Electrical and Computer Engineering, University of California, Davis, California, USA
| | | | | | | | | | | |
Collapse
|
18
|
Wang J, Paszti Z, Clarke ML, Chen X, Chen Z. Deduction of Structural Information of Interfacial Proteins by Combined Vibrational Spectroscopic Methods. J Phys Chem B 2007; 111:6088-95. [PMID: 17511496 DOI: 10.1021/jp070383o] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate both theoretically and experimentally that the combination of vibrational spectroscopic techniques on samples can be used to deduce more detailed structural information of interfacial proteins and peptides. Such an approach can be used to elucidate structures of proteins or peptides at interfaces, such as at the solid/liquid interface or in cell membranes. We also discuss that the controlled perturbations may provide more measured parameters for structural studies on such proteins and peptides. In this paper, we will demonstrate that optical spectroscopic techniques such as polarized Fourier transform infrared spectroscopy (FTIR), sum frequency generation (SFG) vibrational spectroscopy, and higher order nonlinear vibrational spectroscopies can be used to deduce different and complementary structural information of molecules at interfaces (e.g., orientation information of certain functional groups and secondary structures of interfacial proteins). Also, we believe that controlled perturbations on samples, such as variation of sample temperature, application of electrical fields, and alternation of substrate roughness, can provide more detailed information regarding the interfacial structures of proteins and peptides. The development of nonlinear vibrational spectroscopies, such as SFG and four-wave mixing vibrational spectroscopy, to examine interfacial protein and peptide structures, and introduction of external perturbations on samples should be able to substantially advance our knowledge in understanding structures and thus functions of proteins and peptides at interfaces.
Collapse
Affiliation(s)
- Jie Wang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
19
|
Tavolaro A, Tavolaro P, Drioli E. Zeolite inorganic supports for BSA immobilization: Comparative study of several zeolite crystals and composite membranes. Colloids Surf B Biointerfaces 2007; 55:67-76. [PMID: 17194574 DOI: 10.1016/j.colsurfb.2006.11.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 10/30/2006] [Accepted: 11/09/2006] [Indexed: 11/30/2022]
Abstract
Zeolites due to their low toxicity and high compatibility are considered new biomaterials for medical applications. The surface adsorption behaviour of zeolite crystals and composite membranes was discussed in this research. The zeolite materials were synthesized by hydrothermal syntheses using different reaction gels to modulate the Brönsted acidity of the microporous structures. Spectrophotometric analyses were used to evaluate protein adsorption on these surfaces. This study revealed that zeolite chemical composition and structure influenced the kinetics of protein adsorption. Zeolite Y surface adsorbed greater amount of BSA than the other structures. The percentage of adsorption increases with temperature and depends on the pH of the solution, being highest at the pI of the protein. The influence of the membrane configuration on the protein adsorption was studied using different zeolite structures and crystallization types. It seems that the observed differences could depend on the type of hydrothermal crystallization inside the inorganic support.
Collapse
Affiliation(s)
- Adalgisa Tavolaro
- Research Institute on Membrane Technology, ITM-CNR, Via Bucci Cubo 17/c, University of Calabria, I-87030 Arcavacata di Rende, Italy.
| | | | | |
Collapse
|
20
|
Kiss É, Keszthelyi T, Kormány G, Hakkel O. Adsorbed and Spread Layers of Poly(ethylene oxide)−Poly(propylene oxide)−Poly(ethylene oxide) Block Copolymers at the Air−Water Interface Studied by Sum-Frequency Vibrational Spectroscopy and Tensiometry. Macromolecules 2006. [DOI: 10.1021/ma061161b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Éva Kiss
- Department of Colloid Chemistry, L. Eötvös University, Budapest 112 P.O. Box 32, H-1518 Hungary, and Chemical Research Centre, P.O. Box 17., H-1525 Budapest, Hungary
| | - Tamás Keszthelyi
- Department of Colloid Chemistry, L. Eötvös University, Budapest 112 P.O. Box 32, H-1518 Hungary, and Chemical Research Centre, P.O. Box 17., H-1525 Budapest, Hungary
| | - Gábor Kormány
- Department of Colloid Chemistry, L. Eötvös University, Budapest 112 P.O. Box 32, H-1518 Hungary, and Chemical Research Centre, P.O. Box 17., H-1525 Budapest, Hungary
| | - Orsolya Hakkel
- Department of Colloid Chemistry, L. Eötvös University, Budapest 112 P.O. Box 32, H-1518 Hungary, and Chemical Research Centre, P.O. Box 17., H-1525 Budapest, Hungary
| |
Collapse
|
21
|
Chen X, Chen Z. SFG studies on interactions between antimicrobial peptides and supported lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1257-73. [PMID: 16524559 DOI: 10.1016/j.bbamem.2006.01.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/11/2006] [Accepted: 01/24/2006] [Indexed: 11/29/2022]
Abstract
The mode of action of antimicrobial peptides (AMPs) in disrupting cell membrane bilayers is of fundamental importance in understanding the efficiency of different AMPs, which is crucial to design antibiotics with improved properties. Recent developments in the field of sum frequency generation (SFG) vibrational spectroscopy have made it a powerful and unique biophysical technique in investigating the interactions between AMPs and a single substrate supported planar lipid bilayer. We will review some of the recent progress in applying SFG to study membrane lipid bilayers and discuss how SFG can provide novel information such as real-time bilayer structure change and AMP orientation during AMP-lipid bilayer interactions in a very biologically relevant manner. Several examples of applying SFG to monitor such interactions between AMPs and a dipalmitoyl phosphatidylglycerol (DPPG) bilayer are presented. Different modes of actions are observed for melittin, tachyplesin I, d-magainin 2, MSI-843, and a synthetic antibacterial oligomer, demonstrating that SFG is very effective in the study of AMPs and AMP-lipid bilayer interactions.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
22
|
Keszthelyi T, Paszti Z, Rigó T, Hakkel O, Telegdi J, Guczi L. Investigation of Solid Surfaces Modified by Langmuir−Blodgett Monolayers Using Sum-Frequency Vibrational Spectroscopy and X-ray Photoelectron Spectroscopy. J Phys Chem B 2006; 110:8701-14. [PMID: 16640426 DOI: 10.1021/jp057180p] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Langmuir-Blodgett (LB) monomolecular layers of alkylhydroxamic acids and alkylphosphonic acids on copper and iron substrates have been studied by X-ray photoelectron spectroscopy (XPS) and sum-frequency vibrational spectroscopy. According to the XPS results, the structures of the hydroxamic acid and phosphonic acid Langmuir-Blodgett films are very similar: the thickness of the layer of the hydrocarbon tails is typically 1.9-2.1 nm, while the layer of headgroups is about 0.3-0.35 nm thick. The tilt angle of the carbon chains is estimated to be 20-30 degrees with respect to the sample surface normal, and the molecules are connected to the substrate via their headgroups. Analysis of the P 2p and N 1s lines indicates the presence of deprotonated headgroups. The substrate Cu 2p line includes a component which can be assigned to Cu(2+) ions in a thin Cu(OH)(2) layer. The deposition of LB layers led to significant decrease of the hydroxide-related signal, which indicates that binding of the headgroups to the surface is accompanied by the elimination of water molecules. The sum-frequency spectra also clearly indicate that well-ordered monolayers can be formed by the Langmuir-Blodgett technique. Since the non-resonant background from the metal substrates renders the analysis of the spectra more difficult, model system samples on glass were prepared. It was found that the alkyl chains of the adsorbed acids predominantly adopt the all-trans conformation and form an ordered structure. Upper limits for the mean tilt angle of the terminal methyl groups are approximately 10-20 degrees.
Collapse
Affiliation(s)
- Tamas Keszthelyi
- Institute of Surface Chemistry and Catalysis, Chemical Research Centre, P.O. Box 17, H-1525 Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
23
|
Perry JM, Moad AJ, Begue NJ, Wampler RD, Simpson GJ. Electronic and Vibrational Second-Order Nonlinear Optical Properties of Protein Secondary Structural Motifs. J Phys Chem B 2005; 109:20009-26. [PMID: 16853586 DOI: 10.1021/jp0506888] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A perturbation theory approach was developed for predicting the vibrational and electronic second-order nonlinear optical (NLO) polarizabilities of materials and macromolecules comprised of many coupled chromophores, with an emphasis on common protein secondary structural motifs. The polarization-dependent NLO properties of electronic and vibrational transitions in assemblies of amide chromophores comprising the polypeptide backbones of proteins were found to be accurately recovered in quantum chemical calculations by treating the coupling between adjacent oscillators perturbatively. A novel diagrammatic approach was developed to provide an intuitive visual means of interpreting the results of the perturbation theory calculations. Using this approach, the chiral and achiral polarization-dependent electronic SHG, isotropic SFG, and vibrational SFG nonlinear optical activities of protein structures were predicted and interpreted within the context of simple orientational models.
Collapse
Affiliation(s)
- John M Perry
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
24
|
Voges AB, Al-Abadleh HA, Musorrafiti MJ, Bertin PA, Nguyen ST, Geiger FM. Carboxylic Acid- and Ester-Functionalized Siloxane Scaffolds on Glass Studied by Broadband Sum Frequency Generation. J Phys Chem B 2004. [DOI: 10.1021/jp046564x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrea B. Voges
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| | - Hind A. Al-Abadleh
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| | - Michael J. Musorrafiti
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| | - Paul A. Bertin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| | - SonBinh T. Nguyen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| | - Franz M. Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| |
Collapse
|
25
|
Ishibashi TA, Onishi H. Multiplex Sum-frequency Spectroscopy with Electronic Resonance Enhancement. CHEM LETT 2004. [DOI: 10.1246/cl.2004.1404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Van Loon LL, Allen HC. Methanol Reaction with Sulfuric Acid: A Vibrational Spectroscopic Study. J Phys Chem B 2004. [DOI: 10.1021/jp0476949] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lisa L. Van Loon
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Heather C. Allen
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| |
Collapse
|