1
|
Kim P, Roy S, Valentine AJS, Liu X, Kromer S, Kim TW, Li X, Castellano FN, Chen LX. Real-time capture of nuclear motions influencing photoinduced electron transfer. Chem Sci 2024:d4sc01876a. [PMID: 39184296 PMCID: PMC11339639 DOI: 10.1039/d4sc01876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
Although vibronic coupling phenomena have been recognized in the excite state dynamics of transition metal complexes, its impact on photoinduced electron transfer (PET) remains largely unexplored. This study investigates coherent wavepacket (CWP) dynamics during PET processes in a covalently linked electron donor-acceptor complex featuring a cyclometalated Pt(ii) dimer as the donor and naphthalene diimide (NDI) as the acceptors. Upon photoexciting the Pt(ii) dimer electron donor, ultrafast broadband transient absorption spectroscopy revealed direct modulation of NDI radical anion formation through certain CWP motions and correlated temporal evolutions of the amplitudes for these CWPs with the NDI radical anion formation. These results provide clear evidence that the CWP motions are the vibronic coherences coupled to the PET reaction coordinates. Normal mode analysis identified that the CWP motions originate from vibrational modes associated with the dihedral angles and bond lengths between the planes of the cyclometalating ligand and the NDI, the key modes altering their π-interaction, consequently influencing PET dynamics. The findings highlight the pivotal role of vibrations in shaping the favorable trajectories for the efficient PET processes.
Collapse
Affiliation(s)
- Pyosang Kim
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
- Chemistry Department, Northwestern University Evanston IL 60208 USA
| | - Subhangi Roy
- Chemistry Department, North Carolina State University Raleigh NC 27695-8204 USA
| | | | - Xiaolin Liu
- Chemistry Department, University of Washington Seattle WA 98195 USA
| | - Sarah Kromer
- Chemistry Department, North Carolina State University Raleigh NC 27695-8204 USA
| | - Tae Wu Kim
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
| | - Xiaosong Li
- Chemistry Department, University of Washington Seattle WA 98195 USA
| | - Felix N Castellano
- Chemistry Department, North Carolina State University Raleigh NC 27695-8204 USA
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
- Chemistry Department, Northwestern University Evanston IL 60208 USA
| |
Collapse
|
2
|
Khristin AM, Fufina TY, Khatypov RA. Femtosecond Dynamics of the Excited Primary Electron Donor in Reaction Centers of the Purple Bacterium Rhodobacter sphaeroides. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1313-1324. [PMID: 39218027 DOI: 10.1134/s0006297924070125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 09/04/2024]
Abstract
Femtosecond transient absorption spectroscopy was used to study the dynamics of the excited primary electron donor in the reaction centers of the purple bacterium Rhodobacter sphaeroides. Using global analysis and the interval method, we found a correlation between the vibrational coherence damping of the excited primary electron donor and the lifetime of the charge-separated state P+BA-, indicating the reversibility of electron transfer to the primary electron acceptor, the BA molecule. In the reaction centers, the signs of superposition of two electronic states of P were found for a delay time of less than 200 fs. It is suggested that the admixture value of the charge transfer state PA+PB- with the excited primary electron donor P* is about 24%. The results obtained are discussed in terms of the two-step electron transfer mechanism.
Collapse
Affiliation(s)
- Anton M Khristin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Tatyana Yu Fufina
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ravil A Khatypov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
3
|
Lyu N, Mulvihill E, Soley MB, Geva E, Batista VS. Tensor-Train Thermo-Field Memory Kernels for Generalized Quantum Master Equations. J Chem Theory Comput 2023; 19:1111-1129. [PMID: 36719350 DOI: 10.1021/acs.jctc.2c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The generalized quantum master equation (GQME) approach provides a rigorous framework for deriving the exact equation of motion for any subset of electronic reduced density matrix elements (e.g., the diagonal elements). In the context of electronic dynamics, the memory kernel and inhomogeneous term of the GQME introduce the implicit coupling to nuclear motion and dynamics of electronic density matrix elements that are projected out (e.g., the off-diagonal elements), allowing for efficient quantum dynamics simulations. Here, we focus on benchmark quantum simulations of electronic dynamics in a spin-boson model system described by various types of GQMEs. Exact memory kernels and inhomogeneous terms are obtained from short-time quantum-mechanically exact tensor-train thermo-field dynamics (TT-TFD) simulations and are compared with those obtained from an approximate linearized semiclassical method, allowing for assessment of the accuracy of these approximate memory kernels and inhomogeneous terms. Moreover, we have analyzed the computational cost of the full and reduced-dimensionality GQMEs. The scaling of the computational cost is dependent on several factors, sometimes with opposite scaling trends. The TT-TFD memory kernels can provide insights on the main sources of inaccuracies of GQME approaches when combined with approximate input methods and pave the road for the development of quantum circuits that implement GQMEs on digital quantum computers.
Collapse
Affiliation(s)
- Ningyi Lyu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ellen Mulvihill
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Micheline B Soley
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
4
|
Vasilieva LG, Kaminskaya OP, Yakovlev AG, Shkuropatov AY, Semenov AY, Nadtochenko VA, Krasnovsky AA, Parson WW, Allakhverdiev SI, Govindjee G. In memory of Vladimir Anatolievich Shuvalov (1943-2022): an outstanding biophysicist. PHOTOSYNTHESIS RESEARCH 2022; 154:207-223. [PMID: 36070062 DOI: 10.1007/s11120-022-00932-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
We present here a tribute to one of the foremost biophysicists of our time, Vladimir Anatolievich Shuvalov, who made important contributions in bioenergetics, especially on the primary steps of conversion of light energy into charge-separated states in both anoxygenic and oxygenic photosynthesis. For this, he and his research team exploited pico- and femtosecond transient absorption spectroscopy, photodichroism & circular dichroism spectroscopy, light-induced FTIR (Fourier-transform infrared) spectroscopy, and hole-burning spectroscopy. We remember him for his outstanding leadership and for being a wonderful mentor to many scientists in this area. Reminiscences by many [Suleyman Allakhverdiev (Russia); Robert Blankenship (USA); Richard Cogdell (UK); Arvi Freiberg (Estonia); Govindjee Govindjee (USA); Alexander Krasnovsky, jr, (Russia); William Parson (USA); Andrei Razjivin (Russia); Jian- Ren Shen (Japan); Sergei Shuvalov (Russia); Lyudmilla Vasilieva (Russia); and Andrei Yakovlev (Russia)] have included not only his wonderful personal character, but his outstanding scientific research.
Collapse
Affiliation(s)
- Lyudmila G Vasilieva
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Moscow Region, Pushchino, Russian Federation
| | - Olga P Kaminskaya
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Moscow Region, Pushchino, Russian Federation
| | - Andrei G Yakovlev
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119992, Russian Federation
| | - Anatoliy Ya Shkuropatov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Moscow Region, Pushchino, Russian Federation
| | - Alexey Yu Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119992, Russian Federation
| | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 117977, Russian Federation
| | - Alexander A Krasnovsky
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russian Federation
| | - William W Parson
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
| | - Suleyman I Allakhverdiev
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Moscow Region, Pushchino, Russian Federation.
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology and Center of Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 289 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Lai Y, Geva E. Electronic Absorption Spectra from Off-Diagonal Quantum Master Equations. J Chem Phys 2022; 157:104115. [DOI: 10.1063/5.0106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Quantum master equations (QMEs) provide a general framework for describing electronic dynamics within a complex molecular system. Off-diagonal QMEs (OD-QMEs) correspond to a family of QMEs that describe the electronic dynamics in the interaction picture based on treating the off-diagonal coupling terms between electronic states as a small perturbation within the framework of second-order perturbation theory. The fact that OD-QMEs are given in terms of the interaction picture makes it non-trivial to obtain Schrodinger picture electronic coherences from them. A key experimental quantity that relies on the ability to obtain accurate Schrodinger picture electronic coherences is the absorption spectrum. In this paper, we propose using a recently introduced procedure for extracting Schrodinger picture electronic coherences from interaction picture inputs to calculate electronic absorption spectra from electronic dynamics generated by OD-QMEs. The accuracy of the absorption spectra obtained in this way is studied in the context of a biexciton benchmark model, by comparing spectra calculated based on time-local and time-nonlocal OD-QMEs to spectra calculated based on a Redfield-type QME and the non-perturbative and quantum-mechanically exact hierarchical equations of motion (HEOM) method.
Collapse
Affiliation(s)
- Yifan Lai
- Chemistry, University of Michigan, United States of America
| | - Eitan Geva
- Department of Chemistry, University of Michigan Department of Chemistry, United States of America
| |
Collapse
|
6
|
Ma F, Romero E, Jones MR, Novoderezhkin VI, Yu LJ, van Grondelle R. Dynamics of diverse coherences in primary charge separation of bacterial reaction center at 77 K revealed by wavelet analysis. PHOTOSYNTHESIS RESEARCH 2022; 151:225-234. [PMID: 34709567 DOI: 10.1007/s11120-021-00881-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
To uncover the mechanism behind the high photo-electronic conversion efficiency in natural photosynthetic complexes it is essential to trace the dynamics of electronic and vibrational quantum coherences. Here we apply wavelet analysis to two-dimensional electronic spectroscopy data for three purple bacterial reaction centers with mutations that produce drastically different rates of primary charge separation. From the frequency distribution and dynamic evolution features of the quantum beating, electronic coherence with a dephasing lifetime of ~50 fs, vibronic coherence with a lifetime of ~150 fs and vibrational/vibronic coherences with a lifetime of 450 fs are distinguished. We find that they are responsible for, or couple to, different specific steps during the primary charge separation process, i.e., intradimer charge transfer inside the special bacteriochlorophyll pair followed by its relaxation and stabilization of the charge-transfer state. The results enlighten our understanding of how quantum coherences participate in, and contribute to, a biological electron transfer reaction.
Collapse
Affiliation(s)
- Fei Ma
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China.
- Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | - Elisabet Romero
- Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
- Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, E-43007, Tarragona, Spain
| | - Michael R Jones
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Vladimir I Novoderezhkin
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskie Gory, Moscow, Russia, 119992
| | - Long-Jiang Yu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China.
| | - Rienk van Grondelle
- Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Lai Y, Geva E. On simulating the dynamics of electronic populations and coherences via quantum master equations based on treating off-diagonal electronic coupling terms as a small perturbation. J Chem Phys 2021; 155:204101. [PMID: 34852488 DOI: 10.1063/5.0069313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Quantum master equations provide a general framework for describing the dynamics of electronic observables within a complex molecular system. One particular family of such equations is based on treating the off-diagonal coupling terms between electronic states as a small perturbation within the framework of second-order perturbation theory. In this paper, we show how different choices of projection operators, as well as whether one starts out with the time-convolution or the time-convolutionless forms of the generalized quantum master equation, give rise to four different types of such off-diagonal quantum master equations (OD-QMEs), namely, time-convolution and time-convolutionless versions of a Pauli-type OD-QME for only the electronic populations and an OD-QME for the full electronic density matrix (including both electronic populations and coherences). The fact that those OD-QMEs are given in terms of the interaction picture makes it non-trivial to obtain Schrödinger picture electronic coherences from them. To address this, we also extend a procedure for extracting Schrödinger picture electronic coherences from interaction picture populations recently introduced by Trushechkin in the context of time-convolutionless Pauli-type OD-QME to the other three types of OD-QMEs. The performance of the aforementioned four types of OD-QMEs is explored in the context of the Garg-Onuchic-Ambegaokar benchmark model for charge transfer in the condensed phase across a relatively wide parameter range. The results show that time-convolution OD-QMEs can be significantly more accurate than their time-convolutionless counterparts, particularly in the case of Pauli-type OD-QMEs, and that rather accurate Schrödinger picture coherences can be obtained from interaction picture electronic inputs.
Collapse
Affiliation(s)
- Yifan Lai
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
8
|
Das I, Pushkarev A, Sheves M. Light-Induced Conformational Alterations in Heliorhodopsin Triggered by the Retinal Excited State. J Phys Chem B 2021; 125:8797-8804. [PMID: 34342994 PMCID: PMC8389987 DOI: 10.1021/acs.jpcb.1c04551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Heliorhodopsins are a recently discovered
diverse retinal protein
family with an inverted topology of the opsin where the retinal protonated
Schiff base proton is facing the cell cytoplasmic side in contrast
to type 1 rhodopsins. To explore whether light-induced retinal double-bond
isomerization is a prerequisite for triggering protein conformational
alterations, we utilized the retinal oxime formation reaction and
thermal denaturation of a native heliorhodopsin of Thermoplasmatales archaeon SG8-52-1 (TaHeR) as well
as a trans-locked retinal analogue (TaHeRL) in which the critical C13=C14 double-bond
isomerization is prevented. We found that both reactions are light-accelerated
not only in the native but also in the “locked” pigment
despite lacking any isomerization. It is suggested that light-induced
charge redistribution in the retinal excited state polarizes the protein
and triggers protein conformational perturbations that thermally decay
in microseconds. The extracted activation energy and the frequency
factor for both the reactions reveal that the light enhancement of
TaHeR differs distinctly from the earlier studied type 1 microbial
rhodopsins.
Collapse
Affiliation(s)
- Ishita Das
- Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alina Pushkarev
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | | |
Collapse
|
9
|
Mulvihill E, Lenn KM, Gao X, Schubert A, Dunietz BD, Geva E. Simulating energy transfer dynamics in the Fenna-Matthews-Olson complex via the modified generalized quantum master equation. J Chem Phys 2021; 154:204109. [PMID: 34241158 DOI: 10.1063/5.0051101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The generalized quantum master equation (GQME) provides a general and formally exact framework for simulating the reduced dynamics of open quantum systems. The recently introduced modified approach to the GQME (M-GQME) corresponds to a specific implementation of the GQME that is geared toward simulating the dynamics of the electronic reduced density matrix in systems governed by an excitonic Hamiltonian. Such a Hamiltonian, which is often used for describing energy and charge transfer dynamics in complex molecular systems, is given in terms of diabatic electronic states that are coupled to each other and correspond to different nuclear Hamiltonians. Within the M-GQME approach, the effect of the nuclear degrees of freedom on the time evolution of the electronic density matrix is fully captured by a memory kernel superoperator, which can be obtained from short-lived (compared to the time scale of energy/charge transfer) projection-free inputs. In this paper, we test the ability of the M-GQME to predict the energy transfer dynamics within a seven-state benchmark model of the Fenna-Matthews-Olson (FMO) complex, with the short-lived projection-free inputs obtained via the Ehrenfest method. The M-GQME with Ehrenfest-based inputs is shown to yield accurate results across a wide parameter range. It is also found to dramatically outperform the direct application of the Ehrenfest method and to provide better-behaved convergence with respect to memory time in comparison to an alternative implementation of the GQME approach previously applied to the same FMO model.
Collapse
Affiliation(s)
- Ellen Mulvihill
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kristina M Lenn
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xing Gao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alexander Schubert
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
10
|
Aksu H, Maiti B, Ptaszek M, Dunietz BD. Photoinduced charge transfer in Zn(II) and Au(III)-ligated symmetric and asymmetric bacteriochlorin dyads: A computational study. J Chem Phys 2021; 153:134111. [PMID: 33032416 DOI: 10.1063/5.0023609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The excited-state properties and photoinduced charge-transfer (CT) kinetics in a series of symmetrical and asymmetrical Zn- and Au-ligated meso-meso-connected bacteriochlorin (BChl) complexes are studied computationally. BChl derivatives, which are excellent near-IR absorbing chromophores, are found to play a central role in bacterial photosynthetic reaction centers but are rarely used in artificial solar energy harvesting systems. The optical properties of chemically linked BChl complexes can be tuned by varying the linking group and involving different ligated metal ions. We investigate charge transfer in BChl dyads that are either directly linked or through a phenylene ring (1,4-phenylene) and which are ligating Zn or Au ions. The directly linked dyads with a nearly perpendicular arrangement of the BChl units bear markedly different properties than phenylene linked dyads. In addition, we find that the dielectric dependence of the intramolecular CT rate is very strong in neutral Zn-ligated dyads, whereas cationic Au-ligated dyads show negligible dielectric dependence of the CT rate. Rate constants of the photo induced CT process are calculated at the semiclassical Marcus level and are compared to fully quantum mechanical Fermi's golden rule based values. The rates are calculated using a screened range separated hybrid functional that offers a consistent framework for addressing environment polarization. We study solvated systems in two solvents of a low and a high scalar dielectric constant.
Collapse
Affiliation(s)
- Huseyin Aksu
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242-0001, USA
| | - Buddhadev Maiti
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242-0001, USA
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore, Maryland 21250-1000, USA
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242-0001, USA
| |
Collapse
|
11
|
Gao X, Geva E. Improving the Accuracy of Quasiclassical Mapping Hamiltonian Methods by Treating the Window Function Width as an Adjustable Parameter. J Phys Chem A 2020; 124:11006-11016. [DOI: 10.1021/acs.jpca.0c09750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xing Gao
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518100, China
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Acharyya N, Ovcharenko R, Fingerhut BP. On the role of non-diagonal system-environment interactions in bridge-mediated electron transfer. J Chem Phys 2020; 153:185101. [PMID: 33187441 DOI: 10.1063/5.0027976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bridge-mediated electron transfer (ET) between a donor and an acceptor is prototypical for the description of numerous most important ET scenarios. While multi-step ET and the interplay of sequential and direct superexchange transfer pathways in the donor-bridge-acceptor (D-B-A) model are increasingly understood, the influence of off-diagonal system-bath interactions on the transfer dynamics is less explored. Off-diagonal interactions account for the dependence of the ET coupling elements on nuclear coordinates (non-Condon effects) and are typically neglected. Here, we numerically investigate with quasi-adiabatic propagator path integral simulations the impact of off-diagonal system-environment interactions on the transfer dynamics for a wide range of scenarios in the D-B-A model. We demonstrate that off-diagonal system-environment interactions can have profound impact on the bridge-mediated ET dynamics. In the considered scenarios, the dynamics itself does not allow for a rigorous assignment of the underlying transfer mechanism. Furthermore, we demonstrate how off-diagonal system-environment interaction mediates anomalous localization by preventing long-time depopulation of the bridge B and how coherent transfer dynamics between donor D and acceptor A can be facilitated. The arising non-exponential short-time dynamics and coherent oscillations are interpreted within an equivalent Hamiltonian representation of a primary reaction coordinate model that reveals how the complex vibronic interplay of vibrational and electronic degrees of freedom underlying the non-Condon effects can impose donor-to-acceptor coherence transfer on short timescales.
Collapse
Affiliation(s)
- Nirmalendu Acharyya
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Roman Ovcharenko
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Benjamin P Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| |
Collapse
|
13
|
Janssen G, Eschenbach P, Kurle P, Bode B, Neugebauer J, de Groot H, Matysik J, Alia A. Analysis of the electronic structure of the primary electron donor of photosystem I of Spirodelaoligorrhiza by photochemically induced dynamic nuclear polarization (photo-CIDNP) solid-state nuclear magnetic resonance (NMR). MAGNETIC RESONANCE 2020; 1:261-274. [PMCID: PMC10655075 DOI: 10.5194/mr-1-261-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2024]
Abstract
The electron donor in photosystem I (PSI), the chlorophyll dimer P700, is studied by photochemically induced dynamic nuclear polarization (photo-CIDNP) magic angle spinning (MAS) nuclear magnetic resonance (NMR) on selectively 13 C and uniformly 15 N labeled PSI core preparations (PSI-100) obtained from the aquatic plant duckweed (Spirodela oligorrhiza ). Light-induced signals originate from the isotope-labeled nuclei of the cofactors involved in the spin-correlated radical pair forming upon light excitation. Signals are assigned to the two donor cofactors (Chl a and Chl a ') and the two acceptor cofactors (both Chl a ). Light-induced signals originating from both donor and acceptor cofactors demonstrate that electron transfer occurs through both branches of cofactors in the pseudo-C 2 symmetric reaction center (RC). The experimental results supported by quantum chemical calculations indicate that this functional symmetry occurs in PSI despite similarly sized chemical shift differences between the cofactors of PSI and the functionally asymmetric special pair donor of the bacterial RC of Rhodobacter sphaeroides . This contributes to converging evidence that local differences in time-averaged electronic ground-state properties, over the donor are of little importance for the functional symmetry breaking across photosynthetic RC species.
Collapse
Affiliation(s)
- Geertje J. Janssen
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, the Netherlands
| | - Patrick Eschenbach
- Organisch-Chemisches Institut, Universität Münster, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, Universität Münster, 48149 Münster, Germany
| | - Patrick Kurle
- Institut für Analytische Chemie, Universität Leipzig,
04189 Leipzig, Germany
| | - Bela E. Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, KY16 9ST St Andrews, Scotland
| | - Johannes Neugebauer
- Organisch-Chemisches Institut, Universität Münster, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, Universität Münster, 48149 Münster, Germany
| | - Huub J. M. de Groot
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, the Netherlands
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig,
04189 Leipzig, Germany
| | - Alia Alia
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, the Netherlands
- Institut für Medizinische Physik und Biophysik, Universität
Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
14
|
Guevara R, Mateos DM, Pérez Velázquez JL. Consciousness as an Emergent Phenomenon: A Tale of Different Levels of Description. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E921. [PMID: 33286690 PMCID: PMC7597170 DOI: 10.3390/e22090921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 01/17/2023]
Abstract
One of the biggest queries in cognitive sciences is the emergence of consciousness from matter. Modern neurobiological theories of consciousness propose that conscious experience is the result of interactions between large-scale neuronal networks in the brain, traditionally described within the realm of classical physics. Here, we propose a generalized connectionist framework in which the emergence of "conscious networks" is not exclusive of large brain areas, but can be identified in subcellular networks exhibiting nontrivial quantum phenomena. The essential feature of such networks is the existence of strong correlations in the system (classical or quantum coherence) and the presence of an optimal point at which the system's complexity and energy dissipation are maximized, whereas free-energy is minimized. This is expressed either by maximization of the information content in large scale functional networks or by achieving optimal efficiency through the quantum Goldilock effect.
Collapse
Affiliation(s)
- Ramón Guevara
- Integrative Neuroscience and Cognition Centre (INCC UMR8002), University of Paris and CNRS, 75270 Paris, France
- Department of Physics and Astronomy, University of Padova, 35131 Padova, Italy
| | - Diego M. Mateos
- Department of Science and Technology, Universidad Autónoma de Entre Ríos, Paraná 3100, Argentina;
- Instituto de Matemática Aplicada del Litoral (IMAL-CONICET-UNL), Santa Fe 3000, Argentina
| | | |
Collapse
|
15
|
Gao X, Saller MAC, Liu Y, Kelly A, Richardson JO, Geva E. Benchmarking Quasiclassical Mapping Hamiltonian Methods for Simulating Electronically Nonadiabatic Molecular Dynamics. J Chem Theory Comput 2020; 16:2883-2895. [DOI: 10.1021/acs.jctc.9b01267] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xing Gao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Yudan Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Aaron Kelly
- Department of Chemistry, Dalhousie University, 15000 Halifax, Nova Scotia, Canada
| | | | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
16
|
Aksu H, Schubert A, Bhandari S, Yamada A, Geva E, Dunietz BD. On the Role of the Special Pair in Photosystems as a Charge Transfer Rectifier. J Phys Chem B 2020; 124:1987-1994. [PMID: 32109062 DOI: 10.1021/acs.jpcb.9b11431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The special pair, a bacteriochlorophyll a (BChl) dimer found at the core of bacterial reaction centers, is known to play a key role in the functionality of photosystems as a precursor to the photosynthesis process. In this paper, we analyze the inherent affinity of the special pair to rectify the intrapair photo-induced charge transfer (CT). In particular, we show that the molecular environment affects the nuclear geometry, resulting in symmetry breaking between the two possible intrapair CT processes. To this end, we study the relationships of the intrapair CT and the molecular geometry with respect to the effective dielectric constant provided by the molecular environment. We identify the special pair structural feature that breaks the symmetry between the two molecules, leading to CT rectification. Excited state energies, oscillator strengths, and electronic coupling values are obtained via time-dependent density functional theory, employing a recently developed framework based on a screened range-separated hybrid functional within a polarizable continuum model (SRSH-PCM). We analyze the rectification capability of the special pair by calculating the CT rates using a first-principles-based Fermi's golden rule approach.
Collapse
Affiliation(s)
- Huseyin Aksu
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Alexander Schubert
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Srijana Bhandari
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Atsushi Yamada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
17
|
Coherent intradimer dynamics in reaction centers of photosynthetic green bacterium Chloroflexus aurantiacus. Sci Rep 2020; 10:228. [PMID: 31937882 PMCID: PMC6959224 DOI: 10.1038/s41598-019-57115-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 12/20/2019] [Indexed: 12/04/2022] Open
Abstract
Early-time dynamics of absorbance changes (light minus dark) in the long-wavelength Qy absorption band of bacteriochlorophyll dimer P of isolated reaction centers (RCs) from thermophilic green bacterium Chloroflexus (Cfx.) aurantiacus was studied by difference pump-probe spectroscopy with 18-fs resolution at cryogenic temperature. It was found that the stimulated emission spectrum gradually moves to the red on the ~100-fs time scale and subsequently oscillates with a major frequency of ~140 cm−1. By applying the non-secular Redfield theory and linear susceptibility theory, the coherent dynamics of the stimulated emission from the excited state of the primary electron donor, bacteriochlorophyll dimer P*, was modeled. The model showed the possibility of an extremely fast transition from the locally excited state P1* to the spectrally different excited state P2*. This transition is clearly seen in the kinetics of the stimulated emission at 880 and 945 nm, where mostly P1* and P2* states emit, respectively. These findings are similar to those obtained previously in RCs of the purple bacterium Rhodobacter (Rba.) sphaeroides. The assumption about the existence of the second excited state P2* helps to explain the complicated temporal behavior of the ΔA spectrum measured by pump-probe spectroscopy. It is interesting that, in spite of the strong coupling between the P1* and P2* states assumed in our model, the form of the coherent oscillations is mainly defined by pure vibrational coherence in the excited states. A possible nature of the P2* state is discussed.
Collapse
|
18
|
Mulvihill E, Gao X, Liu Y, Schubert A, Dunietz BD, Geva E. Combining the mapping Hamiltonian linearized semiclassical approach with the generalized quantum master equation to simulate electronically nonadiabatic molecular dynamics. J Chem Phys 2019; 151:074103. [DOI: 10.1063/1.5110891] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ellen Mulvihill
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xing Gao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yudan Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alexander Schubert
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | - Barry D. Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
19
|
|
20
|
Ghosh M, Jung KH, Sheves M. Protein conformational alterations induced by the retinal excited state in proton and sodium pumping rhodopsins. Phys Chem Chem Phys 2019; 21:9450-9455. [PMID: 31012470 DOI: 10.1039/c9cp00681h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Retinal proteins' biological activity is triggered by the retinal chromophore's light absorption, which initiates a photocycle. However, the mechanism by which retinal light excitation induces the protein's response is not completely understood. Recently, two new retinal proteins were discovered, namely, King Sejong 1-2 (KS1-2) and Nonlabens (Donghaeana) dokdonensis (DDR2), which exhibit H+ and Na+ pumping activities, respectively. To pinpoint whether protein conformation alterations can be achieved without light-induced retinal C13[double bond, length as m-dash]C14 double-bond isomerization, we utilized the hydroxylamine reaction, which cleaves the protonated Schiff base bond through which the retinal chromophore is covalently bound to the protein. The reaction is accelerated by light even though the cleavage is not a photochemical reaction. Therefore, the cleavage reaction may serve as a tool to detect protein conformation alterations. We discovered that in both KS1-2 and DDR2, the hydroxylamine reaction is light accelerated, even in artificial pigments derived from synthetic retinal in which the crucial C13[double bond, length as m-dash]C14 double-bond isomerization is prevented. Therefore, we propose that in both proteins the light-induced retinal charge redistribution taking place in the retinal excited state polarizes the protein, which, in turn, triggers protein conformation alterations. A further general possible application of the present finding is associated with other photoreceptor proteins having retinal or other non-retinal chromophores whose light excitation may affect the protein conformation.
Collapse
Affiliation(s)
- Mihir Ghosh
- Department of Organic Chemistry, Weizmann Institute of Science Rehovot, Israel.
| | | | | |
Collapse
|
21
|
Ma F, Romero E, Jones MR, Novoderezhkin VI, van Grondelle R. Both electronic and vibrational coherences are involved in primary electron transfer in bacterial reaction center. Nat Commun 2019; 10:933. [PMID: 30804346 PMCID: PMC6389996 DOI: 10.1038/s41467-019-08751-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/15/2019] [Indexed: 11/09/2022] Open
Abstract
Understanding the mechanism behind the near-unity efficiency of primary electron transfer in reaction centers is essential for designing performance-enhanced artificial solar conversion systems to fulfill mankind’s growing demands for energy. One of the most important challenges is distinguishing electronic and vibrational coherence and establishing their respective roles during charge separation. In this work we apply two-dimensional electronic spectroscopy to three structurally-modified reaction centers from the purple bacterium Rhodobacter sphaeroides with different primary electron transfer rates. By comparing dynamics and quantum beats, we reveal that an electronic coherence with dephasing lifetime of ~190 fs connects the initial excited state, P*, and the charge-transfer intermediate \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{P}}_{\mathrm{A}}^ + {\mathrm{P}}_{\mathrm{B}}^ -$$\end{document}PA+PB-; this \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{P}}^ \ast \to {\mathrm{P}}_{\mathrm{A}}^ + {\mathrm{P}}_{\mathrm{B}}^ -$$\end{document}P*→PA+PB- step is associated with a long-lived quasi-resonant vibrational coherence; and another vibrational coherence is associated with stabilizing the primary photoproduct, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{P}}^ + {\mathrm{B}}_{\mathrm{A}}^ -$$\end{document}P+BA-. The results show that both electronic and vibrational coherences are involved in primary electron transfer process and they correlate with the super-high efficiency. Distinguishing electronic and vibrational coherences helps to clarify the near-unity efficiency of primary electron transfer in reaction centres. Here, the authors report their respective correlation with the electron transfer rate by comparing the 2D electronic spectra of three mutant reaction centres.
Collapse
Affiliation(s)
- Fei Ma
- Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | - Elisabet Romero
- Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Michael R Jones
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Vladimir I Novoderezhkin
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskie Gory, Moscow, 119992, Russia
| | - Rienk van Grondelle
- Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Mulvihill E, Schubert A, Sun X, Dunietz BD, Geva E. A modified approach for simulating electronically nonadiabatic dynamics via the generalized quantum master equation. J Chem Phys 2019; 150:034101. [DOI: 10.1063/1.5055756] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ellen Mulvihill
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alexander Schubert
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | - Xiang Sun
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Barry D. Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
23
|
Kim CW, Lee WG, Kim I, Rhee YM. Effect of Underdamped Vibration on Excitation Energy Transfer: Direct Comparison between Two Different Partitioning Schemes. J Phys Chem A 2019; 123:1186-1197. [DOI: 10.1021/acs.jpca.8b10977] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Chang Woo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Weon-Gyu Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Inkoo Kim
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon 16678, Korea
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
24
|
Richter M, Fingerhut BP. Coupled excitation energy and charge transfer dynamics in reaction centre inspired model systems. Faraday Discuss 2019; 216:72-93. [PMID: 31012450 DOI: 10.1039/c8fd00189h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Functional operation conditions of reaction centre core complexes require the tight coupling of exciton states to concomitant charge separation. Rigorous theoretical treatment of such integrated excitation energy transfer (EET) and charge transfer (CT) dynamics is particularly challenging due to (i) appreciable system sizes, (ii) inter-site and system-bath couplings of similar magnitude that render the Born-Markov approximation invalid, (iii) substantial reorganization energies of CT states, and (iv) the presence of complex structured spectral densities due to vibrational modes of the surroundings. We present numerical simulations on bacterial reaction centre (bRC) inspired model systems that utilize the recently developed MACGIC-iQUAPI method [Richter et al., J. Chem. Phys., 2017, 146, 214101]. The simulations demonstrate that the method provides a rigorous framework for the investigation of such integrated EET-CT dynamics. First, the applicability of the MACGIC-iQUAPI method is explored for a transition from monotonically decaying to oscillatory system-bath influence coefficients, a behavior inherently imposed by structured bath spectral densities. Tightly coupled EET and CT dynamics is further addressed for an excitonic subsystem that resembles strong coupling of special pair states and serves as donor towards a generic bridge-acceptor system. By solving the dissipative quantum dynamics of such bRC inspired model systems, the quenching of excitonic coherence on the hundreds of femtoseconds timescale is explored via a variation of the bridge state energetics, resembling a continuous transition from sequential to superexchange mediated CT regimes. Further, the simulations explore the influence of resonant vibrational modes on the quenching of excitonic coherence via CT. The results reveal a moderate influence of vibrational mode on charge separation dynamics in regimes of biologically relevant EET and CT dynamics.
Collapse
Affiliation(s)
- Martin Richter
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany.
| | - Benjamin P Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany.
| |
Collapse
|
25
|
Marais A, Adams B, Ringsmuth AK, Ferretti M, Gruber JM, Hendrikx R, Schuld M, Smith SL, Sinayskiy I, Krüger TPJ, Petruccione F, van Grondelle R. The future of quantum biology. J R Soc Interface 2018; 15:20180640. [PMID: 30429265 PMCID: PMC6283985 DOI: 10.1098/rsif.2018.0640] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/12/2018] [Indexed: 01/17/2023] Open
Abstract
Biological systems are dynamical, constantly exchanging energy and matter with the environment in order to maintain the non-equilibrium state synonymous with living. Developments in observational techniques have allowed us to study biological dynamics on increasingly small scales. Such studies have revealed evidence of quantum mechanical effects, which cannot be accounted for by classical physics, in a range of biological processes. Quantum biology is the study of such processes, and here we provide an outline of the current state of the field, as well as insights into future directions.
Collapse
Affiliation(s)
- Adriana Marais
- Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Betony Adams
- Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Andrew K Ringsmuth
- Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- ARC Centre of Excellence for Engineered Quantum Systems, The University of Queensland, St Lucia 4072, Australia
| | - Marco Ferretti
- Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - J Michael Gruber
- Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Ruud Hendrikx
- Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Maria Schuld
- Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Samuel L Smith
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Ilya Sinayskiy
- Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- National Institute for Theoretical Physics, KwaZulu-Natal, South Africa
| | - Tjaart P J Krüger
- Department of Physics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, South Africa
| | - Francesco Petruccione
- Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- National Institute for Theoretical Physics, KwaZulu-Natal, South Africa
| | - Rienk van Grondelle
- Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
26
|
Fujihashi Y, Higashi M, Ishizaki A. Intramolecular Vibrations Complement the Robustness of Primary Charge Separation in a Dimer Model of the Photosystem II Reaction Center. J Phys Chem Lett 2018; 9:4921-4929. [PMID: 30095266 DOI: 10.1021/acs.jpclett.8b02119] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The energy conversion of oxygenic photosynthesis is triggered by primary charge separation in proteins at the photosystem II reaction center. Here, we investigate the impacts of the protein environment and intramolecular vibrations on primary charge separation at the photosystem II reaction center. This is accomplished by combining the quantum dynamic theories of condensed phase electron transfer with quantum chemical calculations to evaluate the vibrational Huang-Rhys factors of chlorophyll and pheophytin molecules. We report that individual vibrational modes play a minor role in promoting charge separation, contrary to the discussion in recent publications. Nevertheless, these small contributions accumulate to considerably influence the charge separation rate, resulting in subpicosecond charge separation almost independent of the driving force and temperature. We suggest that the intramolecular vibrations complement the robustness of the charge separation in the photosystem II reaction center against the inherently large static disorder of the involved electronic energies.
Collapse
Affiliation(s)
- Yuta Fujihashi
- Institute for Molecular Science , National Institutes of Natural Sciences , Okazaki 444-8585 , Japan
| | - Masahiro Higashi
- Department of Chemistry, Biology, and Marine Science , University of the Ryukyus , 1 Senbaru , Nishihara , Okinawa 903-0213 , Japan
| | - Akihito Ishizaki
- Institute for Molecular Science , National Institutes of Natural Sciences , Okazaki 444-8585 , Japan
- School of Physical Sciences , The Graduate University for Advanced Studies , Okazaki 444-8585 , Japan
| |
Collapse
|
27
|
Ma F, Romero E, Jones MR, Novoderezhkin VI, van Grondelle R. Vibronic Coherence in the Charge Separation Process of the Rhodobacter sphaeroides Reaction Center. J Phys Chem Lett 2018; 9:1827-1832. [PMID: 29584941 PMCID: PMC6023262 DOI: 10.1021/acs.jpclett.8b00108] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/27/2018] [Indexed: 05/19/2023]
Abstract
Two-dimensional electronic spectroscopy was applied to a variant of the reaction center (RC) of purple bacterium Rhodobacter sphaeroides lacking the primary acceptor ubiquinone in order to understand the ultrafast separation and transfer of charge between the bacteriochlorin cofactors. For the first time, characteristic 2D spectra were obtained for the participating excited and charge-transfer states, and the electron-transfer cascade (including two different channels, the P* and B* channels) was fully mapped. By analyzing quantum beats using 2D frequency maps, excited-state vibrational modes at 153 and 33 cm-1 were identified. We speculate that these modes couple to the charge separation (CS) process and collectively optimize the CS and are responsible for the superhigh efficiency.
Collapse
Affiliation(s)
- Fei Ma
- Department of Physics and Astronomy , Faculty of Sciences, VU University Amsterdam , De Boelelaan 1081 , 1081 HV Amsterdam , The Netherlands
| | - Elisabet Romero
- Department of Physics and Astronomy , Faculty of Sciences, VU University Amsterdam , De Boelelaan 1081 , 1081 HV Amsterdam , The Netherlands
| | - Michael R Jones
- School of Biochemistry , University of Bristol , Biomedical Sciences Building, University Walk, Bristol BS8 1TD , United Kingdom
| | - Vladimir I Novoderezhkin
- A. N. Belozersky Institute of Physico-Chemical Biology , Moscow State University , Leninskie Gory , 119992 Moscow , Russia
| | - Rienk van Grondelle
- Department of Physics and Astronomy , Faculty of Sciences, VU University Amsterdam , De Boelelaan 1081 , 1081 HV Amsterdam , The Netherlands
| |
Collapse
|
28
|
Novoderezhkin VI, Romero E, Prior J, van Grondelle R. Exciton-vibrational resonance and dynamics of charge separation in the photosystem II reaction center. Phys Chem Chem Phys 2018; 19:5195-5208. [PMID: 28149991 DOI: 10.1039/c6cp07308e] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The dynamics of charge separation in the photosystem II reaction center (PSII-RC) in the presence of intramolecular vibrations with their frequency matching the energy gap between the exciton state acting as the primary electron donor and the first charge-transfer (CT) state are investigated. A reduced PSII-RC 4-state model explicitly including a CT state is analyzed within Redfield relaxation theory in the multidimensional exciton-vibrational (vibronic) basis. This model is used to study coherent energy/electron transfers and their spectral signatures obtained by two-dimensional electronic spectroscopy (2DES). Modeling of the time-resolved 2D frequency maps obtained by wavelet analysis reveals the origins of the coherences which produce the observed oscillating features in 2DES and allows comparing the lifetimes of the coherences. The results suggest faster excitonic decoherence as compared with longer-lived vibronic oscillations. The emerging picture of the dynamics unravels the role of resonant vibrations in sustaining the effective energy conversion in the PSII-RC. We demonstrate that the mixing of the exciton and CT states promoted by a resonant vibrational quantum allows faster penetration of excitation energy into the CT with subsequent dynamic localization at the bottom of the CT potential induced by the remaining non-resonant nuclear modes. The degree of vibration-assisted mixing and, correspondingly, the rate of primary charge separation, increases significantly in the case of electron-vibrational resonance. The observed features illustrate the principles of quantum design of the photosynthetic unit. These principles are connected with the phenomenon of coherent mixing within vibronic eigenstates, increasing the effectiveness of charge separation not only upon coherent and impulsive laser excitation utilized in the 2DES experiment, but also under natural conditions under non-coherent non-impulsive solar light illumination.
Collapse
Affiliation(s)
- Vladimir I Novoderezhkin
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskie Gory, 119992, Moscow, Russia.
| | - Elisabet Romero
- Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Javier Prior
- Departamento de Física Aplicada, Universidad Politécnica de Cartagena, Cartagena 30202, Spain
| | - Rienk van Grondelle
- Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
29
|
Rancova O, Jankowiak R, Abramavicius D. Role of Bath Fluctuations in the Double-Excitation Manifold in Shaping the 2DES of Bacterial Reaction Centers at Low Temperature. J Phys Chem B 2018; 122:1348-1366. [DOI: 10.1021/acs.jpcb.7b08905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Olga Rancova
- Institute
of Chemical Physics, Vilnius University, Sauletekio al 9-III, 10222 Vilnius, Lithuania
| | - Ryszard Jankowiak
- Department
of Chemistry and Department of Physics, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506-0401, United States
| | - Darius Abramavicius
- Institute
of Chemical Physics, Vilnius University, Sauletekio al 9-III, 10222 Vilnius, Lithuania
| |
Collapse
|
30
|
Poddubnyy VV, Glebov IO, Eremin VV. Protein Vibration Effects on Primary Electron Transfer Dynamics in Rhodobacter sphaeroides Photosynthetic Reaction Center. J Phys Chem B 2017; 121:10639-10647. [PMID: 29095621 DOI: 10.1021/acs.jpcb.7b09321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Primary electron transfer (ET) in the chromophore subsystem in a bacterial reaction center (RC) is a unique process, and is coupled with the protein motion, which, like the ET, is caused by photoexcitation of these chromophores. ET is also coupled with dissipative processes, which are caused by interaction between chromophores and vibrations of its surrounding protein. We propose a new dynamics calculation method that accounts for both these effects of protein vibrations. Within this method, the photoinduced protein motion causes an addition of coherent component to the ET rate. We performed dynamics calculation using this method and parameters, which were determined from the ab initio wave functions of the chromophore subsystem and protein normal vibrational modes. We showed that it is this protein motion that causes oscillations in the time-dependencies of stimulated emission intensities and of absorption at 1020 nm. Moreover, the latter oscillations are related to the coherent component of the ET rate.
Collapse
Affiliation(s)
- Vladimir V Poddubnyy
- Department of Chemistry, Lomonosov Moscow State University , Moscow, Russia 119991
| | - Ilya O Glebov
- Department of Chemistry, Lomonosov Moscow State University , Moscow, Russia 119991
| | - Vadim V Eremin
- Department of Chemistry, Lomonosov Moscow State University , Moscow, Russia 119991
| |
Collapse
|
31
|
Mechanism of adiabatic primary electron transfer in photosystem I: Femtosecond spectroscopy upon excitation of reaction center in the far-red edge of the QY band. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:895-905. [DOI: 10.1016/j.bbabio.2017.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 11/23/2022]
|
32
|
Stones R, Hossein-Nejad H, van Grondelle R, Olaya-Castro A. On the performance of a photosystem II reaction centre-based photocell. Chem Sci 2017; 8:6871-6880. [PMID: 29147512 PMCID: PMC5636947 DOI: 10.1039/c7sc02983g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/04/2017] [Indexed: 12/26/2022] Open
Abstract
The photosystem II reaction centre is the photosynthetic complex responsible for oxygen production on Earth. Its water splitting function is particularly favoured by the formation of a stable charge separated state via a pathway that starts at an accessory chlorophyll. Here we envision a photovoltaic device that places one of these complexes between electrodes and investigate how the mean current and its fluctuations depend on the microscopic interactions underlying charge separation in the pathway considered. Our results indicate that coupling to well resolved vibrational modes does not necessarily offer an advantage in terms of power output but can lead to photo-currents with suppressed noise levels characterizing a multi-step ordered transport process. Besides giving insight into the suitability of these complexes for molecular-scale photovoltaics, our work suggests a new possible biological function for the vibrational environment of photosynthetic reaction centres, namely, to reduce the intrinsic current noise for regulatory processes.
Collapse
Affiliation(s)
- Richard Stones
- Department of Physics and Astronomy , University College London , Gower Street , London , WC1E 6BT , UK .
| | - Hoda Hossein-Nejad
- Department of Physics and Astronomy , University College London , Gower Street , London , WC1E 6BT , UK .
| | - Rienk van Grondelle
- Department of Physics and Astronomy , VU University , 1081 HV Amsterdam , The Netherlands
| | - Alexandra Olaya-Castro
- Department of Physics and Astronomy , University College London , Gower Street , London , WC1E 6BT , UK .
| |
Collapse
|
33
|
Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 2017; 543:355-365. [PMID: 28300093 DOI: 10.1038/nature22012] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/01/2017] [Indexed: 12/15/2022]
Abstract
Photosynthesis is the natural process that converts solar photons into energy-rich products that are needed to drive the biochemistry of life. Two ultrafast processes form the basis of photosynthesis: excitation energy transfer and charge separation. Under optimal conditions, every photon that is absorbed is used by the photosynthetic organism. Fundamental quantum mechanics phenomena, including delocalization, underlie the speed, efficiency and directionality of the charge-separation process. At least four design principles are active in natural photosynthesis, and these can be applied practically to stimulate the development of bio-inspired, human-made energy conversion systems.
Collapse
|
34
|
Seibt J, Mančal T. Ultrafast energy transfer with competing channels: Non-equilibrium Förster and Modified Redfield theories. J Chem Phys 2017; 146:174109. [PMID: 28477589 DOI: 10.1063/1.4981523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joachim Seibt
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - Tomáš Mančal
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| |
Collapse
|
35
|
Gelbwaser-Klimovsky D, Aspuru-Guzik A. On thermodynamic inconsistencies in several photosynthetic and solar cell models and how to fix them. Chem Sci 2017; 8:1008-1014. [PMID: 28451238 PMCID: PMC5354066 DOI: 10.1039/c6sc04350j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022] Open
Abstract
We analyze standard theoretical models of solar energy conversion developed to study solar cells and photosynthetic systems. We show that assuming the energy transfer to the reaction center/electric circuit is through a decay rate or "sink", contradicts the second law of thermodynamics. We put forward a thermodynamically consistent alternative by explicitly considering parts of the reaction center/electric circuit and by employing a Hamiltonian transfer. The predicted energy transfer by the new scheme differs from the one found using a decay rate, casting doubts on the validity of the conclusions obtained by models which include the latter.
Collapse
Affiliation(s)
| | - Alán Aspuru-Guzik
- Department of Chemistry and Chemical Biology , Cambridge , MA 02138 , USA .
| |
Collapse
|
36
|
Novoderezhkin VI, Romero E, van Grondelle R. How exciton-vibrational coherences control charge separation in the photosystem II reaction center. Phys Chem Chem Phys 2016; 17:30828-41. [PMID: 25854607 DOI: 10.1039/c5cp00582e] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In photosynthesis absorbed sun light produces collective excitations (excitons) that form a coherent superposition of electronic and vibrational states of the individual pigments. Two-dimensional (2D) electronic spectroscopy allows a visualization of how these coherences are involved in the primary processes of energy and charge transfer. Based on quantitative modeling we identify the exciton-vibrational coherences observed in 2D photon echo of the photosystem II reaction center (PSII-RC). We find that the vibrations resonant with the exciton splittings can modify the delocalization of the exciton states and produce additional states, thus promoting directed energy transfer and allowing a switch between the two charge separation pathways. We conclude that the coincidence of the frequencies of the most intense vibrations with the splittings within the manifold of exciton and charge-transfer states in the PSII-RC is not occurring by chance, but reflects a fundamental principle of how energy conversion in photosynthesis was optimized.
Collapse
Affiliation(s)
- Vladimir I Novoderezhkin
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskie Gory, 119992, Moscow, Russia.
| | - Elisabet Romero
- Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
37
|
Malý P, Somsen OJG, Novoderezhkin VI, Mančal T, van Grondelle R. The Role of Resonant Vibrations in Electronic Energy Transfer. Chemphyschem 2016; 17:1356-68. [PMID: 26910485 PMCID: PMC5021137 DOI: 10.1002/cphc.201500965] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/23/2015] [Indexed: 12/02/2022]
Abstract
Nuclear vibrations play a prominent role in the spectroscopy and dynamics of electronic systems. As recent experimental and theoretical studies suggest, this may be even more so when vibrational frequencies are resonant with transitions between the electronic states. Herein, a vibronic multilevel Redfield model is reported for excitonically coupled electronic two-level systems with a few explicitly included vibrational modes and interacting with a phonon bath. With numerical simulations the effects of the quantized vibrations on the dynamics of energy transfer and coherence in a model dimer are illustrated. The resonance between the vibrational frequency and energy gap between the sites leads to a large delocalization of vibronic states, which then results in faster energy transfer and longer-lived mixed coherences.
Collapse
Affiliation(s)
- Pavel Malý
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
- Institute of Physics, Charles University in Prague, Ke Karlovu 5, 12116, Prague, Czech Republic
| | - Oscar J G Somsen
- Netherlands Defence Academy, P.O. Box 10000, 1780 CA, Den Helder, The Netherlands
| | - Vladimir I Novoderezhkin
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskie Gory, 119992, Moscow, Russia
| | - Tomáš Mančal
- Institute of Physics, Charles University in Prague, Ke Karlovu 5, 12116, Prague, Czech Republic
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Milanovsky GE, Shuvalov VA, Semenov AY, Cherepanov DA. Elastic Vibrations in the Photosynthetic Bacterial Reaction Center Coupled to the Primary Charge Separation: Implications from Molecular Dynamics Simulations and Stochastic Langevin Approach. J Phys Chem B 2015; 119:13656-67. [PMID: 26148224 DOI: 10.1021/acs.jpcb.5b03036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Primary electron transfer reactions in the bacterial reaction center are difficult for theoretical explication: the reaction kinetics, almost unalterable over a wide range of temperature and free energy changes, revealed oscillatory features observed initially by Shuvalov and coauthors (1997, 2002). Here the reaction mechanism was studied by molecular dynamics and analyzed within a phenomenological Langevin approach. The spectral function of polarization around the bacteriochlorophyll special pair PLPM and the dielectric response upon the formation of PL(+)PM(-) dipole within the special pair were calculated. The system response was approximated by Langevin oscillators; the respective frequencies, friction, and energy coupling coefficients were determined. The protein dynamics around PL and PM were distinctly asymmetric. The polarization around PL included slow modes with the frequency 30-80 cm(-1) and the total amplitude of 130 mV. Two main low-frequency modes of protein response around PM had frequencies of 95 and 155 cm(-1) and the total amplitude of 30 mV. In addition, a slowly damping mode with the frequency of 118 cm(-1) and the damping time >1.1 ps was coupled to the formation of PL(+)PM(-) dipole. It was attributed to elastic vibrations of α-helices in the vicinity of PLPM. The proposed trapping of P excitation energy in the form of the elastic vibrations can rationalize the observed properties of the primary electron transfer reactions, namely, the unusual temperature and ΔG dependences, the oscillating phenomena in kinetics, and the asymmetry of the charge separation reactions.
Collapse
Affiliation(s)
- Georgy E Milanovsky
- A. N. Belozersky Institute of Physical-Chemical Biology, Moscow State University , Leninskiye Gory, 119992 Moscow, Russia
| | - Vladimir A Shuvalov
- A. N. Belozersky Institute of Physical-Chemical Biology, Moscow State University , Leninskiye Gory, 119992 Moscow, Russia.,N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences , Kosygina st., 4, 117977 Moscow, Russia
| | - Alexey Yu Semenov
- A. N. Belozersky Institute of Physical-Chemical Biology, Moscow State University , Leninskiye Gory, 119992 Moscow, Russia.,N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences , Kosygina st., 4, 117977 Moscow, Russia
| | - Dmitry A Cherepanov
- A. N. Belozersky Institute of Physical-Chemical Biology, Moscow State University , Leninskiye Gory, 119992 Moscow, Russia.,A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31, Leninsky Prospect, 119071 Moscow, Russia
| |
Collapse
|
39
|
The role of retinal light induced dipole in halorhodopsin structural alteration. FEBS Lett 2015; 589:3576-80. [PMID: 26467279 DOI: 10.1016/j.febslet.2015.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/05/2015] [Accepted: 10/02/2015] [Indexed: 11/20/2022]
Abstract
The present work studies the mechanism of light induced protein conformational changes in the over-expressed mutant of halorhodopsin (phR) from Natronomonas pharaonis. The catalytic effect of light is reflected in accelerating hydroxyl amine reaction rate of light adapted phR. Light catalysis was detected in native phR but also in artificial pigments derived from tailored retinal analogs locked at the crucial C13=C14 double bond. It is proposed that the photoexcited retinal chromophore induces protein concerted motion that decreases the energy gap between reactants ground and transition states. This energy gap is overcome by coupling to specific protein vibrations. Surprisingly, the rate constants show unusual decreasing trend following temperature increase both for native and artificial pigments.
Collapse
|
40
|
Duan HG, Dijkstra AG, Nalbach P, Thorwart M. Efficient tool to calculate two-dimensional optical spectra for photoactive molecular complexes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042708. [PMID: 26565273 DOI: 10.1103/physreve.92.042708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 06/05/2023]
Abstract
We combine the coherent modified Redfield theory (CMRT) with the equation of motion-phase matching approach (PMA) to calculate two-dimensional photon-echo spectra for photoactive molecular complexes with an intermediate strength of the coupling to their environment. Both techniques are highly efficient, yet they involve approximations at different levels. By explicitly comparing with the numerically exact quasiadiabatic path integral approach, we show for the Fenna-Matthews-Olson complex that the CMRT describes the decay rates in the population dynamics well, but final stationary populations and the oscillation frequencies differ slightly. In addition, we use the combined CMRT+PMA to calculate two-dimensional photon-echo spectra for a simple dimer model. We find excellent agreement with the exact path integral calculations at short waiting times where the dynamics is still coherent. For long waiting times, differences occur due to different final stationary states, specifically for strong system-bath coupling. For weak to intermediate system-bath couplings, which is most important for natural photosynthetic complexes, the combined CMRT+PMA gives reasonable results with acceptable computational efforts.
Collapse
Affiliation(s)
- Hong-Guang Duan
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Arend G Dijkstra
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Peter Nalbach
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
41
|
Purchase RL, de Groot HJM. Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield. Interface Focus 2015; 5:20150014. [PMID: 26052428 PMCID: PMC4410567 DOI: 10.1098/rsfs.2015.0014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This contribution discusses why we should consider developing artificial photosynthesis with the tandem approach followed by the Dutch BioSolar Cells consortium, a current operational paradigm for a global artificial photosynthesis project. We weigh the advantages and disadvantages of a tandem converter against other approaches, including biomass. Owing to the low density of solar energy per unit area, artificial photosynthetic systems must operate at high efficiency to minimize the land (or sea) area required. In particular, tandem converters are a much better option than biomass for densely populated countries and use two photons per electron extracted from water as the raw material into chemical conversion to hydrogen, or carbon-based fuel when CO2 is also used. For the average total light sum of 40 mol m−2 d−1 for The Netherlands, the upper limits are many tons of hydrogen or carbon-based fuel per hectare per year. A principal challenge is to forge materials for quantitative conversion of photons to chemical products within the physical limitation of an internal potential of ca 2.9 V. When going from electric charge in the tandem to hydrogen and back to electricity, only the energy equivalent to 1.23 V can be stored in the fuel and regained. A critical step is then to learn from nature how to use the remaining difference of ca 1.7 V effectively by triple use of one overpotential for preventing recombination, kinetic stabilization of catalytic intermediates and finally generating targeted heat for the release of oxygen. Probably the only way to achieve this is by using bioinspired responsive matrices that have quantum–classical pathways for a coherent conversion of photons to fuels, similar to what has been achieved by natural selection in evolution. In appendix A for the expert, we derive a propagator that describes how catalytic reactions can proceed coherently by a convergence of time scales of quantum electron dynamics and classical nuclear dynamics. We propose that synergy gains by such processes form a basis for further progress towards high efficiency and yield for a global project on artificial photosynthesis. Finally, we look at artificial photosynthesis research in The Netherlands and use this as an example of how an interdisciplinary approach is beneficial to artificial photosynthesis research. We conclude with some of the potential societal consequences of a large-scale roll out of artificial photosynthesis.
Collapse
Affiliation(s)
- R L Purchase
- Biophysical Organic Chemistry/Solid State NMR , Leiden Institute of Chemistry , PO Box 9502, 2300 RA Leiden , The Netherlands
| | - H J M de Groot
- Biophysical Organic Chemistry/Solid State NMR , Leiden Institute of Chemistry , PO Box 9502, 2300 RA Leiden , The Netherlands
| |
Collapse
|
42
|
Wächtler M, Guthmuller J, Kupfer S, Maiuri M, Brida D, Popp J, Rau S, Cerullo G, Dietzek B. Ultrafast Intramolecular Relaxation and Wave-Packet Motion in a Ruthenium-Based Supramolecular Photocatalyst. Chemistry 2015; 21:7668-74. [DOI: 10.1002/chem.201406350] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Indexed: 11/05/2022]
|
43
|
Marais A, Sinayskiy I, Petruccione F, van Grondelle R. A quantum protective mechanism in photosynthesis. Sci Rep 2015; 5:8720. [PMID: 25732807 PMCID: PMC4346811 DOI: 10.1038/srep08720] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/29/2015] [Indexed: 11/28/2022] Open
Abstract
Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product yield in bacteria is observed to be reduced by weak magnetic fields. Reaction centres from plants' photosystem II share many features with bacterial reaction centres, including a high-spin iron whose function has remained obscure. To explain observations that the magnetic field effect is reduced by the iron, we propose that its fast-relaxing spin plays a protective role in photosynthesis by generating an effective magnetic field. We consider a simple model of the system, derive an analytical expression for the effective magnetic field and analyse the resulting triplet yield reduction. The protective mechanism is robust for realistic parameter ranges, constituting a clear example of a quantum effect playing a macroscopic role vital for life.
Collapse
Affiliation(s)
- Adriana Marais
- Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa and National Institute for Theoretical Physics, KwaZulu-Natal, South Africa
| | - Ilya Sinayskiy
- Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa and National Institute for Theoretical Physics, KwaZulu-Natal, South Africa
| | - Francesco Petruccione
- Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa and National Institute for Theoretical Physics, KwaZulu-Natal, South Africa
| | - Rienk van Grondelle
- Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Glebov I, Poddubnyy V, Eremin V. Evidence for the purely electronic character of primary electron transfer in purple bacteriaRh. Sphaeroides. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1013070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Jeske J, Ing DJ, Plenio MB, Huelga SF, Cole JH. Bloch-Redfield equations for modeling light-harvesting complexes. J Chem Phys 2015; 142:064104. [DOI: 10.1063/1.4907370] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Jan Jeske
- Chemical and Quantum Physics, School of Applied Sciences, RMIT University, Melbourne 3001, Australia
| | - David J. Ing
- Chemical and Quantum Physics, School of Applied Sciences, RMIT University, Melbourne 3001, Australia
| | - Martin B. Plenio
- Institut für Theoretische Physik, Albert-Einstein-Allee 11, Universität Ulm, D-89069 Ulm, Germany
| | - Susana F. Huelga
- Institut für Theoretische Physik, Albert-Einstein-Allee 11, Universität Ulm, D-89069 Ulm, Germany
| | - Jared H. Cole
- Chemical and Quantum Physics, School of Applied Sciences, RMIT University, Melbourne 3001, Australia
| |
Collapse
|
46
|
Eisenmayer TJ, Buda F. Real-time Simulations of Photoinduced Coherent Charge Transfer and Proton-Coupled Electron Transfer. Chemphyschem 2014; 15:3258-63. [DOI: 10.1002/cphc.201402444] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Indexed: 02/04/2023]
|
47
|
Romero E, Augulis R, Novoderezhkin VI, Ferretti M, Thieme J, Zigmantas D, van Grondelle R. Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion. NATURE PHYSICS 2014; 10:676-682. [PMID: 26870153 PMCID: PMC4746732 DOI: 10.1038/nphys3017] [Citation(s) in RCA: 350] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/06/2014] [Indexed: 05/19/2023]
Abstract
The crucial step in the conversion of solar to chemical energy in Photosynthesis takes place in the reaction center where the absorbed excitation energy is converted into a stable charge separated state by ultrafast electron transfer events. However, the fundamental mechanism responsible for the near unity quantum efficiency of this process is unknown. Here we elucidate the role of coherence in determining the efficiency of charge separation in the plant photosystem II reaction centre (PSII RC) by comprehensively combining experiment (two-dimensional electronic spectroscopy) and theory (Redfield theory). We reveal the presence of electronic coherence between excitons as well as between exciton and charge transfer states which we argue to be maintained by vibrational modes. Furthermore, we present evidence for the strong correlation between the degree of electronic coherence and efficient and ultrafast charge separation. We propose that this coherent mechanism will inspire the development of new energy technologies.
Collapse
Affiliation(s)
- Elisabet Romero
- Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands
- Contact information: Dr. Elisabet Romero, , Phone +31 20 5987426, Fax +31 20 5987999
| | - Ramunas Augulis
- Department of Chemical Physics, Lund University, Lund, Sweden
| | | | - Marco Ferretti
- Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands
| | - Jos Thieme
- Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands
| | | | - Rienk van Grondelle
- Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Vibronic coherence in oxygenic photosynthesis. Nat Chem 2014; 6:706-11. [DOI: 10.1038/nchem.2005] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/16/2014] [Indexed: 01/05/2023]
|
49
|
Pishchalnikov RY, Razjivin AP. From localized excited States to excitons: changing of conceptions of primary photosynthetic processes in the twentieth century. BIOCHEMISTRY (MOSCOW) 2014; 79:242-50. [PMID: 24821451 DOI: 10.1134/s0006297914030109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A short description of two theories of the primary photosynthetic processes is given. Generally accepted in 1950s-1990s, the localized excited states theory has been changed to the modern exciton theory. Appearance of the new experimental data and the light-harvesting complex crystal structure are reasons why the exciton theory has become important. The bulk of data for the old theory and outstanding experiments that have been the driving force for a new theory are discussed in detail.
Collapse
Affiliation(s)
- R Y Pishchalnikov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia.
| | | |
Collapse
|
50
|
Krasilnikov PM. Problems of the theory of electron transfer in biological systems. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|