1
|
Fojtík P, Beckerová D, Holomková K, Šenfluk M, Rotrekl V. Both Hypoxia-Inducible Factor 1 and MAPK Signaling Pathway Attenuate PI3K/AKT via Suppression of Reactive Oxygen Species in Human Pluripotent Stem Cells. Front Cell Dev Biol 2021; 8:607444. [PMID: 33553145 PMCID: PMC7859355 DOI: 10.3389/fcell.2020.607444] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Mild hypoxia (5% O2) as well as FGFR1-induced activation of phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT) and MAPK signaling pathways markedly support pluripotency in human pluripotent stem cells (hPSCs). This study demonstrates that the pluripotency-promoting PI3K/AKT signaling pathway is surprisingly attenuated in mild hypoxia compared to the 21% O2 environment. Hypoxia is known to be associated with lower levels of reactive oxygen species (ROS), which are recognized as intracellular second messengers capable of upregulating the PI3K/AKT signaling pathway. Our data denote that ROS downregulation results in pluripotency upregulation and PI3K/AKT attenuation in a hypoxia-inducible factor 1 (HIF-1)-dependent manner in hPSCs. Using specific MAPK inhibitors, we show that the MAPK pathway also downregulates ROS and therefore attenuates the PI3K/AKT signaling—this represents a novel interaction between these signaling pathways. This inhibition of ROS initiated by MEK1/2–ERK1/2 may serve as a negative feedback loop from the MAPK pathway toward FGFR1 and PI3K/AKT activation. We further describe the molecular mechanism resulting in PI3K/AKT upregulation in hPSCs—ROS inhibit the PI3K's primary antagonist PTEN and upregulate FGFR1 phosphorylation. These novel regulatory circuits utilizing ROS as second messengers may contribute to the development of enhanced cultivation and differentiation protocols for hPSCs. Since the PI3K/AKT pathway often undergoes an oncogenic transformation, our data could also provide new insights into the regulation of cancer stem cell signaling.
Collapse
Affiliation(s)
- Petr Fojtík
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czechia
| | - Deborah Beckerová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czechia
| | - Katerina Holomková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Martin Šenfluk
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czechia
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czechia
| |
Collapse
|
2
|
Margarido AS, Bornes L, Vennin C, van Rheenen J. Cellular Plasticity during Metastasis: New Insights Provided by Intravital Microscopy. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037267. [PMID: 31615867 DOI: 10.1101/cshperspect.a037267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metastasis is a highly dynamic process during which cancer and microenvironmental cells undergo a cascade of events required for efficient dissemination throughout the body. During the metastatic cascade, tumor cells can change their state and behavior, a phenomenon commonly defined as cellular plasticity. To monitor cellular plasticity during metastasis, high-resolution intravital microscopy (IVM) techniques have been developed and allow us to visualize individual cells by repeated imaging in animal models. In this review, we summarize the latest technological advancements in the field of IVM and how they have been applied to monitor metastatic events. In particular, we highlight how longitudinal imaging in native tissues can provide new insights into the plastic physiological and developmental processes that are hijacked by cancer cells during metastasis.
Collapse
Affiliation(s)
- Andreia S Margarido
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Laura Bornes
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Claire Vennin
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Jacco van Rheenen
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
3
|
Nobis M, Warren SC, Lucas MC, Murphy KJ, Herrmann D, Timpson P. Molecular mobility and activity in an intravital imaging setting - implications for cancer progression and targeting. J Cell Sci 2018; 131:131/5/jcs206995. [PMID: 29511095 DOI: 10.1242/jcs.206995] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Molecular mobility, localisation and spatiotemporal activity are at the core of cell biological processes and deregulation of these dynamic events can underpin disease development and progression. Recent advances in intravital imaging techniques in mice are providing new avenues to study real-time molecular behaviour in intact tissues within a live organism and to gain exciting insights into the intricate regulation of live cell biology at the microscale level. The monitoring of fluorescently labelled proteins and agents can be combined with autofluorescent properties of the microenvironment to provide a comprehensive snapshot of in vivo cell biology. In this Review, we summarise recent intravital microscopy approaches in mice, in processes ranging from normal development and homeostasis to disease progression and treatment in cancer, where we emphasise the utility of intravital imaging to observe dynamic and transient events in vivo We also highlight the recent integration of advanced subcellular imaging techniques into the intravital imaging pipeline, which can provide in-depth biological information beyond the single-cell level. We conclude with an outlook of ongoing developments in intravital microscopy towards imaging in humans, as well as provide an overview of the challenges the intravital imaging community currently faces and outline potential ways for overcoming these hurdles.
Collapse
Affiliation(s)
- Max Nobis
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Sean C Warren
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Morghan C Lucas
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - David Herrmann
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Paul Timpson
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| |
Collapse
|
4
|
Stachowiak MK, Stachowiak EK. Evidence-Based Theory for Integrated Genome Regulation of Ontogeny--An Unprecedented Role of Nuclear FGFR1 Signaling. J Cell Physiol 2016; 231:1199-218. [PMID: 26729628 PMCID: PMC5067692 DOI: 10.1002/jcp.25298] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/04/2016] [Indexed: 01/18/2023]
Abstract
Genetic experiments have positioned the fgfr1 gene at the top of the gene hierarchy that governs gastrulation, as well as the subsequent development of the major body axes, nervous system, muscles, and bones, by affecting downstream genes that control the cell cycle, pluripotency, and differentiation, as well as microRNAs. Studies show that this regulation is executed by a single protein, the nuclear isoform of FGFR1 (nFGFR1), which integrates signals from development‐initiating factors, such as retinoic acid (RA), and operates at the interface of genomic and epigenomic information. nFGFR1 cooperates with a multitude of transcriptional factors (TFs), and targets thousands of genes encoding for mRNAs, as well as miRNAs in top ontogenic networks. nFGFR1 binds to the promoters of ancient proto‐oncogenes and tumor suppressor genes, in addition to binding to metazoan morphogens that delineate body axes, and construct the nervous system, as well as mesodermal and endodermal tissues. The discovery of pan‐ontogenic gene programming by integrative nuclear FGFR1 signaling (INFS) impacts our understanding of ontogeny, as well as developmental pathologies, and holds new promise for reconstructive medicine, and cancer therapy. J. Cell. Physiol. 231: 1199–1218, 2016. © 2016 The Authors. Journal of Cellular Physiology published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michal K Stachowiak
- Department of Pathology and Anatomical Sciences, Western New York Stem Cells Culture and Analysis Center, State University of New York, Buffalo, New York
| | - Ewa K Stachowiak
- Department of Pathology and Anatomical Sciences, Western New York Stem Cells Culture and Analysis Center, State University of New York, Buffalo, New York
| |
Collapse
|
5
|
Lum KK, Cristea IM. Proteomic approaches to uncovering virus-host protein interactions during the progression of viral infection. Expert Rev Proteomics 2016; 13:325-40. [PMID: 26817613 PMCID: PMC4919574 DOI: 10.1586/14789450.2016.1147353] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/25/2016] [Indexed: 01/10/2023]
Abstract
The integration of proteomic methods to virology has facilitated a significant breadth of biological insight into mechanisms of virus replication, antiviral host responses and viral subversion of host defenses. Throughout the course of infection, these cellular mechanisms rely heavily on the formation of temporally and spatially regulated virus-host protein-protein interactions. Reviewed here are proteomic-based approaches that have been used to characterize this dynamic virus-host interplay. Specifically discussed are the contribution of integrative mass spectrometry, antibody-based affinity purification of protein complexes, cross-linking and protein array techniques for elucidating complex networks of virus-host protein associations during infection with a diverse range of RNA and DNA viruses. The benefits and limitations of applying proteomic methods to virology are explored, and the contribution of these approaches to important biological discoveries and to inspiring new tractable avenues for the design of antiviral therapeutics is highlighted.
Collapse
Affiliation(s)
- Krystal K Lum
- Department of Molecular Biology, Princeton
University, Princeton, NJ, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton
University, Princeton, NJ, USA
| |
Collapse
|
6
|
Stachowiak MK, Birkaya B, Aletta JM, Narla ST, Benson CA, Decker B, Stachowiak EK. "Nuclear FGF receptor-1 and CREB binding protein: an integrative signaling module". J Cell Physiol 2015; 230:989-1002. [PMID: 25503065 DOI: 10.1002/jcp.24879] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/05/2014] [Indexed: 12/15/2022]
Abstract
In this review we summarize the current understanding of a novel integrative function of Fibroblast Growth Factor Receptor-1 (FGFR1) and its partner CREB Binding Protein (CBP) acting as a nuclear regulatory complex. Nuclear FGFR1 and CBP interact with and regulate numerous genes on various chromosomes. FGFR1 dynamic oscillatory interactions with chromatin and with specific genes, underwrites gene regulation mediated by diverse developmental signals. Integrative Nuclear FGFR1 Signaling (INFS) effects the differentiation of stem cells and neural progenitor cells via the gene-controlling Feed-Forward-And-Gate mechanism. Nuclear accumulation of FGFR1 occurs in numerous cell types and disruption of INFS may play an important role in developmental disorders such as schizophrenia, and in metastatic diseases such as cancer. Enhancement of INFS may be used to coordinate the gene regulation needed to activate cell differentiation for regenerative purposes or to provide interruption of cancer stem cell proliferation.
Collapse
Affiliation(s)
- Michal K Stachowiak
- Department of Pathology and Anatomical Sciences, Western New York Stem Cells Culture and Analysis Center, State University of New York, Buffalo
| | | | | | | | | | | | | |
Collapse
|
7
|
Diffusion in macromolecular crowded media: Monte Carlo simulation of obstructed diffusion vs. FRAP experiments. Theor Chem Acc 2010. [DOI: 10.1007/s00214-010-0840-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Ohulchanskyy TY, Roy I, Yong KT, Pudavar HE, Prasad PN. High-resolution light microscopy using luminescent nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 2:162-75. [PMID: 20101713 DOI: 10.1002/wnan.67] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This review presents recent progress in the development of the luminescent nanoparticles for confocal and multiphoton microscopy. Four classes of nanomaterials are discussed: (1) silica-based nanoparticles doped with fluorescent molecules, (2) gold nanoparticles, (3) semiconductor nanocrystals (quantum dots/rods), and (4) nanophosphors. Special considerations are given to recently developed imaging nanoprobes, such as (1) organically modified silica (ORMOSIL) nanoparticles doped with two-photon absorbing fluorophores, which exhibit aggregation-enhanced fluorescence (AEF), and (2) nanophosphors (ceramic nanoparticles containing luminescent lanthanoid ions). Advantages and disadvantages of every class of nanomaterials and their specific applications are briefly discussed.
Collapse
Affiliation(s)
- Tymish Y Ohulchanskyy
- Institute for Lasers, Photonics and Biophotonics, SUNY at Buffalo, Buffalo, NY, USA.
| | | | | | | | | |
Collapse
|
9
|
Pastor I, Vilaseca E, Madurga S, Garcés JL, Cascante M, Mas F. Diffusion of α-Chymotrypsin in Solution-Crowded Media. A Fluorescence Recovery after Photobleaching Study. J Phys Chem B 2010; 114:4028-34. [DOI: 10.1021/jp910811j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Isabel Pastor
- Department of Physical Chemistry and Research Institute of Theoretical and Computational Chemistry (IQTCUB) of University of Barcelona, C/ Martí i Franquès, 1. E-08028 Barcelona, Spain, Department of Chemistry, University of Lleida (UdL), Lleida, Spain, and Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB) of University of Barcelona and IDIBAPS, Barcelona, Spain
| | - Eudald Vilaseca
- Department of Physical Chemistry and Research Institute of Theoretical and Computational Chemistry (IQTCUB) of University of Barcelona, C/ Martí i Franquès, 1. E-08028 Barcelona, Spain, Department of Chemistry, University of Lleida (UdL), Lleida, Spain, and Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB) of University of Barcelona and IDIBAPS, Barcelona, Spain
| | - Sergio Madurga
- Department of Physical Chemistry and Research Institute of Theoretical and Computational Chemistry (IQTCUB) of University of Barcelona, C/ Martí i Franquès, 1. E-08028 Barcelona, Spain, Department of Chemistry, University of Lleida (UdL), Lleida, Spain, and Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB) of University of Barcelona and IDIBAPS, Barcelona, Spain
| | - Josep Lluís Garcés
- Department of Physical Chemistry and Research Institute of Theoretical and Computational Chemistry (IQTCUB) of University of Barcelona, C/ Martí i Franquès, 1. E-08028 Barcelona, Spain, Department of Chemistry, University of Lleida (UdL), Lleida, Spain, and Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB) of University of Barcelona and IDIBAPS, Barcelona, Spain
| | - Marta Cascante
- Department of Physical Chemistry and Research Institute of Theoretical and Computational Chemistry (IQTCUB) of University of Barcelona, C/ Martí i Franquès, 1. E-08028 Barcelona, Spain, Department of Chemistry, University of Lleida (UdL), Lleida, Spain, and Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB) of University of Barcelona and IDIBAPS, Barcelona, Spain
| | - Francesc Mas
- Department of Physical Chemistry and Research Institute of Theoretical and Computational Chemistry (IQTCUB) of University of Barcelona, C/ Martí i Franquès, 1. E-08028 Barcelona, Spain, Department of Chemistry, University of Lleida (UdL), Lleida, Spain, and Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB) of University of Barcelona and IDIBAPS, Barcelona, Spain
| |
Collapse
|
10
|
Dunham-Ems SM, Lee YW, Stachowiak EK, Pudavar H, Claus P, Prasad PN, Stachowiak MK. Fibroblast growth factor receptor-1 (FGFR1) nuclear dynamics reveal a novel mechanism in transcription control. Mol Biol Cell 2009; 20:2401-12. [PMID: 19261810 DOI: 10.1091/mbc.e08-06-0600] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nuclear FGFR1 acts as a developmental gene regulator in cooperation with FGF-2, RSK1, and CREB-binding protein (CBP). FRAP analysis revealed three nuclear FGFR1 populations: i) a fast mobile, ii) a slower mobile population reflecting chromatin-bound FGFR1, and iii) an immobile FGFR1 population associated with the nuclear matrix. Factors (cAMP, CBP) that induce FGFR1-mediated gene activation shifted FGFR1 from the nuclear matrix (immobile) to chromatin (slow) and reduced the movement rate of the chromatin-bound population. Transcription inhibitors accelerated FGFR1 movement; the content of the chromatin-bound slow FGFR1 decreased, whereas the fast population increased. The transcriptional activation appears to involve conversion of the immobile matrix-bound and the fast nuclear FGFR1 into a slow chromatin-binding population through FGFR1's interaction with CBP, RSK1, and the high-molecular-weight form of FGF-2. Our findings support a general mechanism in which gene activation is governed by protein movement and collisions with other proteins and nuclear structures.
Collapse
Affiliation(s)
- Star M Dunham-Ems
- Department of Pathology and Anatomical Sciences, and Department of Chemistry, State University of New York, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Dunham-Ems SM, Pudavar HE, Myers JM, Maher PA, Prasad PN, Stachowiak MK. Factors controlling fibroblast growth factor receptor-1's cytoplasmic trafficking and its regulation as revealed by FRAP analysis. Mol Biol Cell 2006; 17:2223-35. [PMID: 16481405 PMCID: PMC1446089 DOI: 10.1091/mbc.e05-08-0749] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Biochemical and microscopic studies have indicated that FGFR1 is a transmembrane and soluble protein present in the cytosol and nucleus. How FGFR1 enters the cytosol and subsequently the nucleus to control cell development and associated gene activities has become a compelling question. Analyses of protein synthesis, cytoplasmic subcompartmental distribution and movement of FGFR1-EGFP and FGFR1 mutants showed that FGFR1 exists as three separate populations (a) a newly synthesized, highly mobile, nonglycosylated, cytosolic receptor that is depleted by brefeldin A and resides outside the ER-Golgi lumen, (b) a slowly diffusing membrane receptor population, and (c) an immobile membrane pool increased by brefeldin A. RSK1 increases the highly mobile cytosolic FGFR1 population and its overall diffusion rate leading to increased FGFR1 nuclear accumulation, which coaccumulates with RSK1. A model is proposed in which newly synthesized FGFR1 can enter the (a) "nuclear pathway," where the nonglycosylated receptor is extruded from the pre-Golgi producing highly mobile cytosolic receptor molecules that rapidly accumulate in the nucleus or (b) "membrane pathway," in which FGFR1 is processed through the Golgi, where its movement is spatially restricted to trans-Golgi membranes with limited lateral mobility. Entrance into the nuclear pathway is favored by FGFR1's interaction with kinase active RSK1.
Collapse
MESH Headings
- Animals
- Brefeldin A/pharmacology
- Cattle
- Cell Nucleus/chemistry
- Cell Nucleus/metabolism
- Cells, Cultured
- Cytoplasm/metabolism
- Fluorescence Recovery After Photobleaching
- Golgi Apparatus/metabolism
- Green Fluorescent Proteins/analysis
- Green Fluorescent Proteins/genetics
- Humans
- Models, Biological
- Protein Biosynthesis
- Protein Transport/drug effects
- Receptor, Fibroblast Growth Factor, Type 1/analysis
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Recombinant Fusion Proteins/analysis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/analysis
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
Collapse
Affiliation(s)
- Star M Dunham-Ems
- Molecular and Structural Neurobiology and Gene Therapy Program, Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | |
Collapse
|
12
|
Fang X, Stachowiak EK, Dunham-Ems SM, Klejbor I, Stachowiak MK. Control of CREB-binding Protein Signaling by Nuclear Fibroblast Growth Factor Receptor-1. J Biol Chem 2005; 280:28451-62. [PMID: 15929978 DOI: 10.1074/jbc.m504400200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In integrative nuclear fibroblast growth factor receptor-1 (FGFR1) signaling a newly synthesized FGFR1 translocates to the nucleus to stimulate cell differentiation and associated gene activities. The present study shows that FGFR1 accumulates and interacts with the transcriptional co-activator CREB-binding protein (CBP) in nuclear speckle domains in the developing brain and in neural progenitor-like cells in vitro, which accompanies differentiation and postmitotic growth. Cell differentiation and gene activation by nuclear FGFR1 do not require tyrosine kinase activity. Instead, FGFR1 stimulates transcription in cooperation with CBP by increasing recruitment of RNA polymerase II and histone acetylation at the active gene promoter. FGFR1 is a multifactorial protein whose N terminus interacts with CBP and C terminus with ribosomal S6 kinase 1 (RSK1). Nuclear FGFR1 augments CBP-mediated transcription by 1) releasing the CBP C-terminal domain from RSK1 inhibition and 2) activating the CBP N-terminal domain. The interaction of FGFR1 with CBP and RSK1 allows activation of gene transcription and may play a role in cell differentiation.
Collapse
Affiliation(s)
- Xiaohong Fang
- Department of Pathology and Anatomical Sciences, State University of New York, Buffalo, New York 14214, USA
| | | | | | | | | |
Collapse
|