1
|
Hofstetter A, Balodis M, Paruzzo FM, Widdifield CM, Stevanato G, Pinon AC, Bygrave PJ, Day GM, Emsley L. Rapid Structure Determination of Molecular Solids Using Chemical Shifts Directed by Unambiguous Prior Constraints. J Am Chem Soc 2019; 141:16624-16634. [PMID: 31117663 PMCID: PMC7540916 DOI: 10.1021/jacs.9b03908] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
NMR-based crystallography approaches involving the combination of crystal structure prediction methods, ab initio calculated chemical shifts and solid-state NMR experiments are powerful methods for crystal structure determination of microcrystalline powders. However, currently structural information obtained from solid-state NMR is usually included only after a set of candidate crystal structures has already been independently generated, starting from a set of single-molecule conformations. Here, we show with the case of ampicillin that this can lead to failure of structure determination. We propose a crystal structure determination method that includes experimental constraints during conformer selection. In order to overcome the problem that experimental measurements on the crystalline samples are not obviously translatable to restrict the single-molecule conformational space, we propose constraints based on the analysis of absent cross-peaks in solid-state NMR correlation experiments. We show that these absences provide unambiguous structural constraints on both the crystal structure and the gas-phase conformations, and therefore can be used for unambiguous selection. The approach is parametrized on the crystal structure determination of flutamide, flufenamic acid, and cocaine, where we reduce the computational cost by around 50%. Most importantly, the method is then shown to correctly determine the crystal structure of ampicillin, which would have failed using current methods because it adopts a high-energy conformer in its crystal structure. The average positional RMSE on the NMR powder structure is ⟨rav⟩ = 0.176 Å, which corresponds to an average equivalent displacement parameter Ueq = 0.0103 Å2.
Collapse
Affiliation(s)
- Albert Hofstetter
- Institut des Sciences et Ingénierie Chimiques , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Martins Balodis
- Institut des Sciences et Ingénierie Chimiques , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Federico M Paruzzo
- Institut des Sciences et Ingénierie Chimiques , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Cory M Widdifield
- Department of Chemistry, Mathematics and Science Center , Oakland University , 146 Library Drive , Rochester , Michigan 48309-4479 , United States
| | - Gabriele Stevanato
- Institut des Sciences et Ingénierie Chimiques , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Arthur C Pinon
- Institut des Sciences et Ingénierie Chimiques , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Peter J Bygrave
- School of Chemistry , University of Southampton , Highfield , Southampton SO17 1BJ , United Kingdom
| | - Graeme M Day
- School of Chemistry , University of Southampton , Highfield , Southampton SO17 1BJ , United Kingdom
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| |
Collapse
|
2
|
Zhao L, Pinon AC, Emsley L, Rossini AJ. DNP-enhanced solid-state NMR spectroscopy of active pharmaceutical ingredients. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:583-609. [PMID: 29193278 DOI: 10.1002/mrc.4688] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/15/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
Solid-state NMR spectroscopy has become a valuable tool for the characterization of both pure and formulated active pharmaceutical ingredients (APIs). However, NMR generally suffers from poor sensitivity that often restricts NMR experiments to nuclei with favorable properties, concentrated samples, and acquisition of one-dimensional (1D) NMR spectra. Here, we review how dynamic nuclear polarization (DNP) can be applied to routinely enhance the sensitivity of solid-state NMR experiments by one to two orders of magnitude for both pure and formulated APIs. Sample preparation protocols for relayed DNP experiments and experiments on directly doped APIs are detailed. Numerical spin diffusion models illustrate the dependence of relayed DNP enhancements on the relaxation properties and particle size of the solids and can be used for particle size determination when the other factors are known. We then describe the advanced solid-state NMR experiments that have been enabled by DNP and how they provide unique insight into the molecular and macroscopic structure of APIs. For example, with large sensitivity gains provided by DNP, natural isotopic abundance, 13 C-13 C double-quantum single-quantum homonuclear correlation NMR spectra of pure APIs can be routinely acquired. DNP also enables solid-state NMR experiments with unreceptive quadrupolar nuclei such as 2 H, 14 N, and 35 Cl that are commonly found in APIs. Applications of DNP-enhanced solid-state NMR spectroscopy for the molecular level characterization of low API load formulations such as commercial tablets and amorphous solid dispersions are described. Future perspectives for DNP-enhanced solid-state NMR experiments on APIs are briefly discussed.
Collapse
Affiliation(s)
- Li Zhao
- Department of Chemistry, Iowa State University, Ames, IA, USA
- US DOE Ames Laboratory, Ames, IA, USA
| | - Arthur C Pinon
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Aaron J Rossini
- Department of Chemistry, Iowa State University, Ames, IA, USA
- US DOE Ames Laboratory, Ames, IA, USA
| |
Collapse
|
3
|
Rossini AJ, Widdifield CM, Zagdoun A, Lelli M, Schwarzwälder M, Copéret C, Lesage A, Emsley L. Dynamic nuclear polarization enhanced NMR spectroscopy for pharmaceutical formulations. J Am Chem Soc 2014; 136:2324-34. [PMID: 24410528 DOI: 10.1021/ja4092038] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy at 9.4 T is demonstrated for the detailed atomic-level characterization of commercial pharmaceutical formulations. To enable DNP experiments without major modifications of the formulations, the gently ground tablets are impregnated with solutions of biradical polarizing agents. The organic liquid used for impregnation (here 1,1,2,2-tetrachloroethane) is chosen so that the active pharmaceutical ingredient (API) is minimally perturbed. DNP enhancements (ε) of between 40 and 90 at 105 K were obtained for the microparticulate API within four different commercial formulations of the over-the-counter antihistamine drug cetirizine dihydrochloride. The different formulations contain between 4.8 and 8.7 wt % API. DNP enables the rapid acquisition with natural isotopic abundances of one- and two-dimensional (13)C and (15)N solid-state NMR spectra of the formulations while preserving the microstructure of the API particles. Here this allowed immediate identification of the amorphous form of the API in the tablet. API-excipient interactions were observed in high-sensitivity (1)H-(15)N correlation spectra, revealing direct contacts between povidone and the API. The API domain sizes within the formulations were determined by measuring the variation of ε as a function of the polarization time and numerically modeling nuclear spin diffusion. Here we measure an API particle radius of 0.3 μm with a single particle model, while modeling with a Weibull distribution of particle sizes suggests most particles possess radii of around 0.07 μm.
Collapse
Affiliation(s)
- Aaron J Rossini
- Centre de RMN à Trés Hauts Champs, Institut de Sciences Analytiques, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) , 69100 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Rossini AJ, Zagdoun A, Hegner F, Schwarzwälder M, Gajan D, Copéret C, Lesage A, Emsley L. Dynamic nuclear polarization NMR spectroscopy of microcrystalline solids. J Am Chem Soc 2012; 134:16899-908. [PMID: 22967206 DOI: 10.1021/ja308135r] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dynamic nuclear polarization (DNP) solid-state NMR has been applied to powdered microcrystalline solids to obtain sensitivity enhancements on the order of 100. Glucose, sulfathiazole, and paracetamol were impregnated with bis-nitroxide biradical (bis-cyclohexyl-TEMPO-bisketal, bCTbK) solutions of organic solvents. The organic solvents were carefully chosen to be nonsolvents for the compounds, so that DNP-enhanced solid-state NMR spectra of the unaltered solids could be acquired. A theoretical model is presented that illustrates that for externally doped organic solids characterized by long spin-lattice relaxation times (T(1)((1)H) > 200 s), (1)H-(1)H spin diffusion can relay enhanced polarization over micrometer length scales yielding substantial DNP enhancements (ε). ε on the order of 60 are obtained for microcrystalline glucose and sulfathiazole at 9.4 T and with temperatures of ca. 105 K. The large gain in sensitivity enables the rapid acquisition of (13)C-(13)C correlation spectra at natural isotopic abundance. It is anticipated that this will be a general method for enhancing the sensitivity of solid-state NMR experiments of organic solids.
Collapse
Affiliation(s)
- Aaron J Rossini
- Centre de RMN a Tres Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Giffard M, Hediger S, Lewandowski JR, Bardet M, Simorre JP, Griffin RG, De Paëpe G. Compensated second-order recoupling: application to third spin assisted recoupling. Phys Chem Chem Phys 2012; 14:7246-55. [PMID: 22513727 PMCID: PMC4440590 DOI: 10.1039/c2cp40406k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We consider the effect of phase shifts in the context of second-order recoupling techniques in solid-state NMR. Notably we highlight conditions leading to significant improvements for the Third Spin Assisted Recoupling (TSAR) mechanism and demonstrate the benefits of resulting techniques for detecting long-distance transfer in biomolecular systems. The modified pulse sequences of PAR and PAIN-CP, Phase-Shifted Proton Assisted Recoupling (AH-PS-PAR) and Phase-Shifted Proton-Assisted Insensitive Nuclei Cross Polarization (ABH-PS-PAIN-CP), still rely on cross terms between heteronuclear dipolar couplings involving assisting protons that mediate zero-quantum polarization transfer between low-γ nuclei ((13)C-(13)C, (15)N-(15)N, (15)N-(13)C polarization transfer). Using Average Hamiltonian Theory we show that phase inversion compensates off-resonance contributions and yields improved polarization transfer as well as substantial broadening of the matching conditions. PS-TSAR greatly improves on the standard TSAR based methods because it alleviates their sensitivity to precise RF settings which significantly enhances robustness of the experiments. We demonstrate these new methods on a 19.6 kDa protein (U-[(15)N, (13)C]-YajG) at high magnetic fields (up to 900 MHz (1)H frequency) and fast sample spinning (up to 65 kHz MAS frequency).
Collapse
Affiliation(s)
- Mathilde Giffard
- Laboratoire de Chimie Inorganique et Biologique, UMR-E3 (CEA/UJF) and CNRS, CEA/DSM/INAC–38054, Grenoble, France
| | - Sabine Hediger
- Laboratoire de Chimie Inorganique et Biologique, UMR-E3 (CEA/UJF) and CNRS, CEA/DSM/INAC–38054, Grenoble, France
| | | | - Michel Bardet
- Laboratoire de Chimie Inorganique et Biologique, UMR-E3 (CEA/UJF) and CNRS, CEA/DSM/INAC–38054, Grenoble, France
| | - Jean-Pierre Simorre
- Institut de Biologie Structurale, UMR 5075 (CEA/CNRS/UJF), 38027 Grenoble, France
| | - Robert G. Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Gaël De Paëpe
- Laboratoire de Chimie Inorganique et Biologique, UMR-E3 (CEA/UJF) and CNRS, CEA/DSM/INAC–38054, Grenoble, France
| |
Collapse
|
6
|
Nand D, Cukkemane A, Becker S, Baldus M. Fractional deuteration applied to biomolecular solid-state NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2012; 52:91-101. [PMID: 22105305 PMCID: PMC3277825 DOI: 10.1007/s10858-011-9585-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/29/2011] [Indexed: 05/15/2023]
Abstract
Solid-state Nuclear Magnetic Resonance can provide detailed insight into structural and dynamical aspects of complex biomolecules. With increasing molecular size, advanced approaches for spectral simplification and the detection of medium to long-range contacts become of critical relevance. We have analyzed the protonation pattern of a membrane-embedded ion channel that was obtained from bacterial expression using protonated precursors and D(2)O medium. We find an overall reduction of 50% in protein protonation. High levels of deuteration at H(α) and H(β) positions reduce spectral congestion in ((1)H,(13)C,(15)N) correlation experiments and generate a transfer profile in longitudinal mixing schemes that can be tuned to specific resonance frequencies. At the same time, residual protons are predominantly found at amino-acid side-chain positions enhancing the prospects for obtaining side-chain resonance assignments and for detecting medium to long-range contacts. Fractional deuteration thus provides a powerful means to aid the structural analysis of complex biomolecules by solid-state NMR.
Collapse
Affiliation(s)
- Deepak Nand
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Abhishek Cukkemane
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Marc Baldus
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
7
|
Dumez JN, Emsley L. A master-equation approach to the description of proton-driven spin diffusion from crystal geometry using simulated zero-quantum lineshapes. Phys Chem Chem Phys 2011; 13:7363-70. [PMID: 21431110 DOI: 10.1039/c1cp00004g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Measurements of proton-driven carbon-13 spin diffusion (PDSD) by NMR spectroscopy are a central component of structural analyses of biomolecules in the solid-state. However, the quantitative link between experimental PDSD data and structural information is difficult to make. Here we observe that a master-equation approach can be used to model full PDSD dynamics accurately in polycrystalline (13)C-labelled L-histidine·HCl·H(2)O under magic-angle spinning. In the master-equation approach, PDSD rates and effective dipolar couplings are related by a function of the carbon-carbon zero-quantum lineshapes; we find that numerical simulations of the zero-quantum lineshapes are sufficiently accurate so as to allow the calculation of PDSD rates that are in good agreement with the measured rates, directly from crystal geometry and with no adjustable parameters. Finally, using carbon-carbon internuclear distances we illustrate the potential of the master-equation approach for structural studies. Generalisation of these results to proton-driven carbon-13 spin diffusion in more complex molecular systems is readily envisaged.
Collapse
Affiliation(s)
- Jean-Nicolas Dumez
- Université de Lyon (CNRS/ENS Lyon/UCB Lyon1), Centre de RMN à très hauts champs, 5 rue de la Doua, 69100 Villeurbanne, France
| | | |
Collapse
|
8
|
Schanda P, Meier BH, Ernst M. Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by Solid-State NMR Spectroscopy. J Am Chem Soc 2010; 132:15957-67. [PMID: 20977205 DOI: 10.1021/ja100726a] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Paul Schanda
- ETH Zürich, Physical Chemistry, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Beat H. Meier
- ETH Zürich, Physical Chemistry, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Matthias Ernst
- ETH Zürich, Physical Chemistry, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
Loquet A, Gardiennet C, Böckmann A. Protein 3D structure determination by high-resolution solid-state NMR. CR CHIM 2010. [DOI: 10.1016/j.crci.2010.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Schneider R, Seidel K, Etzkorn M, Lange A, Becker S, Baldus M. Probing Molecular Motion by Double-Quantum (13C,13C) Solid-State NMR Spectroscopy: Application to Ubiquitin. J Am Chem Soc 2009; 132:223-33. [DOI: 10.1021/ja906283h] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert Schneider
- Department for NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Karsten Seidel
- Department for NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Manuel Etzkorn
- Department for NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Adam Lange
- Department for NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marc Baldus
- Department for NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
11
|
Lange A, Gattin Z, Van Melckebeke H, Wasmer C, Soragni A, van Gunsteren WF, Meier BH. A combined solid-state NMR and MD characterization of the stability and dynamics of the HET-s(218-289) prion in its amyloid conformation. Chembiochem 2009; 10:1657-65. [PMID: 19504509 DOI: 10.1002/cbic.200900019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The three-dimensional structure of amyloid fibrils of the prion-forming part of the HET-s protein [HET-s(218-289)], as determined by solid-state NMR, contains rigid and remarkably well-ordered parts, as witnessed by the narrow solid-state NMR line widths for this system. On the other hand, high-resolution magic-angle-spinning (HRMAS) NMR results have shown that HET-s(218-289) amyloid fibrils contain highly flexible parts as well. Here, we further explore this unexpected behaviour using solid-state NMR and molecular dynamics (MD). The NMR data provide new information on order and dynamics in the rigid and flexible parts of HET-s(218-289), respectively. The MD study addresses whether or not small multimers, in an amyloid conformation, are stable on the 10 ns timescale of the MD run and provides insight into the dynamic parameters on the nanosecond timescale. The atom-positional, root-mean-squared fluctuations (RMSFs) and order parameters S(2) obtained are in agreement with the NMR data. A flexible loop and the N terminus exhibit dynamics on the ps-ns timescale, whereas the hydrophobic core of HET-s(218-289) is rigid. The high degree of order in the core region of HET-s(218-289) amyloids, as observed in the MD simulations, is in agreement with the narrow, solid-state, NMR lines. Finally, we employed MD to predict the behaviour of the salt-bridge network in HET-s(218-289), which cannot be obtained easily by experiment. Simulations at different temperatures indicated that the network is highly dynamic and that it contributes to the thermostability of the HET-s(218-289) amyloids.
Collapse
Affiliation(s)
- Adam Lange
- Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, Zürich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
12
|
Aluas M, Tripon C, Griffin JM, Filip X, Ladizhansky V, Griffin RG, Brown SP, Filip C. CHHC and (1)H-(1)H magnetization exchange: analysis by experimental solid-state NMR and 11-spin density-matrix simulations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 199:173-87. [PMID: 19467890 PMCID: PMC2706310 DOI: 10.1016/j.jmr.2009.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 04/20/2009] [Indexed: 05/03/2023]
Abstract
A protocol is presented for correcting the effect of non-specific cross-polarization in CHHC solid-state MAS NMR experiments, thus allowing the recovery of the (1)H-(1)H magnetization exchange functions from the mixing-time dependent buildup of experimental CHHC peak intensity. The presented protocol also incorporates a scaling procedure to take into account the effect of multiplicity of a CH(2) or CH(3) moiety. Experimental CHHC buildup curves are presented for l-tyrosine.HCl samples where either all or only one in 10 molecules are U-(13)C labeled. Good agreement between experiment and 11-spin SPINEVOLUTION simulation (including only isotropic (1)H chemical shifts) is demonstrated for the initial buildup (t(mix)<100micros) of CHHC peak intensity corresponding to an intramolecular close (2.5A) H-H proximity. Differences in the initial CHHC buildup are observed between the one in 10 dilute and 100% samples for cases where there is a close intermolecular H-H proximity in addition to a close intramolecular H-H proximity. For the dilute sample, CHHC cross-peak intensities tended to significantly lower values for long mixing times (500micros) as compared to the 100% sample. This difference is explained as being due to the dependence of the limiting total magnetization on the ratio N(obs)/N(tot) between the number of protons that are directly attached to a (13)C nucleus and hence contribute significantly to the observed (13)C CHHC NMR signal, and the total number of (1)H spins into the system. (1)H-(1)H magnetization exchange curves extracted from CHHC spectra for the 100% l-tyrosine.HCl sample exhibit a clear sensitivity to the root sum squared dipolar coupling, with fast buildup being observed for the shortest intramolecular distances (2.5A) and slower, yet observable buildup for the longer intermolecular distances (up to 5A).
Collapse
Affiliation(s)
- Mihaela Aluas
- Physics Department, Babes-Bolyai University, 400084 Cluj, Romania
| | - Carmen Tripon
- National Institute for R&D of Isotopic and Molecular Technologies, P.O. Box 700, 400293 Cluj, Romania
| | - John M. Griffin
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Xenia Filip
- Physics Department, Babes-Bolyai University, 400084 Cluj, Romania
| | - Vladimir Ladizhansky
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Robert G. Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Steven P. Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Claudiu Filip
- National Institute for R&D of Isotopic and Molecular Technologies, P.O. Box 700, 400293 Cluj, Romania
- Corresponding Author, Fax.: ++40 264 420042, e-mail:
| |
Collapse
|
13
|
Salager E, Stein RS, Pickard CJ, Elena B, Emsley L. Powder NMR crystallography of thymol. Phys Chem Chem Phys 2009; 11:2610-21. [PMID: 19421517 DOI: 10.1039/b821018g] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A protocol for the structure determination of powdered solids at natural abundance by NMR is presented and illustrated for the case of the small drug molecule thymol. The procedure uses proton spin-diffusion data from two-dimensional NMR experiments in combination with periodic DFT refinements incorporating (1)H and (13)C NMR chemical shifts. For thymol, the method yields a crystal structure for the powdered sample, which differs by an atomic root-mean-square-deviation (all atoms except methyl group protons) of only 0.07 A from the single crystal X-ray diffraction structure with DFT-optimized proton positions.
Collapse
Affiliation(s)
- Elodie Salager
- Université de Lyon, (CNRS/ENS-Lyon/UCB Lyon 1), Centre de RMN à Très Hauts Champs, 5 rue de la Doua, 69100, Villeurbanne, France
| | | | | | | | | |
Collapse
|
14
|
Lesage A. Recent advances in solid-state NMR spectroscopy of spin I = 1/2 nuclei. Phys Chem Chem Phys 2009; 11:6876-91. [DOI: 10.1039/b907733m] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
De Paëpe G, Lewandowski JR, Loquet A, Böckmann A, Griffin RG. Proton assisted recoupling and protein structure determination. J Chem Phys 2008; 129:245101. [PMID: 19123534 PMCID: PMC2755343 DOI: 10.1063/1.3036928] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 11/03/2008] [Indexed: 11/14/2022] Open
Abstract
We introduce a homonuclear version of third spin assisted recoupling, a second-order mechanism that can be used for polarization transfer between (13)C or (15)N spins in magic angle spinning (MAS) NMR experiments, particularly at high spinning frequencies employed in contemporary high field MAS experiments. The resulting sequence, which we refer to as proton assisted recoupling (PAR), relies on a cross-term between (1)H-(13)C (or (1)H-(15)N) couplings to mediate zero quantum (13)C-(13)C (or (15)N-(15)N recoupling). In particular, using average Hamiltonian theory we derive an effective Hamiltonian for PAR and show that the transfer is mediated by trilinear terms of the form C(1) (+/-)C(2) (-/+)H(Z) for (13)C-(13)C recoupling experiments (or N(1) (+/-)N(2) (-/+)H(Z) for (15)N-(15)N). We use analytical and numerical simulations to explain the structure of the PAR optimization maps and to delineate the PAR matching conditions. We also detail the PAR polarization transfer dependence with respect to the local molecular geometry and explain the observed reduction in dipolar truncation. Finally, we demonstrate the utility of PAR in structural studies of proteins with (13)C-(13)C spectra of uniformly (13)C, (15)N labeled microcrystalline Crh, a 85 amino acid model protein that forms a domain swapped dimer (MW=2 x 10.4 kDa). The spectra, which were acquired at high MAS frequencies (omega(r)2pi>20 kHz) and magnetic fields (750-900 MHz (1)H frequencies) using moderate rf fields, exhibit numerous cross peaks corresponding to long (up to 6-7 A) (13)C-(13)C distances which are particularly useful in protein structure determination. Using results from PAR spectra we calculate the structure of the Crh protein.
Collapse
Affiliation(s)
- Gaël De Paëpe
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
16
|
Chevelkov V, Diehl A, Reif B. Quantitative measurement of differential 15N-H(alpha/beta)T2 relaxation rates in a perdeuterated protein by MAS solid-state NMR spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2007; 45 Suppl 1:S156-60. [PMID: 18157805 DOI: 10.1002/mrc.2129] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Dynamic parameters become more and more accessible in the study of uniformly isotopically enriched proteins by MAS solid-state NMR. We demonstrate that T(2)-related relaxation properties can quantitatively be determined in a sample of a perdeuterated microcrystalline protein by the measurement of (15)N,(1)H dipole, (15)N CSA cross-correlated relaxation rates. We find that the measured cross-correlated relaxation rates are independent of the MAS rotation frequency, and therefore reflect local dynamic fluctuations of the protein structure.
Collapse
|
17
|
Varga K, Tian L, McDermott AE. Solid-state NMR study and assignments of the KcsA potassium ion channel of S. lividans. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1604-13. [PMID: 17974509 DOI: 10.1016/j.bbapap.2007.08.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 08/15/2007] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
Abstract
The extraordinary efficiency and selectivity of potassium channels have made them ideal systems for biophysical and functional studies of ion conduction. We carried out solid-state NMR studies of the selectivity filter region of the protein. Partial site-specific assignments of the NMR signals were obtained based on high field multidimensional solid-state NMR spectra of uniformly (13)C, (15)N enriched KcsA potassium channel from Streptomyces lividans. Both backbone and sidechain atoms were assigned for residues V76-D80 and P83-L90, in and near the selectivity filter region of the protein; this region exhibits good dispersion and useful chemical shift fingerprints. This study will enable structure, dynamic and mechanistic studies of ion conduction by NMR.
Collapse
Affiliation(s)
- Krisztina Varga
- Department of Chemistry, Columbia University, 3000 Broadway MC 3113, New York, NY 10027, USA
| | | | | |
Collapse
|
18
|
Baldus M. ICMRBS founder's medal 2006: biological solid-state NMR, methods and applications. JOURNAL OF BIOMOLECULAR NMR 2007; 39:73-86. [PMID: 17657566 DOI: 10.1007/s10858-007-9177-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 06/26/2007] [Indexed: 05/16/2023]
Abstract
Solid-state NMR (ssNMR) provides increasing possibilities to study structure and dynamics of biomolecular systems. Our group has been interested in developing ssNMR-based approaches that are applicable to biomolecules of increasing molecular size and complexity without the need of specific isotope-labelling. Methodological aspects ranging from spectral assignments to the indirect detection of proton-proton contacts in multi-dimensional ssNMR are discussed and applied to (membrane) protein complexes.
Collapse
Affiliation(s)
- Marc Baldus
- Research Group Solid-state NMR, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany.
| |
Collapse
|
19
|
Baldus M. Magnetic resonance in the solid state: applications to protein folding, amyloid fibrils and membrane proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36 Suppl 1:S37-48. [PMID: 17541576 DOI: 10.1007/s00249-007-0174-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Accepted: 05/08/2007] [Indexed: 11/25/2022]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) represents a spectroscopic method to study non-crystalline molecules at atomic resolution. Advancements in spectroscopy and biochemistry provide increasing possibilities to study structure and dynamics of complex biomolecular systems by ssNMR. Here, methodological aspects and applications in the context of protein folding and aggregation are discussed. In addition, studies involving membrane proteins are considered.
Collapse
Affiliation(s)
- Marc Baldus
- Solid-state NMR, Max-Planck-Institut für Biophysikalische Chemie, 37077 Göttingen, Germany.
| |
Collapse
|
20
|
Lange A, Schupp T, Petersen F, Carlomagno T, Baldus M. High-Resolution Solid-State NMR Structure of an Anticancer Agent. ChemMedChem 2007; 2:522-7. [PMID: 17315255 DOI: 10.1002/cmdc.200600299] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We demonstrate that solid-state NMR methods can be used to rapidly determine the high-resolution 3D structure of Epothilone B in the polycrystalline state. The solid-state NMR structures exhibit an average heavy atom RMSD to the mean structure of 0.14 A. The 3D-structural analysis leads to stereospecific assignments and provides insight into the influence of intermolecular interactions upon ssNMR chemical-shift parameters. Our results pave the way to the study of ligand-microtubule interactions in a noncrystalline and insoluble environment at atomic level.
Collapse
Affiliation(s)
- Adam Lange
- Department for NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
21
|
Lange A, Giller K, Pongs O, Becker S, Baldus M. Two-dimensional solid-state NMR applied to a chimeric potassium channel. J Recept Signal Transduct Res 2007; 26:379-93. [PMID: 17118788 DOI: 10.1080/10799890600932188] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Solid-state NMR (ssNMR) represents a spectroscopic method to study membrane protein structure and dynamics in lipid bilayers. We present two-dimensional correlation experiments conducted on a fully [13C,15N] labeled version of a chimeric potassium (KcsA-Kv1.3) channel. Data obtained by using two different ion concentrations suggest a structural conservation of the selectivity filter region. SsNMR experiments conducted at two different temperatures point to differential molecular dynamics of the channel.
Collapse
Affiliation(s)
- Adam Lange
- Department for NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | |
Collapse
|
22
|
Heller M, Sukopp M, Tsomaia N, John M, Mierke DF, Reif B, Kessler H. The Conformation of cyclo(−d-Pro−Ala4−) as a Model for Cyclic Pentapeptides of the dL4 Type. J Am Chem Soc 2006; 128:13806-14. [PMID: 17044709 DOI: 10.1021/ja063174a] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conformation of the cyclic pentapeptide cyclo(-D-Pro-Ala(4)-) in solution and in the solid state was reinvestigated using modern NMR techniques. To allow unequivocal characterization of hydrogen bonds, relaxation behavior, and intramolecular distances, differently labeled isotopomers were synthesized. The NMR results, supported by extensive MD simulations, demonstrate unambiguously that the preferred conformation previously described by us, but recently questioned, is indeed correct. The validation of the conformational preferences of this cyclic peptide is important given that this system is a template for several bioactive compounds and for controlled "spatial screening" for the search of bioactive conformations.
Collapse
Affiliation(s)
- Markus Heller
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Elena B, Pintacuda G, Mifsud N, Emsley L. Molecular Structure Determination in Powders by NMR Crystallography from Proton Spin Diffusion. J Am Chem Soc 2006; 128:9555-60. [PMID: 16848494 DOI: 10.1021/ja062353p] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The inability to determine molecular structures from powdered samples is a key barrier to progress in many areas of molecular and materials science. We report an approach to structure determination that combines molecular modeling with experimental spin diffusion data obtained from the high-resolution solid-state nuclear magnetic resonance of protons, and which allows the determination of the three-dimensional structure of an organic compound, in powder form and at natural isotopic abundance.
Collapse
Affiliation(s)
- Bénédicte Elena
- Laboratoire de Chimie, UMR 5182 CNRS/ENS, Laboratoire de Recherche Conventionné du CEA (DSV 23V / DSM 0432), Ecole Normale Supérieure de Lyon, 69364 Lyon, France
| | | | | | | |
Collapse
|
24
|
Hologne M, Chen Z, Reif B. Characterization of dynamic processes using deuterium in uniformly 2H,13C,15N enriched peptides by MAS solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 179:20-8. [PMID: 16289962 DOI: 10.1016/j.jmr.2005.10.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 09/29/2005] [Accepted: 10/24/2005] [Indexed: 05/05/2023]
Abstract
We present in this paper 2H,13C MAS correlation experiments that are performed on a uniformly 2H,13C,15N labeled sample of Nac-Val, and on the uniformly 2H,15N labeled dipeptide Nac-Val-Leu-OH. The experiments involve the measurement of 2H T1 relaxation times at two different magnetic fields, as well as the measurement of the 2H tensor parameters by evolution of the 2H chemical shift. The data are interpreted quantitatively to differentiate between different side chain motional models.
Collapse
Affiliation(s)
- Maggy Hologne
- Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Str. 10 13125 Berlin, Germany
| | | | | |
Collapse
|
25
|
Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M. Determination of Membrane Protein Structure and Dynamics by Magic-Angle-Spinning Solid-State NMR Spectroscopy†. J Am Chem Soc 2005; 127:12965-74. [PMID: 16159291 DOI: 10.1021/ja0530164] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is shown that molecular structure and dynamics of a uniformly labeled membrane protein can be studied under magic-angle-spinning conditions. For this purpose, dipolar recoupling experiments are combined with novel through-bond correlation schemes that probe mobile protein segments. These NMR schemes are demonstrated on a uniformly [13C,15N] variant of the 52-residue polypeptide phospholamban. When reconstituted in lipid bilayers, the NMR data are consistent with an alpha-helical trans-membrane segment and a cytoplasmic domain that exhibits a high degree of structural disorder.
Collapse
Affiliation(s)
- Ovidiu C Andronesi
- Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Seidel K, Etzkorn M, Heise H, Becker S, Baldus M. High-Resolution Solid-State NMR Studies on Uniformly [13C,15N]-Labeled Ubiquitin. Chembiochem 2005; 6:1638-47. [PMID: 16094694 DOI: 10.1002/cbic.200500085] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Understanding of the effects of intermolecular interactions, molecular dynamics, and sample preparation on high-resolution magic-angle spinning NMR data is currently limited. Using the example of a uniformly [13C,15N]-labeled sample of ubiquitin, we discuss solid-state NMR methods tailored to the construction of 3D molecular structure and study the influence of solid-phase protein preparation on solid-state NMR spectra. A comparative analysis of 13C', 13Calpha, and 13Cbeta resonance frequencies suggests that 13C chemical-shift variations are most likely to occur in protein regions that exhibit an enhanced degree of molecular mobility. Our results can be refined by additional solid-state NMR techniques and serve as a reference for ongoing efforts to characterize the structure and dynamics of (membrane) proteins, protein complexes, and other biomolecules by high-resolution solid-state NMR.
Collapse
Affiliation(s)
- Karsten Seidel
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
27
|
Abstract
The investigation of 1H-1H spin-diffusion build-up curves using a rate matrix analysis approach shows that high-resolution magic angle spinning NMR of protons, applied to powdered organic compounds, provides a method to probe crystalline arrangements. The comparison between experimental 1H data and simulation is shown to depend strongly on the parameters of the crystal structure, for example on the unit cell parameters or the orientation of the molecule in the unit cell, and those parameters are experimentally determined for a model organic compound.
Collapse
Affiliation(s)
- Bénédicte Elena
- Laboratoire de Chimie (UMR 5182 CNRS/ENS), Ecole Normale Supérieure de Lyon, 69364 Lyon, France
| | | |
Collapse
|
28
|
Luca S, Heise H, Lange A, Baldus M. Investigation of Ligand-Receptor Systems by High-Resolution Solid-State NMR: Recent Progress and Perspectives. Arch Pharm (Weinheim) 2005; 338:217-28. [PMID: 15938000 DOI: 10.1002/ardp.200400991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Solid-state Nuclear Magnetic Resonance (NMR) provides a general method to study molecular structure and dynamics in a non-crystalline and insoluble environment. We discuss the latest methodological progress to construct 3D molecular structures from solid-state NMR data obtained under magic-angle-spinning conditions. As shown for the neurotensin/NTS-1 system, these methods can be readily applied to the investigation of ligand-binding to G-protein coupled receptors.
Collapse
Affiliation(s)
- Sorin Luca
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
29
|
Heise H, Seidel K, Etzkorn M, Becker S, Baldus M. 3D NMR spectroscopy for resonance assignment and structure elucidation of proteins under MAS: novel pulse schemes and sensitivity considerations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 173:64-74. [PMID: 15705514 DOI: 10.1016/j.jmr.2004.11.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 11/15/2004] [Indexed: 05/24/2023]
Abstract
Two types of 3D MAS NMR experiments are introduced, which combine standard (NC,CC) transfer schemes with (1H,1H) mixing to simultaneously detect connectivities and structural constraints of uniformly 15N,13C-labeled proteins with high spectral resolution. The homonuclear CCHHC and CCC experiments are recorded with one double-quantum evolution dimension in order to avoid a cubic diagonal in the spectrum. Depending on the second transfer step, spin systems or proton-proton contacts can be determined with reduced spectral overlap. The heteronuclear NHHCC experiment encodes NH-HC proton-proton interactions, which are indicative for the backbone conformation of the protein. The third dimension facilitates the identification of the amino acid spin system. Experimental results on U-[15N,13C]valine and U-[15N,13C]ubiquitin demonstrate their usefulness for resonance assignments and for the determination of structural constraints. Furthermore, we give a detailed analysis of alternative multidimensional sampling schemes and their effect on sensitivity and resolution.
Collapse
Affiliation(s)
- Henrike Heise
- Department for NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany.
| | | | | | | | | |
Collapse
|