1
|
Markmann V, Pan J, Hansen BL, Haubro ML, Nimmrich A, Lenzen P, Levantino M, Katayama T, Adachi SI, Gorski-Bilke S, Temps F, Dohn AO, Møller KB, Nielsen MM, Haldrup K. Real-time structural dynamics of the ultrafast solvation process around photo-excited aqueous halides. Chem Sci 2024; 15:11391-11401. [PMID: 39055005 PMCID: PMC11268492 DOI: 10.1039/d4sc01912a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
This work investigates and describes the structural dynamics taking place following charge-transfer-to-solvent photo-abstraction of electrons from I- and Br- ions in aqueous solution following single- and 2-photon excitation at 202 nm and 400 nm, respectively. A Time-Resolved X-ray Solution Scattering (TR-XSS) approach with direct sensitivity to the structure of the surrounding solvent as the water molecules adopt a new equilibrium configuration following the electron-abstraction process is utilized to investigate the structural dynamics of solvent shell expansion and restructuring in real-time. The structural sensitivity of the scattering data enables a quantitative evaluation of competing models for the interaction between the nascent neutral species and surrounding water molecules. Taking the I0-O distance as the reaction coordinate, we find that the structural reorganization is delayed by 0.1 ps with respect to the photoexcitation and completes on a time scale of 0.5-1 ps. On longer time scales we determine from the evolution of the TR-XSS difference signal that I0: e- recombination takes place on two distinct time scales of ∼20 ps and 100 s of picoseconds. These dynamics are well captured by a simple model of diffusive evolution of the initial photo-abstracted electron population where the charge-transfer-to-solvent process gives rise to a broad distribution of electron ejection distances, a significant fraction of which are in the close vicinity of the nascent halogen atoms and recombine on short time scales.
Collapse
Affiliation(s)
- Verena Markmann
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Jaysree Pan
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Bianca L Hansen
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Morten L Haubro
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Amke Nimmrich
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
- Department of Chemistry and Molecular Biology, University of Gothenburg Gothenburg Sweden
| | - Philipp Lenzen
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Matteo Levantino
- European Synchrotron Radiation Facility CS40220 Grenoble 38043 Cedex 9 France
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute Kouto 1-1-1, Sayo Hyogo 679-5198 Japan
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba Ibaraki 305-0801 Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science 1-1 Oho, Tsukuba Ibaraki 305-0801 Japan
| | | | - Friedrich Temps
- Christian-Albrechts-University Kiel Olshausenstr. 40 24098 Kiel Germany
| | - Asmus O Dohn
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
- Science Institute, University of Iceland 107 Reykjavík Iceland
| | - Klaus B Møller
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Martin M Nielsen
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Kristoffer Haldrup
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| |
Collapse
|
2
|
Martin DC, Elg DT, Delgado HE, Nguyen HM, Rumbach P, Bartels DM, Go DB. Optical and Chemical Measurements of Solvated Electrons Produced in Plasma Electrolysis with a Water Cathode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14224-14232. [PMID: 38940536 DOI: 10.1021/acs.langmuir.4c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
It is known that glow discharges with a water anode inject and form solvated electrons at the plasma-liquid interface, driving a wide variety of reduction reactions. However, in systems with a water cathode, the production and role of solvated electrons are less clear. Here, we present evidence for the direct detection of solvated electrons produced at the interface of an argon plasma and a water cathode via absorption spectroscopy. We further quantify their yield using the dissociative electron attachment of chloroacetate, measuring a yield of 1.04 ± 0.59 electrons per incident ion, corresponding to approximately 100% faradaic efficiency. Additionally, we estimate a yield of 2.09 ± 0.93 hydroxyl radicals per incident ion. Comparison of this yield with other findings in the literature supports that these hydroxyl radicals are likely formed directly in the liquid phase rather than by diffusion from the vapor phase.
Collapse
Affiliation(s)
- Daniel C Martin
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Daniel T Elg
- Department of Engineering, University of Southern Indiana, Evansville, Indiana 47712, United States
| | - Hernan E Delgado
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hoang M Nguyen
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Paul Rumbach
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - David M Bartels
- Notre Dame Radiation Laboratory and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - David B Go
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
3
|
Jordan CJC, Coons MP, Herbert JM, Verlet JRR. Spectroscopy and dynamics of the hydrated electron at the water/air interface. Nat Commun 2024; 15:182. [PMID: 38167300 PMCID: PMC10762076 DOI: 10.1038/s41467-023-44441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
The hydrated electron, e-(aq), has attracted much attention as a central species in radiation chemistry. However, much less is known about e-(aq) at the water/air surface, despite its fundamental role in electron transfer processes at interfaces. Using time-resolved electronic sum-frequency generation spectroscopy, the electronic spectrum of e-(aq) at the water/air interface and its dynamics are measured here, following photo-oxidation of the phenoxide anion. The spectral maximum agrees with that for bulk e-(aq) and shows that the orbital density resides predominantly within the aqueous phase, in agreement with supporting calculations. In contrast, the chemistry of the interfacial hydrated electron differs from that in bulk water, with e-(aq) diffusing into the bulk and leaving the phenoxyl radical at the surface. Our work resolves long-standing questions about e-(aq) at the water/air interface and highlights its potential role in chemistry at the ubiquitous aqueous interface.
Collapse
Affiliation(s)
| | - Marc P Coons
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham, DH1 4LJ, UK.
| |
Collapse
|
4
|
Neupane P, Bartels DM, Thompson WH. Empirically Optimized One-Electron Pseudopotential for the Hydrated Electron: A Proof-of-Concept Study. J Phys Chem B 2023; 127:7361-7371. [PMID: 37556737 DOI: 10.1021/acs.jpcb.3c03540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Mixed quantum-classical molecular dynamics simulations have been important tools for studying the hydrated electron. They generally use a one-electron pseudopotential to describe the interactions of an electron with the water molecules. This approximation shows both the strength and weakness of the approach. On the one hand, it enables extensive statistical sampling and large system sizes that are not possible with more accurate ab initio molecular dynamics methods. On the other hand, there has (justifiably) been much debate about the ability of pseudopotentials to accurately and quantitatively describe the hydrated electron properties. These pseudopotentials have largely been derived by fitting them to ab initio calculations of an electron interacting with a single water molecule. In this paper, we present a proof-of-concept demonstration of an alternative approach in which the pseudopotential parameters are determined by optimizing them to reproduce key experimental properties. Specifically, we develop a new pseudopotential, using the existing TBOpt model as a starting point, which correctly describes the hydrated electron vertical detachment energy and radius of gyration. In addition to these properties, this empirically optimized model displays a significantly modified solvation structure, which improves, for example, the prediction of the partial molar volume.
Collapse
Affiliation(s)
- Pauf Neupane
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - David M Bartels
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ward H Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
5
|
Lamas I, González J, Longarte A, Montero R. Influence of H-bonds on the photoionization of aromatic chromophores in water: The aniline molecule. J Chem Phys 2023; 158:2890456. [PMID: 37184001 DOI: 10.1063/5.0147503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/01/2023] [Indexed: 05/16/2023] Open
Abstract
We have conducted time-resolved experiments (pump-probe and pump-repump-probe) on a model aromatic chromophore, aniline, after excitation in water at 267 nm. In the initial spectra recorded, in addition to the absorption corresponding to the bright ππ* excitation, the fingerprint of a transient state with the electron located on the solvent molecule is identified. We postulate that the latter corresponds to the πσ* state along the N-H bond, whose complete relaxation with a ∼500 ps lifetime results in the formation of the fully solvated electron and cation. This ionization process occurs in parallel with the ππ* photophysical channel that yields the characteristic ∼1 ns fluorescence lifetime. The observed branched pathway is rationalized in terms of the different H-bonds that the water establishes with the amino group. The proposed mechanism could be common for aromatics in water containing N-H or O-H bonds and would allow the formation of separated charges after excitation at the threshold of their electronic absorptions.
Collapse
Affiliation(s)
- Iker Lamas
- Facultad de Ciencia y Tecnología, Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apart. 644, 48080 Bilbao, Spain
| | - Jorge González
- Facultad de Ciencia y Tecnología, Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apart. 644, 48080 Bilbao, Spain
| | - Asier Longarte
- Facultad de Ciencia y Tecnología, Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apart. 644, 48080 Bilbao, Spain
| | - Raúl Montero
- Facultad de Ciencia y Tecnología, SGIKER Laser Facility, UPV/EHU, Sarriena, S/N, 48940 Leioa, Spain
| |
Collapse
|
6
|
Huang H, Xue L, Lu G, Cheng S, Bu Y. Hydrated electrons as nodes in porous clathrate hydrates. J Chem Phys 2023; 158:114504. [PMID: 36948798 DOI: 10.1063/5.0135335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
We investigate the structures of hydrated electrons (e- aq) in one of water's solid phases, namely, clathrate hydrates (CHs). Using density functional theory (DFT) calculations, DFT-based ab initio molecular dynamics (AIMD), and path-integral AIMD simulations with periodic boundary conditions, we find that the structure of the e- aq@node model is in good agreement with the experiment, suggesting that an e- aq could form a node in CHs. The node is a H2O defect in CHs that is supposed to be composed of four unsaturated hydrogen bonds. Since CHs are porous crystals that possess cavities that can accommodate small guest molecules, we expect that these guest molecules can be used to tailor the electronic structure of the e- aq@node, and it leads to experimentally observed optical absorption spectra of CHs. Our findings have a general interest and extend the knowledge of e- aq into porous aqueous systems.
Collapse
Affiliation(s)
- Haibei Huang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Lijuan Xue
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Shibo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
7
|
Park SJ, Narvaez WA, Schwartz BJ. Ab Initio Studies of Hydrated Electron/Cation Contact Pairs: Hydrated Electrons Simulated with Density Functional Theory Are Too Kosmotropic. J Phys Chem Lett 2023; 14:559-566. [PMID: 36630724 DOI: 10.1021/acs.jpclett.2c03705] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We have performed the first DFT-based ab initio MD simulations of a hydrated electron (eaq-) in the presence of Na+, a system chosen because ion-pairing behavior in water depends sensitively on the local hydration structure. Experiments show that eaq-'s interact weakly with Na+; the eaq-'s spectrum blue shifts by only a few tens of meV upon ion pairing without changing shape. We find that the spectrum of the DFT-simulated eaq- red shifts and changes shape upon interaction with Na+, in contrast with experiment. We show that this is because the hydration structure of the DFT-simulated eaq- is too ordered or kosmotropic. Conversely, simulations that produce eaq-'s with a less ordered or chaotropic hydration structure form weaker ion pairs with Na+, yielding predicted spectral blue shifts in better agreement with experiment. Thus, ab initio simulations based on hybrid GGA DFT functionals fail to produce the correct solvation structure for the hydrated electron.
Collapse
Affiliation(s)
- Sanghyun J Park
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Wilberth A Narvaez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
8
|
Narvaez WA, Park SJ, Schwartz BJ. Competitive Ion Pairing and the Role of Anions in the Behavior of Hydrated Electrons in Electrolytes. J Phys Chem B 2022; 126:7701-7708. [PMID: 36166380 DOI: 10.1021/acs.jpcb.2c04463] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experiments have shown that in the presence of electrolytes, the hydrated electron's absorption spectrum experiences a blue shift whose magnitude depends on both the salt concentration and chemical identity. Previous computer simulations have suggested that the spectral blue shift results from the formation of (cation, electron) contact pairs and that the concentration dependence arises because the number of cations simultaneously paired with the electron increases with increasing concentration. In this work, we perform new simulations to build an atomistic picture that explains the effect of salt identity on the observed hydrated electron spectral shifts. We simulate hydrated electrons in the presence of both monovalent (Na+) and divalent (Ca2+) cations paired with both Cl- and a spherical species representing ClO4- anions. Our simulations reproduce the experimental observations that divalent ions produce larger blue shifts of the hydrated electron's spectrum than monovalent ions with the same anion and that perchlorate salts show enhanced blue shifts compared to chloride salts with the same cation. We find that these observations can be explained by competitive ion pairing. With small kosmotropic cations such as Na+ and Ca2+, aqueous chloride salts tend to form (cation, anion) contact pairs, whereas there is little ion pairing between these cations and chaotropic perchlorate anions. Hydrated electrons also strongly interact with these cations, but if the cations are also paired with anions, this affects the free energy of the electron-cation interaction. With chloride salts, hydrated electrons end up in complexes containing multiple cations plus a few anions as well as the electron. Repulsive interactions between the electron and the nearby Cl- anions reduce the cation-induced spectral blue shift of the hydrated electron. With perchlorate salts, hydrated electrons pair with multiple cations without any associated anions, leading to the largest possible cation-induced spectral blue shift. We also see that the reason multivalent cations produce larger spectral blue shifts than monovalent cations is because hydrated electrons are able to simultaneously pair with a larger number of multivalent cations due to a larger free energy of interaction. Overall, the interaction of hydrated electrons with electrolytes fits well with the Hofmeister series, where the electron behaves as an anion that is slightly more able to break water's H-bond structure than chloride.
Collapse
Affiliation(s)
- Wilberth A Narvaez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Sanghyun J Park
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Benjamin J Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
9
|
Lan J, Rybkin VV, Pasquarello A. Temperature Dependent Properties of the Aqueous Electron. Angew Chem Int Ed Engl 2022; 61:e202209398. [PMID: 35849110 PMCID: PMC9541610 DOI: 10.1002/anie.202209398] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 11/07/2022]
Abstract
The temperature‐dependent properties of the aqueous electron have been extensively studied using mixed quantum‐classical simulations in a wide range of thermodynamic conditions based on one‐electron pseudopotentials. While the cavity model appears to explain most of the physical properties of the aqueous electron, only a non‐cavity model has so far been successful in accounting for the temperature dependence of the absorption spectrum. Here, we present an accurate and efficient description of the aqueous electron under various thermodynamic conditions by combining hybrid functional‐based molecular dynamics, machine learning techniques, and multiple time‐step methods. Our advanced simulations accurately describe the temperature dependence of the absorption maximum in the presence of cavity formation. Specifically, our work reveals that the red shift of the absorption maximum results from an increasing gyration radius with temperature, rather than from global density variations as previously suggested.
Collapse
Affiliation(s)
- Jinggang Lan
- Chaire de Simulation àl'Echelle Atomique (CSEA)Ecole Polytechnique Fédérale de Lausanne (EPFL)CH-1015LausanneSwitzerland
| | | | - Alfredo Pasquarello
- Chaire de Simulation àl'Echelle Atomique (CSEA)Ecole Polytechnique Fédérale de Lausanne (EPFL)CH-1015LausanneSwitzerland
| |
Collapse
|
10
|
Lan J, Rybkin VV, Pasquarello A. Temperature Dependent Properties of the Aqueous Electron. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jinggang Lan
- EPFL: Ecole Polytechnique Federale de Lausanne Chaire de Simulation à l’Echelle Atomique 1015 Lausanne SWITZERLAND
| | | | - Alfredo Pasquarello
- EPFL: Ecole Polytechnique Federale de Lausanne Chaire de Simulation à l’Echelle Atomique SWITZERLAND
| |
Collapse
|
11
|
Park SJ, Schwartz BJ. Understanding the Temperature Dependence and Finite Size Effects in Ab Initio MD Simulations of the Hydrated Electron. J Chem Theory Comput 2022; 18:4973-4982. [PMID: 35834750 DOI: 10.1021/acs.jctc.2c00335] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hydrated electron is of interest to both theorists and experimentalists as a paradigm solution-phase quantum system. Although the bulk of the theoretical work studying the hydrated electron is based on mixed quantum/classical (MQC) methods, recent advances in computer power have allowed several attempts to study this object using ab initio methods. The difficulty with employing ab initio methods for this system is that even with relatively inexpensive quantum chemistry methods such as density functional theory (DFT), such calculations are still limited to at most a few tens of water molecules and only a few picoseconds duration, leaving open the question as to whether the calculations are converged with respect to either system size or dynamical fluctuations. Moreover, the ab initio simulations of the hydrated electron that have been published to date have provided only limited analysis. Most works calculate the electron's vertical detachment energy, which can be compared to experiment, and occasionally the electronic absorption spectrum is also computed. Structural features, such as pair distribution functions, are rare in the literature, with the majority of the structural analysis being simple statements that the electron resides in a cavity, which are often based only on a small number of simulation snapshots. Importantly, there has been no ab initio work examining the temperature-dependent behavior of the hydrated electron, which has not been satisfactorily explained by MQC simulations. In this work, we attempt to remedy this situation by running DFT-based ab initio simulations of the hydrated electron as a function of both box size and temperature. We show that the calculated properties of the hydrated electron are not converged even with simulation sizes up to 128 water molecules and durations of several tens of picoseconds. The simulations show significant changes in the water coordination and solvation structure with box size. Our temperature-dependent simulations predict a red-shift of the absorption spectrum (computed using TD-DFT with an optimally tuned range-separated hybrid functional) with increasing temperature, but the magnitude of the predicted red-shift is larger than that observed experimentally, and the absolute position of the calculated spectra are off by over half an eV. The spectral red-shift at high temperatures is accompanied by both a partial loss of structure of the electron's central cavity and an increased radius of gyration that pushes electron density onto and beyond the first solvation shell. Overall, although ab initio simulations can provide some insights into the temperature-dependent behavior of the hydrated electron, the simulation sizes and level of quantum chemistry theory that are currently accessible are inadequate for correctly describing the experimental properties of this fascinating object.
Collapse
Affiliation(s)
- Sanghyun J Park
- Department of Chemistry and Biochemistry University of California,Los Angeles Los Angeles California 90095-1569, United States
| | - Benjamin J Schwartz
- Department of Chemistry and Biochemistry University of California,Los Angeles Los Angeles California 90095-1569, United States
| |
Collapse
|
12
|
Biswas S, Yamijala SSRKC, Wong BM. Degradation of Per- and Polyfluoroalkyl Substances with Hydrated Electrons: A New Mechanism from First-Principles Calculations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8167-8175. [PMID: 35481774 PMCID: PMC10365488 DOI: 10.1021/acs.est.2c01469] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are synthetic contaminants found in drinking groundwater sources and a wide variety of consumer products. Because of their adverse environmental and human health effects, remediation of these persistent compounds has attracted significant recent attention. To gain mechanistic insight into their remediation, we present the first ab initio study of PFAS degradation via hydrated electrons─a configuration that has not been correctly considered in previous computational studies up to this point. To capture these complex dynamical effects, we harness ab initio molecular dynamics (AIMD) simulations to probe the reactivities of perfluorooctanoic (PFOA) and perfluorooctane sulfonic acid (PFOS) with hydrated electrons in explicit water. We complement our AIMD calculations with advanced metadynamics sampling techniques to compute free energy profiles and detailed statistical analyses of PFOA/PFOS dynamics. Although our calculations show that the activation barrier for C-F bond dissociation in PFOS is three times larger than that in PFOA, all the computed free energy barriers are still relatively low, resulting in a diffusion-limited process. We discuss our results in the context of recent studies on PFAS degradation with hydrated electrons to give insight into the most efficient remediation strategies for these contaminants. Most importantly, we show that the degradation of PFASs with hydrated electrons is markedly different from that with excess electrons/charges, a common (but largely incomplete) approach used in several earlier computational studies.
Collapse
Affiliation(s)
- Sohag Biswas
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, Department of Physics & Astronomy, and Department of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| | - Sharma S R K C Yamijala
- Department of Chemistry and Center for Atomistic Modelling and Materials Design, Indian Institute of Technology-Madras, Chennai 6000036, India
| | - Bryan M Wong
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, Department of Physics & Astronomy, and Department of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| |
Collapse
|
13
|
Narvaez WA, Park SJ, Schwartz BJ. Hydrated Electrons in High-Concentration Electrolytes Interact with Multiple Cations: A Simulation Study. J Phys Chem B 2022; 126:3748-3757. [PMID: 35544344 DOI: 10.1021/acs.jpcb.2c01501] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Experimental studies have demonstrated that the hydrated electron's absorption spectrum undergoes a concentration-dependent blue-shift in the presence of electrolytes such as NaCl. The blue-shift increases roughly linearly at low salt concentration but saturates as the solubility limit of the salt is approached. Previous attempts to understand the origin of the concentration-dependent spectral shift using molecular simulation have only examined the interaction between the hydrated electron and a single sodium cation, and these simulations predicted a spectral blue-shift that was an order of magnitude larger than that seen experimentally. Thus, in this paper, we first explore the reasons for the exaggerated spectral blue-shift when a simulated hydrated electron interacts with a single Na+. We find that the issue arises from nonpairwise additivity of the Na+-e- and H2O-e- pseudopotentials used in the simulation. This effect arises because the solvating water molecules donate charge into the empty orbitals of Na+, lowering the effective charge of the cation and thus reducing the excess electron-cation interaction. Careful analysis shows, however, that although this nonpairwise additivity changes the energetics of the electron-Na+ interaction, the forces between the electron, Na+, and water are unaffected, so that mixed quantum/classical (MQC) simulations produce the correct structure and dynamics. With this in hand, we then use MQC simulations to explore the behavior of the hydrated electron as an explicit function of NaCl salt concentration. We find that the simulations correctly reproduce the observed experimental spectral shifting behavior. The reason for the spectral shift is that as the electrolyte concentration increases, the average number of cations simultaneously interacting in contact pairs with the hydrated electron increases from 1.0 at low concentrations to ∼2.5 near the saturation limit. As the number of cations that interact with the electron increases, the cation/electron interactions becomes slightly weaker, so that the corresponding Na+-e- distance increases with increasing salt concentration. We also find that the dielectric constant of the solution plays little role in the observed spectroscopy, so that the electrolyte-dependent spectral shifts of the hydrated electron are directly related to the concentration-dependent number of closely interacting cations.
Collapse
Affiliation(s)
- Wilberth A Narvaez
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles, California 90095-1569 United States
| | - Sanghyun J Park
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles, California 90095-1569 United States
| | - Benjamin J Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles, California 90095-1569 United States
| |
Collapse
|
14
|
Bachman B, Zhu D, Bandy J, Zhang L, Hamers RJ. Detection of Aqueous Solvated Electrons Produced by Photoemission from Solids Using Transient Absorption Measurements. ACS MEASUREMENT SCIENCE AU 2022; 2:46-56. [PMID: 36785590 PMCID: PMC9838729 DOI: 10.1021/acsmeasuresciau.1c00025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Solvated electrons in water have long been of interest to chemists. While readily produced using intense multiphoton excitation of water and/or irradiation with high-energy particles, the possible role of solvated electrons in electrochemical and photoelectrochemical reactions at electrodes has been controversial. Recent studies showed that excitation of electrons to the conduction band of diamond leads to barrier-free emission of electrons into water. While these electrons can be inferred from the reactions they induce, direct detection by transient absorption measurements provides more direct evidence. Here, we present studies demonstrating direct detection of solvated electrons produced at diamond electrode surfaces and the influence of electrochemical potential and solution-phase electron scavengers. We further present a more detailed analysis of experimental conditions needed to detect solvated electrons emitted from diamond and other solid materials through transient optical absorption measurements.
Collapse
|
15
|
Ahmadi S. Hydrated electrons and cluster science. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Park SJ, Narvaez WA, Schwartz BJ. How Water-Ion Interactions Control the Formation of Hydrated Electron:Sodium Cation Contact Pairs. J Phys Chem B 2021; 125:13027-13040. [PMID: 34806385 DOI: 10.1021/acs.jpcb.1c08256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although solvated electrons are a perennial subject of interest, relatively little attention has been paid to the way they behave in aqueous electrolytes. Experimentally, it is known that the hydrated electron's (eaq-) absorption spectrum shifts to the blue in the presence of salts, and the magnitude of the shift depends on the ion concentration and the identities of both the cation and anion. Does the blue-shift result from some type of dielectric effect from the bulk electrolyte, or are there specific interactions between the hydrated electron and ions in solution? Previous work has suggested that eaq- forms contact pairs with aqueous ions such as Na+, leading to the question of what controls the stability of such contact pairs and their possible connection to the observed spectroscopy. In this work, we use mixed quantum/classical simulations to examine the nature of Na+:e- contact pairs in water, using a novel method for quantum umbrella sampling to construct eaq--ion potentials of mean force (PMF). We find that the nature of the contact pair PMF depends sensitively on the choice of the classical interactions used to describe the Na+-water interactions. When the ion-water interactions are slightly stronger, the corresponding cation:e- contact pairs form at longer distances and become free energetically less stable. We show that this is because there is a delicate balance between solvation of the cation, solvation of eaq- and the direct electronic interaction between the cation and the electron, so that small changes in this balance lead to large changes in the formation and stability of e--ion contact pairs. In particular, strengthening the ion-water interactions helps to maintain a favorable local solvation environment around Na+, which in turn forces water molecules in the first solvation shell of the cation to be unfavorably oriented toward the electron in a contact pair; stronger solvation of the cation also reduces the electronic overlap of eaq- with Na+. We also find that the calculated spectra of different models of Na+:e- contact pairs do not shift monotonically with cation-electron distance, and that the calculated spectral shifts are about an order of magnitude larger than experiment, suggesting that isolated contact pairs are not the sole explanation for the blue-shift of the hydrated electron's spectrum in the presence of electrolytes.
Collapse
Affiliation(s)
- Sanghyun J Park
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Wilberth A Narvaez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
17
|
Glover WJ, Schwartz BJ. The Fluxional Nature of the Hydrated Electron: Energy and Entropy Contributions to Aqueous Electron Free Energies. J Chem Theory Comput 2020; 16:1263-1270. [PMID: 31914315 DOI: 10.1021/acs.jctc.9b00496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There has been a great deal of recent controversy over the structure of the hydrated electron and whether it occupies a cavity or contains a significant number of interior waters (noncavity). The questions we address in this work are, from a free energy perspective, how different are these proposed structures? Do the different structures all lie along a single continuum, or are there significant differences (i.e., free energy barriers) between them? To address these questions, we have performed a series of one-electron calculations using umbrella sampling with quantum biased molecular dynamics along a coordinate that directly reflects the number of water molecules in the hydrated electron's interior. We verify that a standard cavity model of the hydrated electron behaves essentially as a hard sphere: the model is dominated by repulsion at short range such that water is expelled from a local volume around the electron, leading to a water solvation shell like that of a pseudohalide ion. The repulsion is much larger than thermal energies near room temperature, explaining why such models exhibit properties with little temperature dependence. On the other hand, our calculations reveal that a noncavity model is highly fluxional, meaning that thermal motions cause the number of interior waters to fluctuate from effectively zero (i.e., a cavity-type electron) to potentially above the bulk water density. The energetic contributions in the noncavity model are still repulsive in the sense that they favor cavity formation, so the fluctuations in structure are driven largely by entropy: the entropic cost for expelling water from a region of space is large enough that some water is still driven into the electron's interior. As the temperature is lowered and entropy becomes less important, the noncavity electron's structure is predicted to become more cavity-like, consistent with the observed temperature dependence of the hydrated electron's properties. Thus, we argue that although the specific noncavity model we study overestimates the preponderance of fluctuations involving interior water molecules, with appropriate refinements to correctly capture the true average number of interior waters and molar solvation volume, a fluxional model likely makes the most sense for understanding the various experimental properties of the hydrated electron.
Collapse
Affiliation(s)
- William J Glover
- NYU Shanghai , 1555 Century Ave. , Pudong, Shanghai , China 200122.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , 3663 Zhongshang Road , Shanghai , China 200062.,Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Benjamin J Schwartz
- Department of Chemistry and Biochemistry , University of California, Los Angeles , 607 Charles E. Young Drive East , Los Angeles , California 90095-1569 , United States
| |
Collapse
|
18
|
Herburger A, Barwa E, Ončák M, Heller J, van der Linde C, Neumark DM, Beyer MK. Probing the Structural Evolution of the Hydrated Electron in Water Cluster Anions (H 2O) n-, n ≤ 200, by Electronic Absorption Spectroscopy. J Am Chem Soc 2019; 141:18000-18003. [PMID: 31651160 PMCID: PMC6856957 DOI: 10.1021/jacs.9b10347] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Electronic
absorption spectra of water cluster anions (H2O)n–, n ≤
200, at T = 80 K are obtained by photodissociation
spectroscopy and compared with simulations from literature and experimental
data for bulk hydrated electrons. Two almost isoenergetic electron
binding motifs are seen for cluster sizes 20 ≤ n ≤ 40, which are assigned to surface and partially embedded
isomers. With increasing cluster size, the surface isomer becomes
less populated, and for n ≥ 50, the partially
embedded isomer prevails. The absorption shifts to the blue, reaching
a plateau at n ≈ 100. In this size range,
the absorption spectrum is similar to that of the bulk hydrated electron
but is slightly red-shifted; spectral moment analysis indicates that
these clusters are reasonable model systems for hydrated electrons
near the liquid–vacuum interface.
Collapse
Affiliation(s)
- Andreas Herburger
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Erik Barwa
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Jakob Heller
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Daniel M Neumark
- Department of Chemistry , University of California , Berkeley , California 94720 , United States.,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| |
Collapse
|
19
|
Kumar A, Becker D, Adhikary A, Sevilla MD. Reaction of Electrons with DNA: Radiation Damage to Radiosensitization. Int J Mol Sci 2019; 20:E3998. [PMID: 31426385 PMCID: PMC6720166 DOI: 10.3390/ijms20163998] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 01/19/2023] Open
Abstract
This review article provides a concise overview of electron involvement in DNA radiation damage. The review begins with the various states of radiation-produced electrons: Secondary electrons (SE), low energy electrons (LEE), electrons at near zero kinetic energy in water (quasi-free electrons, (e-qf)) electrons in the process of solvation in water (presolvated electrons, e-pre), and fully solvated electrons (e-aq). A current summary of the structure of e-aq, and its reactions with DNA-model systems is presented. Theoretical works on reduction potentials of DNA-bases were found to be in agreement with experiments. This review points out the proposed role of LEE-induced frank DNA-strand breaks in ion-beam irradiated DNA. The final section presents radiation-produced electron-mediated site-specific formation of oxidative neutral aminyl radicals from azidonucleosides and the evidence of radiosensitization provided by these aminyl radicals in azidonucleoside-incorporated breast cancer cells.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - David Becker
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - Michael D Sevilla
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
20
|
Abstract
A cavity or excluded-volume structure best explains the experimental properties of the aqueous or “hydrated” electron.
Collapse
Affiliation(s)
- John M. Herbert
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- USA
| |
Collapse
|
21
|
Wang F, Schmidhammer U, Larbre JP, Zong Z, Marignier JL, Mostafavi M. Time-dependent yield of the hydrated electron and the hydroxyl radical in D 2O: a picosecond pulse radiolysis study. Phys Chem Chem Phys 2018; 20:15671-15679. [PMID: 29845125 DOI: 10.1039/c8cp02276c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Picosecond pulse radiolysis measurements were performed in neat D2O and H2O in order to study the isotopic effect on the time-resolved yield of the hydrated electron and hydroxyl radical. First, the absorption band of the hydrated electron in D2O, eD2O-, is measured between 250 and 1500 nm. The molar absorption coefficient of the solvated electron spectrum in D2O was determined using the isosbestic point method by scavenging the solvated electron using methyl viologen. The amplitude and shape of the absorption spectrum of the hydrated electron in D2O are different from those previously reported in the literature. The maximum of the hydrated electron in the D2O absorption band is ca. 704 nm with a molar absorption coefficient of (22 900 ± 500) L mol-1 cm-1. Based on this extinction coefficient, the radiolytic yield of eD2O- just after the 7 ps electron pulse was determined to be (4.4 ± 0.2) × 10-7 mol J-1, which coincides with the one for eH2O- in H2O. The time-dependent radiolytic yield of eD2O- was determined from a few ps to 8 ns. To determine the OD˙ radical yield, the contribution of the solvated electron and of the transient species produced by the electron pulse in the windows of the fused silica optical cell was taken into account for the analysis of the transient absorption measurements at 260 nm. Therefore, an appropriate experimental methodology is used for measuring low absorbance at two different wavelengths in ps pulse radiolysis. The yield of the OD˙ radical just after the 7 ps electron pulse was found to be (5.0 ± 0.2) × 10-7 mol J-1. In the spurs of ionization, the decay rate of eD2O- is slower than eH2O-, whereas the decay rate of OD˙ is similar to the one of OH˙. Here, the established time-dependent yield of the solvated electron and the hydroxyl radical provide the foundation for improving the models used for spur reaction simulations in heavy water mainly for the chemistry of CANDU reactors.
Collapse
Affiliation(s)
- Furong Wang
- Laboratoire de Chimie Physique, CNRS/Université Paris-Sud, Bât. 349, 91405 Orsay, France.
| | | | | | | | | | | |
Collapse
|
22
|
Liu G, Landry C, Ghandi K. Prediction of rate constants of important chemical reactions in water radiation chemistry in sub and supercritical water – non-equilibrium reactions. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rate constants for reactions involved in the radiolysis of water under relevant thermodynamic conditions in supercritical water-cooled reactors are estimated for inputs in simulations of the radiation chemistry in Generation IV nuclear reactors. We have discussed the mechanism of each chemical reaction with a focus on non-equilibrium reactions. We found most of the reactions are activation controlled above the critical point and that the rate constants are not significantly pressure dependent below 300 °C. This work will aid industry with developing chemical control strategies to suppress the concentration of eroding species.
Collapse
Affiliation(s)
- Guangdong Liu
- Department of Physics, Mount Allison University, Sackville, NB E4L 1E2, Canada
| | - Cody Landry
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1E2, Canada
| | - Khashayar Ghandi
- Department of Physics, Mount Allison University, Sackville, NB E4L 1E2, Canada
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1E2, Canada
| |
Collapse
|
23
|
Zho CC, Farr EP, Glover WJ, Schwartz BJ. Temperature dependence of the hydrated electron’s excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models. J Chem Phys 2017; 147:074503. [DOI: 10.1063/1.4985905] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Chen-Chen Zho
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California,
90095-1569, USA
| | - Erik P. Farr
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California,
90095-1569, USA
| | - William J. Glover
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California,
90095-1569, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- NYU Shanghai, 1555 Century Avenue,
Shanghai 200135, China
| | - Benjamin J. Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California,
90095-1569, USA
| |
Collapse
|
24
|
Affiliation(s)
- John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Marc P. Coons
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
25
|
Rumbach P, Go DB. Perspectives on Plasmas in Contact with Liquids for Chemical Processing and Materials Synthesis. Top Catal 2017. [DOI: 10.1007/s11244-017-0745-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Bhattacharyya R, Chandra Lahiri S. The Determination of Absolute Values of Entropies of Hydration [ΔSabs0(H+)h]$[\Delta S_{abs}^0{({H^ + })_h}]$ and Aquation [ΔSabs0(H+)aq]$[\Delta S_{abs}^0{({H^ + })_{aq}}]$ and The Thermodynamics of Proton in Solutions. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/zpch-2016-0867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Absolute entropy value of H+ ion i.e.
Δ
S
aq
0
(
H
+
)
=
−
22.2
J
K
−
1
mol
−
1
$\Delta {\rm{S}}_{{\rm{aq}}}^0({{\rm{H}}^ + }) = - \;22.2{\rm{ }}J{K^{ - 1}}{\rm{mo}}{{\rm{l}}^{ - 1}}$
in aqueous solution, a fundamental parameter of importance was determined using a number of extrathermodynamic assumptions of doubtful validity. The value can in no way be regarded to be absolute or correct and needs reassessment. However, no value of the entropy change due to hydration
Δ
S
h
0
(
H
+
)
$\Delta {\rm{S}}_{\rm{h}}^0({{\rm{H}}^ + })$
was available. Absolute values for entropy of hydration
[
Δ
S
abs
0
(
H
+
)
h
]
$[\Delta {\rm{S}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{\rm{h}}}]$
(entropy change for the transfer of H+ ion from gaseous (g) state to H+ ion in aqueous solution) or entropy of aquation
[
Δ
S
abs
0
(
H
+
)
aq
]
$[\Delta {\rm{S}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{{\rm{aq}}}}]$
(entropy change for transfer of H(g) to aqueous
H
ion
+
)
${\rm{H}}_{{\rm{ion}}}^ + )$
of H+ ion can only be calculated if the related absolute values of Gibbs energy or enthalpy changes of H+ ion i.e.
[
Δ
G
abs
0
(
H
+
)
h or aq
$[\Delta {\rm{G}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{{\text{h or aq}}}}$
and
Δ
H
abs
0
(
H
+
)
h or aq
]
$\Delta {\rm{H}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{{\text{h or aq}}}}]$
are known. Critical analysis of the methods used for evaluation of thermodynamics of H+ ion was made. Analysis of the methods showed that the methods had limitations due to defective use of Born equation and ionic additivity principle. Reference electrolyte method using TATB (tetraphenyl arsonium tetraphenyl borate, Ph4AsBPh4), Halliwell and Nyburg’s method and Noyes method or modified Noyes method of Lahiri do not give entropy values. Cluster-ion approximation method (used by Coe and co-workers) gives
Δ
H
abs
0
(
H
+
)
h
$\Delta {\rm{H}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{\rm{h}}}$
and
Δ
G
abs
0
(
H
+
)
h
$\Delta {\rm{G}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{\rm{h}}}$
and hence
Δ
S
abs
0
(
H
+
)
h
=
−
153.0
JK
−
1
mol
−
1
.
Δ
S
abs
0
(
H
+
)
aq
$\Delta {\rm{S}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{\rm{h}}} = - \;153.0{\rm{ J}}{{\rm{K}}^{ - 1}}{\rm{mo}}{{\rm{l}}^{ - 1}}.\;\Delta {\rm{S}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{{\rm{aq}}}}$
is obtained by coupling
Δ
S
abs
0
(
H
+
)
h
$\Delta {\rm{S}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{\rm{h}}}$
with
Δ
S
abs
0
(
H
+
)
g
$\Delta {\rm{S}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{\rm{g}}}$
[entropy of gaseous H+ ion calculated using Sackur-Tetrode equation], comes out to be –44.2 JK−1mol−1. However,
Δ
S
abs
0
(
H
+
)
h
$\Delta {\rm{S}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{\rm{h}}}$
and
Δ
S
abs
0
(
H
+
)
aq
$\Delta {\rm{S}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{{\rm{aq}}}}$
determined by Lahiri and co-workers are –50.0 JK−1mol−1 and 20.0 JK−1mol−1. The values can be regarded to be accurate and reliable. Some comments on the surface potential of water towards
Δ
G
h or aq
0
(
H
+
)
$\Delta {\rm{G}}_{{\text{h or aq}}}^0({{\rm{H}}^ + })$
and error ranges on the energetics of H+ and other ions are given. No attempt was made to determine entropy of hydration or aquation from theoretical calculations.
Collapse
Affiliation(s)
- Ranjana Bhattacharyya
- Department of Chemistry, Raja Rammohun Roy Mahavidyalaya, Radhanagar, Hooghly, West Bengal, India
| | | |
Collapse
|
27
|
Mason PE, Buttersack T, Bauerecker S, Jungwirth P. A Non-Exploding Alkali Metal Drop on Water: From Blue Solvated Electrons to Bursting Molten Hydroxide. Angew Chem Int Ed Engl 2016; 55:13019-13022. [PMID: 27489173 DOI: 10.1002/anie.201605986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Indexed: 11/11/2022]
Abstract
Alkali metals in water are always at the brink of explosion. Herein, we show that this vigorous reaction can be kept in a non-exploding regime, revealing a fascinating richness of hitherto unexplored chemical processes. A combination of high-speed camera imaging and visible/near-infrared/infrared spectroscopy allowed us to catch and characterize the system at each stage of the reaction. After gently placing a drop of a sodium/potassium alloy on water under an inert atmosphere, the production of solvated electrons became so strong that their characteristic blue color could be observed with the naked eye. The exoergic reaction leading to the formation of hydrogen and hydroxide eventually heated the alkali metal drop such that it became glowing red, and part of the metal evaporated. As a result of the reaction, a perfectly transparent drop consisting of molten hydroxide was temporarily stabilized on water through the Leidenfrost effect, bursting spectacularly after it had cooled sufficiently.
Collapse
Affiliation(s)
- Philip E Mason
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Tillmann Buttersack
- Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, 38106, Braunschweig, Germany
| | - Sigurd Bauerecker
- Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, 38106, Braunschweig, Germany. .,Institute of Physics and Technology, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia.
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610, Prague 6, Czech Republic.
| |
Collapse
|
28
|
Mason PE, Buttersack T, Bauerecker S, Jungwirth P. A Non-Exploding Alkali Metal Drop on Water: From Blue Solvated Electrons to Bursting Molten Hydroxide. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Philip E. Mason
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Tillmann Buttersack
- Institut für Physikalische und Theoretische Chemie; Technische Universität Braunschweig; Hans-Sommer-Strasse 10 38106 Braunschweig Germany
| | - Sigurd Bauerecker
- Institut für Physikalische und Theoretische Chemie; Technische Universität Braunschweig; Hans-Sommer-Strasse 10 38106 Braunschweig Germany
- Institute of Physics and Technology; National Research Tomsk Polytechnic University; Tomsk 634050 Russia
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| |
Collapse
|
29
|
Glover WJ, Schwartz BJ. Short-Range Electron Correlation Stabilizes Noncavity Solvation of the Hydrated Electron. J Chem Theory Comput 2016; 12:5117-5131. [PMID: 27576177 DOI: 10.1021/acs.jctc.6b00472] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hydrated electron, e-(aq), has often served as a model system to understand the influence of condensed-phase environments on electronic structure and dynamics. Despite over 50 years of study, however, the basic structure of e-(aq) is still the subject of controversy. In particular, the structure of e-(aq) was long assumed to be an electron localized within a solvent cavity, in a manner similar to halide solvation. Recently, however, we suggested that e-(aq) occupies a region of enhanced water density with little or no discernible cavity. The potential we developed was only subtly different from those that give rise to a cavity solvation motif, which suggests that the driving forces for noncavity solvation involve subtle electron-water attractive interactions at close distances. This leads to the question of how dispersion interactions are treated in simulations of the hydrated electron. Most dispersion potentials are ad hoc or are not designed to account for the type of close-contact electron-water overlap that might occur in the condensed phase, and where short-range dynamic electron correlation is important. To address this, in this paper we develop a procedure to calculate the potential energy surface between a single water molecule and an excess electron with high-level CCSD(T) electronic structure theory. By decomposing the electron-water potential into its constituent energetic contributions, we find that short-range electron correlation provides an attraction of comparable magnitude to the mean-field interactions between the electron and water. Furthermore, we find that by reoptimizing a popular cavity-forming one-electron model potential to better capture these attractive short-range interactions, the enhanced description of correlation predicts a noncavity e-(aq) with calculated properties in better agreement with experiment. Although much attention has been placed on the importance of long-range dispersion interactions in water cluster anions, our study reveals that largely unexplored short-range correlation effects are crucial in dictating the solvation structure of the condensed-phase hydrated electron.
Collapse
Affiliation(s)
- William J Glover
- NYU-ECNU Center for Computational Chemistry, New York University Shanghai , Shanghai, 200122, China.,Department of Chemistry, New York University , New York, New York 10003, United States
| | - Benjamin J Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| |
Collapse
|
30
|
Walker JA, Bartels DM. A Simple ab Initio Model for the Solvated Electron in Methanol. J Phys Chem A 2016; 120:7240-7. [PMID: 27599299 DOI: 10.1021/acs.jpca.6b07955] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solvation structure of a solvated electron in methanol is investigated with ab initio calculations of small anion methanol clusters in a polarized dielectric continuum. We find that the lowest-energy structure in best agreement with experiment, calculated with CCSD, MP2, and B3LYP methods with aug-cc-pvdz basis set, is a tetrahedral arrangement of four methanol molecules with OH bonds oriented toward the center. The optimum distance from the tetrahedron center to the hydroxyl protons is ∼1.8 Å, significantly smaller than previous estimates. We are able to reproduce experimental radius of gyration Rg (deduced from optical absorption), vertical detachment energy, and resonance Raman frequencies. The electron paramagnetic resonance g-factor shift is qualitatively reproduced using density functional theory.
Collapse
Affiliation(s)
- J A Walker
- Radiation Laboratory and Dept. of Chemistry & Biochemistry, Notre Dame University , Notre Dame, Indiana 46556, United States
| | - D M Bartels
- Radiation Laboratory and Dept. of Chemistry & Biochemistry, Notre Dame University , Notre Dame, Indiana 46556, United States
| |
Collapse
|
31
|
Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy. Top Curr Chem (Cham) 2016; 374:60. [DOI: 10.1007/s41061-016-0058-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
|
32
|
Zhang R, Bu Y. Bifurcate localization modes of excess electron in aqueous Ca(2+)amide solution revealed by ab initio molecular dynamics simulation: towards hydrated electron versus hydrated amide anion. Phys Chem Chem Phys 2016; 18:18868-79. [PMID: 27351489 DOI: 10.1039/c6cp03552c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we conduct ab initio molecular dynamics simulations on the localization dynamics of an excess electron (EE) in acetamide/Ca(2+) aqueous solutions with three different interaction modes of Ca(2+) with acetamide: tight contact, solvent-shared state, and separated interaction. The simulated results reveal that an EE could exhibit two different localization behaviors in these acetamide/Ca(2+) aqueous solutions depending on different amideCa(2+) interactions featuring different contact distances. For the tight contact and solvent-shared state of amideCa(2+) solutions, vertically injected diffuse EEs follow different mechanisms with different dynamics, forming a cavity-shaped hydrated electron or a hydrated amide anion, respectively. Meanwhile, for the separated state, only one localization pattern of a vertically injected diffuse EE towards the formation of hydrated amide anion is observed. The hindrance of hydrated Ca(2+) and the attraction of the hydrated amide group originating from its polarity and low energy π* orbital are the main driving forces. Additionally, different EE localization modes have different effects on the interaction between the amide group and Ca(2+) in turn. This work provides an important basis for further understanding the mechanisms and dynamics of localizations/transfers of radiation-produced EEs and associated EE-induced lesions and damage to biological species in real biological environments or other aqueous solutions.
Collapse
Affiliation(s)
- Ru Zhang
- Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, 250100, P. R. China.
| | | |
Collapse
|
33
|
Kumar A, Walker JA, Bartels DM, Sevilla MD. A Simple ab Initio Model for the Hydrated Electron That Matches Experiment. J Phys Chem A 2016; 119:9148-59. [PMID: 26275103 DOI: 10.1021/acs.jpca.5b04721] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since its discovery over 50 years ago, the "structure" and properties of the hydrated electron have been a subject for wonderment and also fierce debate. In the present work we seriously explore a minimal model for the aqueous electron, consisting of a small water anion cluster embedded in a polarized continuum, using several levels of ab initio calculation and basis set. The minimum energy "zero Kelvin" structure found for any 4-water (or larger) anion cluster, at any post-Hartree–Fock theory level, is very similar to a recently reported embedded-DFT-in-classical-water-MD simulation (Uhlig, Marsalek, and Jungwirth, J. Phys. Chem. Lett. 2012, 3, 3071−3075), with four OH bonds oriented toward the maximum charge density in a small central "void". The minimum calculation with just four water molecules does a remarkably good job of reproducing the resonance Raman properties, the radius of gyration derived from the optical spectrum, the vertical detachment energy, and the hydration free energy. For the first time we also successfully calculate the EPR g-factor and (low temperature ice) hyperfine couplings. The simple tetrahedral anion cluster model conforms very well to experiment, suggesting it does in fact represent the dominant structural motif of the hydrated electron.
Collapse
|
34
|
Sevilla MD, Becker D, Kumar A, Adhikary A. Gamma and Ion-Beam Irradiation of DNA: Free Radical Mechanisms, Electron Effects, and Radiation Chemical Track Structure. Radiat Phys Chem Oxf Engl 1993 2016; 128:60-74. [PMID: 27695205 DOI: 10.1016/j.radphyschem.2016.04.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The focus of our laboratory's investigation is to study the direct-type DNA damage mechanisms resulting from γ-ray and ion-beam radiation-induced free radical processes in DNA which lead to molecular damage important to cellular survival. This work compares the results of low LET (γ-) and high LET (ion-beam) radiation to develop a chemical track structure model for ion-beam radiation damage to DNA. Recent studies on protonation states of cytosine cation radicals in the N1-substituted cytosine derivatives in their ground state and 5-methylcytosine cation radicals in ground as well as in excited state are described. Our results exhibit a radical signature of excitations in 5-methylcytosine cation radical. Moreover, our recent theoretical studies elucidate the role of electron-induced reactions (low energy electrons (LEE), presolvated electrons (epre-), and aqueous (or, solvated) electrons (eaq-)). Finally DFT calculations of the ionization potentials of various sugar radicals show the relative reactivity of these species.
Collapse
Affiliation(s)
- Michael D Sevilla
- Department of Chemistry, Oakland University, Rochester, MI - 48309, USA
| | - David Becker
- Department of Chemistry, Oakland University, Rochester, MI - 48309, USA
| | - Anil Kumar
- Department of Chemistry, Oakland University, Rochester, MI - 48309, USA
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, MI - 48309, USA
| |
Collapse
|
35
|
de Koning M, Fazzio A, da Silva AJR, Antonelli A. On the nature of the solvated electron in ice Ih. Phys Chem Chem Phys 2016; 18:4652-8. [DOI: 10.1039/c5cp06229b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The water-solvated excess electron (EE) is a key chemical agent whose hallmark signature, its asymmetric optical absorption spectrum, continues to be a topic of debate.
Collapse
Affiliation(s)
- Maurice de Koning
- Instituto de Física ‘Gleb Wataghin’
- Universidade Estadual de Campinas
- Campinas-SP
- Brazil
| | | | | | - Alex Antonelli
- Instituto de Física ‘Gleb Wataghin’
- Universidade Estadual de Campinas
- Campinas-SP
- Brazil
| |
Collapse
|
36
|
Kanjana K, Courtin B, MacConnell A, Bartels DM. Reactions of Hexa-aquo Transition Metal Ions with the Hydrated Electron up to 300 °C. J Phys Chem A 2015; 119:11094-104. [DOI: 10.1021/acs.jpca.5b08812] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kotchaphan Kanjana
- Notre Dame Radiation Laboratory & Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 United States
| | - Bruce Courtin
- Notre Dame Radiation Laboratory & Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 United States
| | - Ashley MacConnell
- Notre Dame Radiation Laboratory & Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 United States
| | - David M. Bartels
- Notre Dame Radiation Laboratory & Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 United States
| |
Collapse
|
37
|
The solvation of electrons by an atmospheric-pressure plasma. Nat Commun 2015; 6:7248. [PMID: 26088017 PMCID: PMC4557361 DOI: 10.1038/ncomms8248] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/20/2015] [Indexed: 11/25/2022] Open
Abstract
Solvated electrons are typically generated by radiolysis or photoionization of solutes. While plasmas containing free electrons have been brought into contact with liquids in studies dating back centuries, there has been little evidence that electrons are solvated by this approach. Here we report direct measurements of solvated electrons generated by an atmospheric-pressure plasma in contact with the surface of an aqueous solution. The electrons are measured by their optical absorbance using a total internal reflection geometry. The measured absorption spectrum is unexpectedly blue shifted, which is potentially due to the intense electric field in the interfacial Debye layer. We estimate an average penetration depth of 2.5±1.0 nm, indicating that the electrons fully solvate before reacting through second-order recombination. Reactions with various electron scavengers including H+, NO2−, NO3− and H2O2 show that the kinetics are similar, but not identical, to those for solvated electrons formed in bulk water by radiolysis. Free, or solvated, electrons in a solution are known to form at the interface between a liquid and a gas. Here, the authors use absorption spectroscopy in a total internal reflection geometry to probe solvated electrons generated at a plasma in contact with the surface of an aqueous solution
Collapse
|
38
|
Ma J, Yamashita S, Muroya Y, Katsumura Y, Mostafavi M. Deciphering the reaction between a hydrated electron and a hydronium ion at elevated temperatures. Phys Chem Chem Phys 2015; 17:22934-9. [DOI: 10.1039/c5cp04293c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of a H˙ atom in liquid water from the reaction of a hydrated electron with a hydronium cation is a very challenging subject in chemical processes.
Collapse
Affiliation(s)
- Jun Ma
- Laboratoire de Chimie Physique/ELYSE
- Université Paris-Sud 11
- Orsay
- France
| | - Shinichi Yamashita
- Nuclear Professional School
- School of Engineering
- The University of Tokyo
- Naka-gun
- Japan
| | - Yusa Muroya
- The Institute of Scientific and Industrial Research (ISIR) Osaka University
- Ibaraki
- Japan
| | - Yosuke Katsumura
- Nuclear Professional School
- School of Engineering
- The University of Tokyo
- Naka-gun
- Japan
| | - Mehran Mostafavi
- Laboratoire de Chimie Physique/ELYSE
- Université Paris-Sud 11
- Orsay
- France
| |
Collapse
|
39
|
Yamashita S, Iwamatsu K, Maehashi Y, Taguchi M, Hata K, Muroya Y, Katsumura Y. Sequential radiation chemical reactions in aqueous bromide solutions: pulse radiolysis experiment and spur model simulation. RSC Adv 2015. [DOI: 10.1039/c5ra03101j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Pulse radiolysis experiments were carried out to observe transient absorptions of reaction intermediates produced in N2O- and Ar-saturated aqueous solutions containing 0.9–900 mM NaBr.
Collapse
Affiliation(s)
- S. Yamashita
- Nuclear Professional School
- School of Engineering
- the University of Tokyo
- Tokai-mura, Naka-gun
- Japan
| | - K. Iwamatsu
- Department of Nuclear Engineering and Management
- School of Engineering
- the University of Tokyo
- Bunkyo-ku
- Japan
| | - Y. Maehashi
- Department of Nuclear Engineering and Management
- School of Engineering
- the University of Tokyo
- Bunkyo-ku
- Japan
| | - M. Taguchi
- Quantum Beam Science Center
- Japan Atomic Energy Agency
- Takasaki
- Japan
| | - K. Hata
- Nuclear Safety Research Center
- Japan Atomic Energy Agency
- Tokai-mura, Naka-gun
- Japan
| | - Y. Muroya
- Department of Beam Materials Science
- Institute of Scientific and Industrial Research
- Osaka University
- Ibaraki
- Japan
| | - Y. Katsumura
- Nuclear Professional School
- School of Engineering
- the University of Tokyo
- Tokai-mura, Naka-gun
- Japan
| |
Collapse
|
40
|
Liu J, Cukier RI, Bu Y, Shang Y. Glucose-Promoted Localization Dynamics of Excess Electrons in Aqueous Glucose Solution Revealed by Ab Initio Molecular Dynamics Simulation. J Chem Theory Comput 2014; 10:4189-97. [PMID: 26588118 DOI: 10.1021/ct500238k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ab initio molecular dynamics simulations reveal that an excess electron (EE) can be more efficiently localized as a cavity-shaped state in aqueous glucose solution (AGS) than in water. Compared with that (∼1.5 ps) in water, the localization time is shortened by ∼0.7-1.2 ps in three AGSs (0.56, 1.12, and 2.87 M). Although the radii of gyration of the solvated EEs are all close to 2.6 Å in the four solutions, the solvated EE cavities in the AGSs become more compact and can localize ∼80% of an EE, which is considerably larger than that (∼40-60% and occasionally ∼80%) in water. These observations are attributed to a modification of the hydrogen-bonded network by the introduction of glucose molecules into water. The water acts as a promoter and stabilizer, by forming voids around glucose molecules and, in this fashion, favoring the localization of an EE with high efficiency. This study provides important information about EEs in physiological AGSs and suggests a new strategy to efficiently localize an EE in a stable cavity for further exploration of biological function.
Collapse
Affiliation(s)
- Jinxiang Liu
- Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University , Jinan, 250100, China
| | - Robert I Cukier
- Department of Chemistry, Michigan State University , East Lansing, 48224-1322, United States
| | - Yuxiang Bu
- Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University , Jinan, 250100, China
| | - Yuan Shang
- National Supercomputer Center in Jinan, Jinan, 250101, China
| |
Collapse
|
41
|
Donley JP, Heine DR, Tormey CA, Wu DT. Liquid-state polaron theory of the hydrated electron revisited. J Chem Phys 2014; 141:024504. [DOI: 10.1063/1.4886195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Radtke V, Himmel D, Pütz K, Goll SK, Krossing I. The Protoelectric Potential Map (PPM): An Absolute Two-Dimensional Chemical Potential Scale for a Global Understanding of Chemistry. Chemistry 2014; 20:4194-211. [DOI: 10.1002/chem.201302473] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Urbanek J, Vöhringer P. Below-Band-Gap Ionization of Liquid-to-Supercritical Ammonia: Geminate Recombination via Proton-Coupled Back Electron Transfer. J Phys Chem B 2013; 118:265-77. [DOI: 10.1021/jp4103993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Janus Urbanek
- Abteilung für Molekulare
Physikalische Chemie, Institut für Physikalische und Theoretische
Chemie, Rheinische Friedrich-Wilhelms-Universität, Wegelerstraße 12, 53115 Bonn, Germany
| | - Peter Vöhringer
- Abteilung für Molekulare
Physikalische Chemie, Institut für Physikalische und Theoretische
Chemie, Rheinische Friedrich-Wilhelms-Universität, Wegelerstraße 12, 53115 Bonn, Germany
| |
Collapse
|
44
|
Casey JR, Kahros A, Schwartz BJ. To be or not to be in a cavity: the hydrated electron dilemma. J Phys Chem B 2013; 117:14173-82. [PMID: 24160853 DOI: 10.1021/jp407912k] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hydrated electron-the species that results from the addition of a single excess electron to liquid water-has been the focus of much interest both because of its role in radiation chemistry and other chemical reactions, and because it provides for a deceptively simple system that can serve as a means to confront the predictions of quantum molecular dynamics simulations with experiment. Despite all this interest, there is still considerable debate over the molecular structure of the hydrated electron: does it occupy a cavity, have a significant number of interior water molecules, or have a structure somewhere in between? The reason for all this debate is that different computer simulations have produced each of these different structures, yet the predicted properties for these different structures are still in reasonable agreement with experiment. In this Feature Article, we explore the reasons underlying why different structures are produced when different pseudopotentials are used in quantum simulations of the hydrated electron. We also show that essentially all the different models for the hydrated electron, including those from fully ab initio calculations, have relatively little direct overlap of the electron's wave function with the nearby water molecules. Thus, a non-cavity hydrated electron is better thought of as an "inverse plum pudding" model, with interior waters that locally expel the surrounding electron's charge density. Finally, we also explore the agreement between different hydrated electron models and certain key experiments, such as resonance Raman spectroscopy and the temperature dependence and degree of homogeneous broadening of the optical absorption spectrum, in order to distinguish between the different simulated structures. Taken together, we conclude that the hydrated electron likely has a significant number of interior water molecules.
Collapse
Affiliation(s)
- Jennifer R Casey
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095-1569, United States
| | | | | |
Collapse
|
45
|
Gupta M, da Silva EF, Svendsen HF. Modeling temperature dependency of ionization constants of amino acids and carboxylic acids. J Phys Chem B 2013; 117:7695-709. [PMID: 23713904 DOI: 10.1021/jp402496u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The temperature sensitivity of pK(a) values for a data set of 10 amino acids and 5 carboxylic acids is studied using PCM and SM8T continuum solvation models coupled with density functional theoretical calculations at the B3LYP/6-311++G(d,p) level of theory. The data set of amino acids was chosen on the basis of their potential to be solvents for postcombustion CO2 capture processes and available literature data. Calculated results are compared with experimental data in a temperature range of 273-393 K. Both solvation models predict temperature sensitivity of pK(a) of the amino group of amino acids very nicely. It is observed that the temperature dependencies of pK(a) of the carboxyl group of amino acids and carboxylic acids predicted by these models do not agree well with experimental temperature dependencies of carboxylic acids. This issue is discussed in the context of the basic parametrization of these continuum solvation models.
Collapse
Affiliation(s)
- Mayuri Gupta
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | |
Collapse
|
46
|
Resonance Raman and temperature-dependent electronic absorption spectra of cavity and noncavity models of the hydrated electron. Proc Natl Acad Sci U S A 2013; 110:2712-7. [PMID: 23382233 DOI: 10.1073/pnas.1219438110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most of what is known about the structure of the hydrated electron comes from mixed quantum/classical simulations, which depend on the pseudopotential that couples the quantum electron to the classical water molecules. These potentials usually are highly repulsive, producing cavity-bound hydrated electrons that break the local water H-bonding structure. However, we recently developed a more attractive potential, which produces a hydrated electron that encompasses a region of enhanced water density. Both our noncavity and the various cavity models predict similar experimental observables. In this paper, we work to distinguish between these models by studying both the temperature dependence of the optical absorption spectrum, which provides insight into the balance of the attractive and repulsive terms in the potential, and the resonance Raman spectrum, which provides a direct measure of the local H-bonding environment near the electron. We find that only our noncavity model can capture the experimental red shift of the hydrated electron's absorption spectrum with increasing temperature at constant density. Cavity models of the hydrated electron predict a solvation structure similar to that of the larger aqueous halides, leading to a Raman O-H stretching band that is blue-shifted and narrower than that of bulk water. In contrast, experiments show the hydrated electron has a broader and red-shifted O-H stretching band compared with bulk water, a feature recovered by our noncavity model. We conclude that although our noncavity model does not provide perfect quantitative agreement with experiment, the hydrated electron must have a significant degree of noncavity character.
Collapse
|
47
|
Uhlig F, Marsalek O, Jungwirth P. Electron at the Surface of Water: Dehydrated or Not? J Phys Chem Lett 2013; 4:338-343. [PMID: 26283445 DOI: 10.1021/jz3020953] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The hydrated electron is a crucial species in radiative processes, and it has been speculated that its behavior at the water surface could lead to specific interfacial chemical properties. Here, we address fundamental questions concerning the structure and energetics of an electron at the surface of water. We use the method of ab initio molecular dynamics, which was shown to provide a faithful description of solvated electrons in large water clusters and in bulk water. The present results clearly demonstrate that the surface electron is mostly buried in the interfacial water layer, with only about 10 % of its density protruding into the vapor phase. Consequently, it has a structure that is very similar to that of an electron solvated in the aqueous bulk. This points to a general feature of charges at the surface of water, namely, that they do not behave as half-dehydrated but rather as almost fully hydrated species.
Collapse
Affiliation(s)
- Frank Uhlig
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Ondrej Marsalek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
48
|
Uhlig F, Marsalek O, Jungwirth P. Unraveling the Complex Nature of the Hydrated Electron. J Phys Chem Lett 2012; 3:3071-3075. [PMID: 26292252 DOI: 10.1021/jz301449f] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The structure of the hydrated electron, which is a key species in radiative processes in water, has remained elusive. The traditional cavity model has been questioned recently, but the newly suggested picture of an electron delocalized over a region of enhanced water density is controversial. Here, we present results from ab initio molecular dynamics simulations, where not only the excess electron but also the valence electrons of the surrounding water molecules are described quantum mechanically. Unlike in previous one-electron pseudopotential calculations, many-electron interactions are explicitly accounted for. The present approach allows for partitioning of the electron solvated in liquid water into contributions from an inner cavity, neighboring water molecules, and a diffuse tail. We demonstrate that all three of these contributions are sizable and, consequently, important, which underlines the complex nature of the hydrated electron and warns against oversimplified interpretations based on pseudopotential models.
Collapse
Affiliation(s)
- Frank Uhlig
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Ondrej Marsalek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
49
|
Osawa K, Terazima M, Kimura Y. Electron Transfer Reaction Dynamics of p-Nitroaniline in Water from Liquid to Supercritical Conditions. J Phys Chem B 2012; 116:11508-16. [DOI: 10.1021/jp305970r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Koji Osawa
- Department of Chemistry, Graduate School
of Science, Kyoto University, Kyoto 606-8502,
Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School
of Science, Kyoto University, Kyoto 606-8502,
Japan
| | - Yoshifumi Kimura
- Department of Chemistry, Graduate School
of Science, Kyoto University, Kyoto 606-8502,
Japan
| |
Collapse
|
50
|
|