1
|
Khramchenkova A, Pysanenko A, Ďurana J, Kocábková B, Fárník M, Lengyel J. Does HNO 3 dissociate on gas-phase ice nanoparticles? Phys Chem Chem Phys 2023; 25:21154-21161. [PMID: 37458324 DOI: 10.1039/d3cp02757k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
We investigated the dissociation of nitric acid on large water clusters (H2O)N, N̄ ≈ 30-500, i.e., ice nanoparticles with diameters of 1-3 nm, in a molecular beam. The (H2O)N clusters were doped with single HNO3 molecules in a pickup cell and probed by mass spectrometry after a low-energy (1.5-15 eV) electron attachment. The negative ion mass spectra provided direct evidence for HNO3 dissociation with the formation of NO3-⋯H3O+ ion pairs, but over half of the observed cluster ions originated from non-dissociated HNO3 molecules. This behavior is in contrast with the complete dissociation of nitric acid on amorphous ice surfaces above 100 K. Thus, the proton transfer is significantly suppressed on nanometer-sized particles compared to macroscopic ice surfaces. This can have considerable implications for heterogeneous processes on atmospheric ice particles.
Collapse
Affiliation(s)
- Anastasiya Khramchenkova
- Lehrstuhl für Physikalische Chemie, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Andriy Pysanenko
- J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic.
| | - Jozef Ďurana
- J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic.
| | - Barbora Kocábková
- J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic.
| | - Michal Fárník
- J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic.
| | - Jozef Lengyel
- Lehrstuhl für Physikalische Chemie, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany.
| |
Collapse
|
2
|
Opoku RA, Toubin C, Gomes ASP. Simulating core electron binding energies of halogenated species adsorbed on ice surfaces and in solution via relativistic quantum embedding calculations. Phys Chem Chem Phys 2022; 24:14390-14407. [PMID: 35647703 DOI: 10.1039/d1cp05836c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we investigate the effects of the environment on the X-ray photoelectron spectra of hydrogen chloride and chloride ions adsorbed on ice surfaces, as well as of chloride ions in water droplets. In our approach, we combine a density functional theory (DFT) description of the ice surface with that of halogen species using the recently developed relativistic core-valence separation equation of motion coupled cluster (CVS-EOM-IP-CCSD) via the frozen density embedding formalism (FDE), to determine the K and L1,2,3 edges of chlorine. Our calculations, which incorporate temperature effects through snapshots from classical molecular dynamics simulations, are shown to reproduce experimental trends in the change of the core binding energies of Cl- upon moving from a liquid (water droplets) to an interfacial (ice quasi-liquid layer) environment. Our simulations yield water valence band binding energies in good agreement with experiment, which vary little between the droplets and the ice surface. For halide core binding energies there is an overall trend for overestimating experimental values, though good agreement between theory and experiment is found for Cl- in water droplets and on ice. For HCl on the other hand there are significant discrepancies between experimental and calculated core binding energies when we consider structural models that maintain the H-Cl bond more or less intact. An analysis of models that allow for pre-dissociated and dissociated structures suggests that experimentally observed chemical shifts in binding energies between Cl- and HCl would require that H+ (in the form of H3O+) and Cl- are separated by roughly 4-6 Å.
Collapse
Affiliation(s)
- Richard A Opoku
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France.
| | - Céline Toubin
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France.
| | | |
Collapse
|
3
|
Souda R. Probing the solid-liquid transition of thin propanol and butanol films through interactions with LiI. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
4
|
Souda R. Interactions of methanol, ethanol, and 1-propanol with polar and nonpolar species in water at cryogenic temperatures. Phys Chem Chem Phys 2017; 19:2583-2590. [PMID: 28059424 DOI: 10.1039/c6cp07313a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methanol is known as a strong inhibitor of hydrate formation, but clathrate hydrates of ethanol and 1-propanol can be formed in the presence of help gases. To elucidate the hydrophilic and hydrophobic effects of alcohols, their interactions with simple solute species are investigated in glassy, liquid, and crystalline water using temperature-programmed desorption and time-of-flight secondary ion mass spectrometry. Nonpolar solute species embedded underneath amorphous solid water films are released during crystallization, but they tend to withstand water crystallization under the coexistence of methanol additives. The CO2 additives are released after crystallization along with methanol desorption. These results suggest strongly that nonpolar species that are hydrated (i.e., caged) associatively with methanol can withstand water crystallization. In contrast, ethanol and 1-propanol additives weakly affect the dehydration of nonpolar species during water crystallization, suggesting that the former tend to be caged separately from the latter. The hydrophilic vs. hydrophobic behavior of alcohols, which differs according to the aliphatic group length, also manifests itself in the different abilities of surface segregation of alcohols and their effects on the water crystallization kinetics.
Collapse
Affiliation(s)
- Ryutaro Souda
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
5
|
Zimmermann S, Kippenberger M, Schuster G, Crowley JN. Adsorption isotherms for hydrogen chloride (HCl) on ice surfaces between 190 and 220 K. Phys Chem Chem Phys 2016; 18:13799-810. [PMID: 27142478 DOI: 10.1039/c6cp01962e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of hydrogen chloride (HCl) with ice surfaces at temperatures between 190 and 220 K was investigated using a coated-wall flow-tube connected to a chemical ionization mass spectrometer. Equilibrium surface coverages of HCl were determined at gas phase concentrations as low as 2 × 10(9) molecules cm(-3) (∼4 × 10(-8) Torr at 200 K) to derive Langmuir adsorption isotherms. The data are described by a temperature independent partition coefficient: KLang = (3.7 ± 0.2) × 10(-11) cm(3) molecule(-1) with a saturation surface coverage Nmax = (2.0 ± 0.2) × 10(14) molecules cm(-2). The lack of a systematic dependence of KLang on temperature contrasts the behaviour of numerous trace gases which adsorb onto ice via hydrogen bonding and is most likely related to the ionization of HCl at the surface. The results are compared to previous laboratory studies, and the equilibrium partitioning of HCl to ice surfaces under conditions relevant to the atmosphere is evaluated.
Collapse
Affiliation(s)
- S Zimmermann
- Max-Planck-Institut für Chemie, Division of Atmospheric Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany.
| | - M Kippenberger
- Max-Planck-Institut für Chemie, Division of Atmospheric Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany.
| | - G Schuster
- Max-Planck-Institut für Chemie, Division of Atmospheric Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany.
| | - J N Crowley
- Max-Planck-Institut für Chemie, Division of Atmospheric Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany.
| |
Collapse
|
6
|
|
7
|
Poterya V, Lengyel J, Pysanenko A, Svrčková P, Fárník M. Imaging of hydrogen halides photochemistry on argon and ice nanoparticles. J Chem Phys 2014; 141:074309. [DOI: 10.1063/1.4892585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- V. Poterya
- J. Heyrovský Institute of Physical Chemistry v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague, Czech Republic
| | - J. Lengyel
- J. Heyrovský Institute of Physical Chemistry v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague, Czech Republic
| | - A. Pysanenko
- J. Heyrovský Institute of Physical Chemistry v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague, Czech Republic
| | - P. Svrčková
- J. Heyrovský Institute of Physical Chemistry v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague, Czech Republic
| | - M. Fárník
- J. Heyrovský Institute of Physical Chemistry v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague, Czech Republic
| |
Collapse
|
8
|
Kim Y, Shin S, Moon ES, Kang H. Spectroscopic monitoring of the acidity of water films on Ru(0001): orientation-specific acidity of adsorbed water. Chemistry 2014; 20:3376-83. [PMID: 24677214 DOI: 10.1002/chem.201304424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Indexed: 11/08/2022]
Abstract
We examined the acid–base properties of water films adsorbed onto a Ru(0001) substrate by using surface spectroscopic methods in vacuum environments. Ammonia adsorption experiments combined with low-energy sputtering (LES), reactive ion scattering (RIS), reflection–absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) measurements showed that the adsorbed water is acidic enough to transfer protons to ammonia. Only the water molecules in an intact water monolayer and water clusters larger than the hexamer exhibit such acidity, whereas small clusters, a thick ice film or a partially dissociated water monolayer that contains OH, H2O and H species are not acidic. The observations indicate the orientation-specific acidity of adsorbed water. The acidity stems from water molecules with H-down adsorption geometry present in the monolayer. However, the dissociation of water into H and OH on the surface does not promote but rather suppresses the proton transfer to ammonia.
Collapse
|
9
|
Mella M, Curotto E. Quantum simulations of the hydrogen molecule on ammonia clusters. J Chem Phys 2013; 139:124319. [PMID: 24089779 DOI: 10.1063/1.4821648] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mixed ammonia-hydrogen molecule clusters [H2-(NH3)n] have been studied with the aim of exploring the quantitative importance of the H2 quantum motion in defining their structure and energetics. Minimum energy structures have been obtained employing genetic algorithm-based optimization methods in conjunction with accurate pair potentials for NH3-NH3 and H2-NH3. These include both a full 5D potential and a spherically averaged reduced surface mimicking the presence of a para-H2. All the putative global minima for n ≥ 7 are characterized by H2 being adsorbed onto a rhomboidal ammonia tetramer motif formed by two double donor and two double acceptor ammonia molecules. In a few cases, the choice of specific rhombus seems to be directed by the vicinity of an ammonia ad-molecule. Diffusion Monte Carlo simulations on a subset of the species obtained highlighted important quantum effects in defining the H2 surface distribution, often resulting in populating rhomboidal sites different from the global minimum one, and showing a compelling correlation between local geometrical features and the relative stability of surface H2. Clathrate-like species have also been studied and suggested to be metastable over a broad range of conditions if formed.
Collapse
Affiliation(s)
- Massimo Mella
- Dipartimento di Scienze ed Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy
| | | |
Collapse
|
10
|
Bag S, Bhuin RG, Natarajan G, Pradeep T. Probing molecular solids with low-energy ions. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2013; 6:97-118. [PMID: 23495731 DOI: 10.1146/annurev-anchem-062012-092547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ion/surface collisions in the ultralow- to low-energy (1-100-eV) window represent an excellent technique for investigation of the properties of condensed molecular solids at low temperatures. For example, this technique has revealed the unique physical and chemical processes that occur on the surface of ice, versus the liquid and vapor phases of water. Such instrument-dependent research, which is usually performed with spectroscopy and mass spectrometry, has led to new directions in studies of molecular materials. In this review, we discuss some interesting results and highlight recent developments in the area. We hope that access to the study of molecular solids with extreme surface specificity, as described here, will encourage investigators to explore new areas of research, some of which are outlined in this review.
Collapse
Affiliation(s)
- Soumabha Bag
- DST Unit of Nanoscience, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | | | | | | |
Collapse
|
11
|
Cyriac J, Pradeep T, Kang H, Souda R, Cooks RG. Low-Energy Ionic Collisions at Molecular Solids. Chem Rev 2012; 112:5356-411. [DOI: 10.1021/cr200384k] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jobin Cyriac
- DST Unit of
Nanoscience, Department
of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United
States
| | - T. Pradeep
- DST Unit of
Nanoscience, Department
of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - H. Kang
- Department of Chemistry, Seoul National University, Gwanak-gu, Seoul 151-747,
Republic of Korea
| | - R. Souda
- International
Center for Materials
Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - R. G. Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United
States
| |
Collapse
|
12
|
Devlin JP, Kang H. Comment on "HCl adsorption on ice at low temperature: a combined X-ray absorption, photoemission and infrared study" by P. Parent, J. Lasne, G. Marcotte and C. Laffon, Phys. Chem. Chem. Phys., 2011, 13, 7142. Phys Chem Chem Phys 2012; 14:1048-9; discussion 1050-3. [PMID: 22089033 DOI: 10.1039/c1cp22007a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
On the basis of NEXAFS, photoemission and FTIR spectra of ice films with low doses of adsorbed HCl, the authors of the PCCP paper "HCl adsorption on ice at low temperature: a combined X-ray absorption, photoemission and infrared study", Phys. Chem. Chem. Phys., 2011, 13, 7142, have come to conclusions regarding the behavior of submonolayer amounts of HCl at 50 K that contradict published results of the authors of this Comment. Our purpose is to argue that the conclusion, attributed going forward to PLML (authors' initials), that nearly 100% of HCl ionizes for dosage levels near to 0.16 monolayer (ML) or 0.3 Langmuir (L) at 50 K is questionable. Rather, we reaffirm our conclusions of much lower levels of ionization for similar temperatures and HCl dosages based on reactive ion scattering (RIS) and low energy sputtering (LES) data for ice films and FTIR spectra of ice nanocrystals. A second current paper by Ayotte et al., J. Phys. Chem. A, 2011, 115, 6002, that largely parallels in method and results the RAIR spectroscopy of PLML, is also given special notice.
Collapse
Affiliation(s)
- J Paul Devlin
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA.
| | | |
Collapse
|
13
|
Olanrewaju BO, Herring-Captain J, Grieves GA, Aleksandrov A, Orlando TM. Probing the Interaction of Hydrogen Chloride with Low-Temperature Water Ice Surfaces Using Thermal and Electron-Stimulated Desorption. J Phys Chem A 2011; 115:5936-42. [DOI: 10.1021/jp110332v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Ayotte P, Marchand P, Daschbach JL, Smith RS, Kay BD. HCl Adsorption and Ionization on Amorphous and Crystalline H2O Films below 50 K. J Phys Chem A 2011; 115:6002-14. [DOI: 10.1021/jp110398j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Patrick Ayotte
- Département de Chimie, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, Québec, Canada J1K 2R1
| | - Patrick Marchand
- Département de Chimie, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, Québec, Canada J1K 2R1
| | - John L. Daschbach
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Mail Stop K8-88, Richland, Washington 99352, United States
| | - R. Scott Smith
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Mail Stop K8-88, Richland, Washington 99352, United States
| | - Bruce D. Kay
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Mail Stop K8-88, Richland, Washington 99352, United States
| |
Collapse
|
15
|
Ončák M, Slavíček P, Fárník M, Buck U. Photochemistry of Hydrogen Halides on Water Clusters: Simulations of Electronic Spectra and Photodynamics, and Comparison with Photodissociation Experiments. J Phys Chem A 2011; 115:6155-68. [DOI: 10.1021/jp111264e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Milan Ončák
- Department of Physical Chemistry, Institute of Chemical Technology Prague, Technická 5, Prague 6 and J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, Institute of Chemical Technology Prague, Technická 5, Prague 6 and J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Udo Buck
- Max-Planck Institut für Dynamik und Selbstorganisation, Bunsenstr. 10, D-37073 Göttingen, Germany
| |
Collapse
|
16
|
Poterya V, Fedor J, Pysanenko A, Tkáč O, Lengyel J, Ončák M, Slavíček P, Fárník M. Photochemistry of HI on argon and waternanoparticles: Hydronium radical generation in HI·(H2O)n. Phys Chem Chem Phys 2011; 13:2250-8. [DOI: 10.1039/c0cp01518k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Electrophilic Addition Reaction of Ethene with Hydrogen Chloride on Cold Molecular Films: Evidence of Ethyl Cationic Intermediate. Chem Asian J 2010; 6:938-44. [DOI: 10.1002/asia.201000631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Indexed: 11/07/2022]
|
18
|
Park SC, Moon ES, Kang H. Some fundamental properties and reactions of ice surfaces at low temperatures. Phys Chem Chem Phys 2010; 12:12000-11. [PMID: 20683515 DOI: 10.1039/c003592k] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ice surfaces offer a unique chemical environment in which reactions occur quite differently from those in liquid water or gas phases. In this article, we examine the basic properties of ice surfaces below the surface premelting temperature and discuss some of the recent investigations carried out on reactions at the ice surfaces. The static and dynamic properties of an ice surface as a reaction medium, such as its structure, molecule diffusion and proton transfer dynamics, and the surface preference of hydronium and hydroxide ions, are discussed in relation to the reactivity of the surface.
Collapse
Affiliation(s)
- Seong-Chan Park
- Analytical Research Group, Central R&D Institute, Samsung Electro-Mechanics Co., Suwon, South Korea 443-743
| | | | | |
Collapse
|
19
|
Moon ES, Yoon J, Kang H. Energy barrier of proton transfer at ice surfaces. J Chem Phys 2010; 133:044709. [DOI: 10.1063/1.3457379] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Ončák M, Slavíček P, Poterya V, Fárník M, Buck U. Emergence of Charge-Transfer-to-Solvent Band in the Absorption Spectra of Hydrogen Halides on Ice Nanoparticles: Spectroscopic Evidence for Acidic Dissociation. J Phys Chem A 2008; 112:5344-53. [DOI: 10.1021/jp8012305] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | - Udo Buck
- Max-Planck Institut für Dynamik und Selbstorganization, Bunsenstrasse 10, D-37073 Göttingen, Germany
| |
Collapse
|
21
|
|
22
|
Park SC, Kim JK, Lee CW, Moon ES, Kang H. Acid–Base Chemistry at the Ice Surface: Reverse Correlation Between Intrinsic Basicity and Proton-Transfer Efficiency to Ammonia and Methyl Amines. Chemphyschem 2007; 8:2520-5. [DOI: 10.1002/cphc.200700489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Yabushita A, Kanda D, Kawanaka N, Kawasaki M. Vacuum ultraviolet photodissociation and surface morphology change of water ice films dosed with hydrogen chloride. J Chem Phys 2007; 127:154721. [DOI: 10.1063/1.2794342] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Henson BF, Wilson KR, Robinson JM, Nobel CA, Casson JL, Voss LF, Worsnop DR. Nucleation of bulk phases in the HCl/H2O system. J Phys Chem A 2007; 111:8635-41. [PMID: 17691759 DOI: 10.1021/jp074320h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We report experimental results on the low-temperature uptake of HCl on H(2)O ice (ice). HCl was deposited on the surface at greater than monolayer amounts at 85 K, and the ice substrate was heated. The temperature dependence of the HCl vapor pressure from this phase was measured from 110 to 150 K, with the nucleation of a bulk hydrate phase observed at 150 K. Measurements were conducted in a closed system by simultaneous application of gas phase mass spectrometry and surface spectroscopy to characterize vapor/solid equilibrium and the nucleation of bulk hydrate phases. Combining the nucleation data reported here with data we reported previously (180 to 200 K) and data from two other laboratories (165 and 170 K), the thermodynamic boundaries for the nucleation of both the metastable bulk solution and bulk hydrate phases subsequent to monolayer adsorption of HCl have been determined. The nucleation of the metastable bulk solution phase occurs promptly at monolayer coverage at the ice/liquid coexistence boundary on the binary bulk phase diagram. The nucleation of the bulk hexahydrate occurs from this metastable solution along a locus of points defining a state of constant solution free energy. This measured free energy is -51.2 +/- 0.9 kJ/mol. Finally, the temperature dependence of the HCl vapor pressure from the low-temperature phase is reported here for the first time and is consistent with that of the metastable solution predicted by this thermodynamic model of uptake, extending the range of validity of this model of adsorption followed by bulk solution and hydrate nucleation to a lower bound in temperature of 110 K.
Collapse
Affiliation(s)
- Bryan F Henson
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Lee CW, Lee PR, Kim YK, Kang H. Mechanistic study of proton transfer and H∕D exchange in ice films at low temperatures (100–140K). J Chem Phys 2007; 127:084701. [PMID: 17764278 DOI: 10.1063/1.2759917] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have examined the elementary molecular processes responsible for proton transfer and HD exchange in thin ice films for the temperature range of 100-140 K. The ice films are made to have a structure of a bottom D(2)O layer and an upper H(2)O layer, with excess protons generated from HCl ionization trapped at the D(2)OH(2)O interface. The transport behavior of excess protons from the interfacial layer to the ice film surface and the progress of the HD exchange reaction in water molecules are examined with the techniques of low energy sputtering and Cs(+) reactive ion scattering. Three major processes are identified: the proton hopping relay, the hop-and-turn process, and molecular diffusion. The proton hopping relay can occur even at low temperatures (<120 K), and it transports a specific portion of embedded protons to the surface. The hop-and-turn mechanism, which involves the coupling of proton hopping and molecule reorientation, increases the proton transfer rate and causes the HD exchange of water molecules. The hop-and-turn mechanism is activated at temperatures above 125 K in the surface region. Diffusional mixing of H(2)O and D(2)O molecules additionally contributes to the HD exchange reaction at temperatures above 130 K. The hop-and-turn and molecular diffusion processes are activated at higher temperatures in the deeper region of ice films. The relative speeds of these processes are in the following order: hopping relay>hop and turn>molecule diffusion.
Collapse
Affiliation(s)
- Chang-Woo Lee
- Department of Chemistry, Seoul National University, Gwanak-gu, Seoul 151-747, Republic of Korea
| | | | | | | |
Collapse
|
26
|
Heger D, Klán P. Interactions of organic molecules at grain boundaries in ice: A solvatochromic analysis. J Photochem Photobiol A Chem 2007. [DOI: 10.1016/j.jphotochem.2006.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Poterya V, Fárník M, Slavícek P, Buck U, Kresin VV. Photodissociation of hydrogen halide molecules on free ice nanoparticles. J Chem Phys 2007; 126:071101. [PMID: 17328585 DOI: 10.1063/1.2709635] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photodissociation of water clusters doped with HX(X=Br,Cl), molecules has been studied in a molecular beam experiment. The HX(H2O)n clusters are dissociated with 193 nm laser pulses, and the H fragments are ionized at 243.07 nm and their time-of-flight distributions are measured. Experiments with deuterated species DBr(H2O)n and HBr(D2O)n suggest that the photodissociation signal originates from the presence of the HX molecule on the water cluster, but does not come directly from a photolysis of the HX molecule. The H fragment is proposed to originate from the hydronium molecule H3O. Possible mechanisms of the H3O production are discussed. Experimental evidence suggests that acidic dissociation takes place in the cluster, but the H3O+ ion remains rather immobile.
Collapse
Affiliation(s)
- Viktoriya Poterya
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Affiliation(s)
- Chang-Woo Lee
- Department of Chemistry, Seoul National University, Gwanak-gu, Seoul 151-747, Republic of Korea
| | | | | |
Collapse
|
30
|
Siu CK, Fox-Beyer BS, Beyer MK, Bondybey VE. Ab Initio Molecular Dynamics Studies of Ionic Dissolution and Precipitation of Sodium Chloride and Silver Chloride in Water Clusters, NaCl(H2O)n and AgCl(H2O)n,n = 6, 10, and 14. Chemistry 2006; 12:6382-92. [PMID: 16718727 DOI: 10.1002/chem.200501569] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An ab initio molecular dynamics method was used to compare the ionic dissolution of soluble sodium chloride (NaCl) in water clusters with the highly insoluble silver chloride (AgCl). The investigations focused on the solvation structures, dynamics, and energetics of the contact ion pair (CIP) and of the solvent-separated ion pair (SSIP) in NaCl(H(2)O)(n) and AgCl(H(2)O)(n) with cluster sizes of n = 6, 10 and 14. We found that the minimum cluster size required to stabilize the SSIP configuration in NaCl(H(2)O)(n) is temperature-dependent. For n = 6, both configurations are present as two distinct local minima on the free-energy profile at 100 K, whereas SSIP is unstable at 300 K. Both configurations, separated by a low barrier (<10 kJ mol(-1)), are identifiable on the free energy profiles of NaCl(H(2)O)(n) for n = 10 and 14 at 300 K, with the Na(+)/Cl(-) pairs being internally solvated in the water cluster and the SSIP configuration being slightly higher in energy (<5 kJ mol(-1)). In agreement with the low bulk solubility of AgCl, no SSIP minimum is observed on the free-energy profiles of finite AgCl(H(2)O)(n) clusters. The AgCl interaction is more covalent in nature, and is less affected by the water solvent. Unlike NaCl, AgCl is mainly solvated on the surface in finite water clusters, and ionic dissolution requires a significant reorganization of the solvent structure.
Collapse
Affiliation(s)
- Chi-Kit Siu
- Department Chemie, Physikalische Chemie 2, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | | | | | | |
Collapse
|