1
|
Barone V, Crisci L, Di Grande S. Accurate Thermochemical and Kinetic Parameters at Affordable Cost by Means of the Pisa Composite Scheme (PCS). J Chem Theory Comput 2023; 19:7273-7286. [PMID: 37774410 PMCID: PMC10601482 DOI: 10.1021/acs.jctc.3c00817] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 10/01/2023]
Abstract
A new strategy for the computation at an affordable cost of geometrical structures, thermochemical parameters, and rate constants for medium-sized molecules in the gas phase is proposed. The most distinctive features of the new model are the systematic use of cc-pVnZ-F12 basis sets, the addition of MP2 core-valence correlation in geometry optimizations by a double-hybrid functional, the separate extrapolation of MP2 and post-MP2 contributions, and the inclusion of anharmonic contributions in zero-point energies and thermodynamic functions. A thorough benchmark based on a wide range of prototypical systems shows that the new scheme outperforms the most well-known model chemistries without the need for any empirical parameter. Additional tests show that the computed zero-point energies and thermal contributions can be confidently used for obtaining accurate thermochemical and kinetic parameters. Since the whole computational workflow is translated in a black-box procedure, which can be followed with standard electronic structure codes, the way is paved for the accurate yet not prohibitively expensive study of medium- to large-sized molecules also by nonspecialists.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56125 Pisa, Italy
| | - Luigi Crisci
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56125 Pisa, Italy
| | - Silvia Di Grande
- Scuola
Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56125 Pisa, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| |
Collapse
|
2
|
The role of water and acid catalysis in the reaction of acetone with hydrogen peroxide: A DFT study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Barone V, Carnimeo I, Mancini G, Pagliai M. Development, Validation, and Pilot Application of a Generalized Fluctuating Charge Model for Computational Spectroscopy in Solution. ACS OMEGA 2022; 7:13382-13394. [PMID: 35474835 PMCID: PMC9026056 DOI: 10.1021/acsomega.2c01110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
A general approach enforcing nonperiodic boundary conditions for the computation of spectroscopic properties in solution has been improved including an effective description of charge-transfer contributions and coordination number adjustment for explicit solvent molecules. Both contributions are obtained from a continuous description of intermolecular hydrogen bonds, which has been employed also for an effective clustering of molecular dynamics trajectories. Fine tuning of the model has been performed for several water clusters, and then its efficiency and reliability have been demonstrated by computing the absorption spectra of different creatinine tautomers in aqueous solution.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Ivan Carnimeo
- Scuola
Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
| | - Giordano Mancini
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Marco Pagliai
- Dipartimento
di Chimica “Ugo Schiff”, Università
degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Çaylak O, Baumeier B. Machine Learning of Quasiparticle Energies in Molecules and Clusters. J Chem Theory Comput 2021; 17:4891-4900. [PMID: 34314186 PMCID: PMC8359011 DOI: 10.1021/acs.jctc.1c00520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 11/30/2022]
Abstract
We present a Δ-machine learning approach for the prediction of GW quasiparticle energies (ΔMLQP) and photoelectron spectra of molecules and clusters, using orbital-sensitive representations (OSRs) based on molecular Cartesian coordinates in kernel ridge regression-based supervised learning. Coulomb matrix, bag-of-bond, and bond-angle-torsion representations are made orbital-sensitive by augmenting them with atom-centered orbital charges and Kohn-Sham orbital energies, both of which are readily available from baseline calculations at the level of density functional theory (DFT). We first illustrate the effects of different constructions of the OSRs on the prediction of frontier orbital energies of 22k molecules of the QM8 data set and show that it is possible to predict the full photoelectron spectrum of molecules within the data set using a single model with a mean absolute error below 0.1 eV. We further demonstrate that the OSR-based ΔMLQP captures the effects of intra- and intermolecular conformations in application to water monomers and dimers. Finally, we show that the approach can be embedded in multiscale simulation workflows, by studying the solvatochromic shifts of quasiparticle and electron-hole excitation energies of solvated acetone in a setup combining molecular dynamics, DFT, the GW approximation, and the Bethe-Salpeter equation. Our findings suggest that the ΔMLQP model allows us to predict quasiparticle energies and photoelectron spectra of molecules and clusters with GW accuracy at DFT cost.
Collapse
Affiliation(s)
- Onur Çaylak
- Department of Mathematics
and Computer Science, Eindhoven University
of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Institute for Complex Molecular
Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | | |
Collapse
|
5
|
Buta MC, Toader AM, Frecus B, Oprea CI, Cimpoesu F, Ionita G. Molecular and Supramolecular Interactions in Systems with Nitroxide-Based Radicals. Int J Mol Sci 2019; 20:ijms20194733. [PMID: 31554219 PMCID: PMC6801970 DOI: 10.3390/ijms20194733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/25/2022] Open
Abstract
Nitroxide-based radicals, having the advantage of firm chemical stability, are usable as probes in the detection of nanoscale details in the chemical environment of various multi-component systems, based on subtle variations in their electron paramagnetic resonance spectra. We propose a systematic walk through the vast area of problems and inquires that are implied by the rationalization of solvent effects on the spectral parameters, by first-principle methods of structural chemistry. Our approach consists of using state-of-the-art procedures, like Density Functional Theory (DFT), on properly designed systems, kept at the border of idealization and chemical realism. Thus, we investigate the case of real solvent molecules intervening in different configurations between two radical molecules, in comparison with radicals taken in vacuum or having the solvent that is treated by surrogate models, such as polarization continuum approximation. In this work, we selected the dichloromethane as solvent and the prototype radicals abbreviated TEMPO ((2,2,6,6-Tetramethylpiperidin-1-yl) oxyl). In another branch of the work, we check the interaction of radicals with large toroidal molecules, β-cyclodextrin, and cucurbit[6]uril, modeling the interaction energy profile at encapsulation. The drawn synoptic view offers valuable rationales for understanding spectroscopy and energetics of nitroxide radicals in various environments, which are specific to soft chemistry.
Collapse
Affiliation(s)
- Maria Cristina Buta
- Institute of Physical Chemistry, Splaiul Independentei 202, 060021 Bucharest, Romania.
| | - Ana Maria Toader
- Institute of Physical Chemistry, Splaiul Independentei 202, 060021 Bucharest, Romania.
| | - Bogdan Frecus
- Institute of Physical Chemistry, Splaiul Independentei 202, 060021 Bucharest, Romania.
| | - Corneliu I Oprea
- Department of Physics, Ovidius University, 900527 Constanţa, Romania.
| | - Fanica Cimpoesu
- Institute of Physical Chemistry, Splaiul Independentei 202, 060021 Bucharest, Romania.
| | - Gabriela Ionita
- Institute of Physical Chemistry, Splaiul Independentei 202, 060021 Bucharest, Romania.
| |
Collapse
|
6
|
Abstract
We review recent work on property decomposition techniques using quantum chemical methods and discuss some topical applications in terms of quantum mechanics-molecular mechanics calculations and the constructing of properties of large molecules and clusters. Starting out from the so-called LoProp decomposition scheme [Gagliardi et al., J. Chem. Phys., 2004, 121, 4994] for extracting atomic and inter-atomic contributions to molecular properties we show how this method can be generalized to localized frequency-dependent polarizabilities, to localized hyperpolarizabilities and to localized dispersion coefficients. Some applications of the generalized decomposition technique are reviewed - calculations of frequency-dependent polarizabilities, Rayleigh scattering of large clusters, and calculations of hyperpolarizabilities of proteins.
Collapse
Affiliation(s)
- Hans Ågren
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Theoretical Chemistry and Biology, SE-106 91 Stockholm, Sweden.
| | | | | |
Collapse
|
7
|
Rodríguez AM, Muñoz-García AB, Crescenzi O, Vázquez E, Pavone M. Stability of melamine-exfoliated graphene in aqueous media: quantum-mechanical insights at the nanoscale. Phys Chem Chem Phys 2018; 18:22203-9. [PMID: 27452832 DOI: 10.1039/c6cp04213a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent experiments, melamine (1,3,5-triazine-2,4,6-triamine) has been proposed as an effective exfoliating agent to obtain high quality graphene from graphite. After washing out the melamine in excess, small amounts (ppm) are still needed to stabilize the dispersion of graphene flakes in aqueous media. To understand the origin of this behaviour, we investigated the melamine-graphene-water system and the fundamental interactions that determine its structure and energetics. To disentangle the subtle interplay of hydrogen-bonding and dispersive forces we used state-of-the-art ab initio calculations based on density functional theory. First, we focused on the case of water molecules interacting with melamine-graphene assemblies at different melamine coverages. We found that water-melamine interactions provide the driving force for washing off the melamine from graphene. Then, we addressed the interaction of single and double layers of water molecules with the graphene surface in the presence of an adsorbed melamine molecule. We found that this melamine acts as a non-covalent anchor for keeping a number of water molecules conveniently close to the graphene surface, thus helping its stabilization in aqueous media. Our analysis helps understanding how competing weak forces can lead to a stable graphene water suspension thanks to small amounts of adsorbed melamine. From our results, we derive simple indications on how the water-graphene interfacial properties can be tuned via non-covalent adsorption of small functional molecules with H-bond donor/acceptor groups. These new hints can be helpful to prepare stable graphene dispersions in water and so to unlock graphene potential in aqueous environments.
Collapse
Affiliation(s)
- Antonio M Rodríguez
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Comp. Univ. Monte Sant'Angelo Via Cintia 21, 80126 Naples, Italy.
| | - Ana B Muñoz-García
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Comp. Univ. Monte Sant'Angelo Via Cintia 21, 80126 Naples, Italy.
| | - Orlando Crescenzi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Comp. Univ. Monte Sant'Angelo Via Cintia 21, 80126 Naples, Italy.
| | - Ester Vázquez
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.
| | - Michele Pavone
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Comp. Univ. Monte Sant'Angelo Via Cintia 21, 80126 Naples, Italy.
| |
Collapse
|
8
|
Hedegård ED, Bast R, Kongsted J, Olsen JMH, Jensen HJA. Relativistic Polarizable Embedding. J Chem Theory Comput 2017; 13:2870-2880. [DOI: 10.1021/acs.jctc.7b00162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Radovan Bast
- High
Performance Computing Group, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Jacob Kongsted
- Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | - Hans Jørgen Aagaard Jensen
- Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
9
|
Rinkevicius Z, Sandberg JAR, Li X, Linares M, Norman P, Ågren H. Hybrid Complex Polarization Propagator/Molecular Mechanics Method for Heterogeneous Environments. J Chem Theory Comput 2016; 12:2661-7. [DOI: 10.1021/acs.jctc.6b00255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zilvinas Rinkevicius
- Division
of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
- Swedish
e-Science Research Centre, KTH Royal Institute of Technology, SE-104 50 Stockholm, Sweden
| | - Jaime A. R. Sandberg
- Division
of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Xin Li
- Division
of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Mathieu Linares
- Department
of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
- Swedish
e-Science Research Centre, Linköping University, SE-581 83 Linköping, Sweden
| | - Patrick Norman
- Department
of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Hans Ågren
- Division
of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
10
|
Del Frate G, Bellina F, Mancini G, Marianetti G, Minei P, Pucci A, Barone V. Tuning of dye optical properties by environmental effects: a QM/MM and experimental study. Phys Chem Chem Phys 2016; 18:9724-33. [PMID: 27001346 PMCID: PMC5123643 DOI: 10.1039/c6cp00841k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The present work is aimed at a deeper investigation of two recently synthesized heteroaromatic fluorophores by means of a computational multilayer approach, integrating quantum mechanics (QM) and molecular mechanics (MM).
The present work is aimed at a deeper investigation of two recently synthesized heteroaromatic fluorophores by means of a computational multilayer approach, integrating quantum mechanics (QM) and molecular mechanics (MM). In particular, dispersion of the title dyes in a polymer matrix is studied in connection with potential applications as photoactive species in luminescent solar concentrators (LSCs). Molecular dynamics simulations, based on accurate QM-derived force fields, reveal increased stiffness of these organic dyes when going from CHCl3 solution to the polymer matrix. QM/MM computations of UV spectra for snapshots extracted from MD simulations show that this different flexibility permits explaining the different spectral shapes obtained experimentally for the two different environments. Moreover, the general spectroscopic trends are reproduced well by static computations employing a polarizable continuum description of environmental effects.
Collapse
|
11
|
Barone V, Cimino P, Stendardo E. Development and Validation of the B3LYP/N07D Computational Model for Structural Parameter and Magnetic Tensors of Large Free Radicals. J Chem Theory Comput 2015; 4:751-64. [PMID: 26621090 DOI: 10.1021/ct800034c] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Extensive calculations on a large set of free radicals containing atoms of the second and third row show that the B3LYP/N07D computational model provides remarkably accurate structural parameters and magnetic tensors at reasonable computational costs. The key of this success is the optimization of core-valence s functions for hyperfine coupling constants, while retaining (and even improving) the good performances of the parent 6-31+G(d,p) basis set for valence properties through reoptimization of polarization and diffuse p functions.
Collapse
Affiliation(s)
- Vincenzo Barone
- LSDM and INSTM-Village, Dipartimento di Chimica 'Paolo Corradini', Complesso Universitario Monte S. Angelo, via Cintia, I-80126 Napoli, Italy
| | - Paola Cimino
- LSDM and INSTM-Village, Dipartimento di Chimica 'Paolo Corradini', Complesso Universitario Monte S. Angelo, via Cintia, I-80126 Napoli, Italy
| | - Emiliano Stendardo
- LSDM and INSTM-Village, Dipartimento di Chimica 'Paolo Corradini', Complesso Universitario Monte S. Angelo, via Cintia, I-80126 Napoli, Italy
| |
Collapse
|
12
|
Chien YL, Chang MW, Tsai YC, Lee GH, Sheu WS, Yang EC. New salen-type dysprosium(III) double-decker and triple-decker complexes. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.07.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Renge I. Solvent Induced Transformations of n-π* Absorption in Formaldehyde, Acetaldehyde, and Acetone. J Phys Chem A 2015; 119:8599-610. [PMID: 26181662 DOI: 10.1021/acs.jpca.5b03695] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Absorption spectra of formaldehyde (FA), acetaldehyde (AA), and acetone are compared in the vapor phase, nonpolar, and polar solutions at 295 K. The vibronic n-π* transition of carbonyl chromophore is mainly composed of the overtones of >C═O stretching vibration. A new phenomenon is observed in liquid solutions, consisting of a relative increase of Franck-Condon factors for the second and third harmonics in FA, and the second to fourth replica in AA, with respect to the gas phase. In AA and acetone with poorly resolved vibronic structure, the redistribution of intensities produces a false "solvent shift" of the band maximum between the vapor and nonpolar liquid phase by -250 ± 50 cm(-1). Modification in vibronic coupling can also explain unusual narrowing of the band contour in the solution, reported earlier for acetone (Renge , I. J. Phys. Chem. A 2009, 113, 10678). No detectable shift occurs as a function of solvent polarizability (refractive index function (n(2) - 1)/(n(2) + 2)) in n-alkanes for FA, AA, and acetone, as well as for cyclopentanone and camphor. Incidentally, the bathochromic dispersive shift is almost exactly compensated by a hypsochromic induction shift. The latter is due to the diminishing dipole moment in the excited state of the carbonyl chromophore. Differences in polarizability α and dipole moments μ were estimated for FA (Δα = 0.33 ± 0.1 Å(3)), AA (Δμ = -1.05 ± 0.2 D, Δα = 0.5 ± 0.2 Å(3)), and acetone (Δμ = -1.3 ± 0.2 D, Δα = 0.65 ± 0.2 Å(3)). The increase of α by ∼10% upon excitation is plausible for a weak n-π* transition. By contrast, near doubling of α in the upper state has been reported recently for several ketones, with Δα reaching 10 Å(3) (Catalán, J.; Catalán, J. P. Phys. Chem. Chem. Phys. 2011, 13, 4072). Empirical partitioning of solvent shifts into repulsive-dispersive, induction, dipole-dipole, and hydrogen bonding contributions was proposed to serve as a benchmark in computer chemical calculations.
Collapse
Affiliation(s)
- Indrek Renge
- Institute of Physics, University of Tartu, Ravila Street 14c, EE50411 Tartu, Estonia
| |
Collapse
|
14
|
Hedegård ED, Olsen JMH, Knecht S, Kongsted J, Jensen HJA. Polarizable embedding with a multiconfiguration short-range density functional theory linear response method. J Chem Phys 2015; 142:114113. [DOI: 10.1063/1.4914922] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Erik Donovan Hedegård
- Laboratorium fur Physikalische Chemie, ETH Zürich, Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Jógvan Magnus Haugaard Olsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
- Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Stefan Knecht
- Laboratorium fur Physikalische Chemie, ETH Zürich, Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Hans Jørgen Aagaard Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
15
|
D'Alessando M, Amadei A, Stener M, Aschi M. Essential dynamics for the study of microstructures in liquids. J Comput Chem 2014; 36:399-407. [PMID: 25537730 DOI: 10.1002/jcc.23814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 11/10/2022]
Abstract
Essential Dynamics (ED) is a powerful tool for analyzing molecular dynamics (MD) simulations and it is widely adopted for conformational analysis of large molecular systems such as, for example, proteins and nucleic acids. In this study, we extend the use of ED to the study of clusters of arbitrary size constituted by weakly interacting particles, for example, atomic clusters and supramolecular systems. The key feature of the method we present is the identification of the relevant atomic-molecular clusters to be analyzed by ED for extracting the information of interest. The application of this computational approach allows a straightforward and unbiased conformational study of the local microstructures in liquids, as emerged from semiclassical MD simulations. The good performance of the method is demonstrated by calculating typical observables of liquid water, that is, NMR, NEXAFS O1s, and IR spectra, known to be rather sensitive both to the presence and to the conformational features of hydrogen-bonded clusters.
Collapse
Affiliation(s)
- Maira D'Alessando
- Dipartimento di Scienze Fisiche e Chimiche, Universita' di l'Aquila, Via Vetoio s.n.c., 67100 l, 'Aquila, Italy
| | | | | | | |
Collapse
|
16
|
Zhang C, Yuan D, Guo Y, Li S. Efficient Implementation of Local Excitation Approximation for Treating Excited States of Molecules in Condensed Phase. J Chem Theory Comput 2014; 10:5308-17. [DOI: 10.1021/ct500551p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chenyang Zhang
- School of Chemistry and Chemical
Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of
Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Dandan Yuan
- School of Chemistry and Chemical
Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of
Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Yang Guo
- School of Chemistry and Chemical
Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of
Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Shuhua Li
- School of Chemistry and Chemical
Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of
Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
17
|
A computational approach to the electronic, optical and acid–base properties of Ru(II) dyes for photoelectrochemical solar cells applications. Polyhedron 2014. [DOI: 10.1016/j.poly.2014.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Benassi E, Cappelli C, Carlotti B, Barone V. An integrated computational tool to model the broadening of the absorption bands of flexible dyes in solution: cationic chromophores as test cases. Phys Chem Chem Phys 2014; 16:26963-73. [DOI: 10.1039/c4cp03419h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
VBEFP/PCM: a QM/MM/PCM approach for valence-bond method and its application for the vertical excitations of formaldehyde and acetone in aqueous solution. Sci China Chem 2014. [DOI: 10.1007/s11426-014-5192-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Murugan NA. Solvatochromism in a Pyridinium Cyclopentadienylide: Insights from a Sequential Car–Parrinello QM/MM and TD-DFT/Semicontinuum Approach. J Phys Chem B 2014; 118:7358-66. [DOI: 10.1021/jp410854b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- N. Arul Murugan
- Division of Theoretical Chemistry
and Biology, School of Biotechnology, Royal Institute of Technology, SE-10691, Stockholm, Sweden
| |
Collapse
|
21
|
Inclusion of cybotactic effect in the theoretical modeling of absorption spectra of liquid-state systems with perturbed matrix method and molecular dynamics simulations: the UV–Vis absorption spectrum of para-nitroaniline as a case study. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1478-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Pezzella A, Crescenzi O, Panzella L, Napolitano A, Land EJ, Barone V, d’Ischia M. Free Radical Coupling of o-Semiquinones Uncovered. J Am Chem Soc 2013; 135:12142-9. [DOI: 10.1021/ja4067332] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alessandro Pezzella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126
Naples, Italy
| | - Orlando Crescenzi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126
Naples, Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126
Naples, Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126
Naples, Italy
| | - Edward J. Land
- STFC Daresbury Laboratory, Daresbury, WA4 4AD, United
Kingdom
- Chemistry Section,
School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG, United Kingdom
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri
7, I-56126 Pisa, Italy
| | - Marco d’Ischia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126
Naples, Italy
| |
Collapse
|
23
|
Frecus B, Rinkevicius Z, Ågren H. π-Stacking effects on the EPR parameters of a prototypical DNA spin label. Phys Chem Chem Phys 2013; 15:10466-71. [PMID: 23685812 DOI: 10.1039/c3cp51129d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The character and value of spin labels for probing environments like double-stranded DNA depend on the degree of change in the spin Hamiltonian parameters of the spin label induced by the environment. Herein we provide a systematic theoretical investigation of this issue, based on a density functional theory method applied to a spin labeled DNA model system, focusing on the dependence of the EPR properties of the spin label on the π stacking and hydrogen bonding that occur upon incorporating the spin label into the selected base pair inside DNA. It is found that the EPR spin Hamiltonian parameters of the spin label are only negligibly affected by its incorporation into DNA, when compared to its free form. This result gives a theoretical ground for the common empirical assumption regarding the behaviour of spin Hamiltonian parameters made in EPR based measurements of the distance between spin labels incorporated into DNA.
Collapse
Affiliation(s)
- Bogdan Frecus
- KTH Royal Institute of Technology, School of Biotechnology, Division of Theoretical Chemistry & Biology, SE-106 91 Stockholm, Sweden.
| | | | | |
Collapse
|
24
|
Sato H. A modern solvation theory: quantum chemistry and statistical chemistry. Phys Chem Chem Phys 2013; 15:7450-65. [DOI: 10.1039/c3cp50247c] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Frecus B, Rinkevicius Z, Murugan NA, Vahtras O, Kongsted J, Ågren H. EPR spin Hamiltonian parameters of encapsulated spin-labels: impact of the hydrogen bonding topology. Phys Chem Chem Phys 2013; 15:2427-34. [DOI: 10.1039/c2cp43951d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
|
27
|
GUPTA RINI, CHANDRA AMALENDU. SINGLE-PARTICLE AND PAIR DYNAMICAL PROPERTIES OF ACETONE–METHANOL MIXTURES CONTAINING CHARGED AND NEUTRAL SOLUTES: A MOLECULAR DYNAMICS STUDY. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2012. [DOI: 10.1142/s0219633611006438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The dynamical properties of acetone–methanol mixtures containing either an ionic or a neutral hydrophobic solute are investigated by means of a series of molecular dynamics simulations. The primary goal has been to study how the solute and solvent dynamical properties change with variation of composition of the mixture ranging from pure acetone to pure methanol. The variations of structure and energetics of the mixture with composition are also calculated. The diffusion coefficients of both ionic and neutral solutes are found to show nonlinear variation with composition of the mixture, although the extent of nonlinearity in the diffusion of the neutral solute is much weaker. Calculations of appropriate solute-solvent distribution functions reveal the extent and nature of selective solvation of these solute species which play a role in determining the nonideal dynamical characteristics of these solutes. The free energies of solvation of the ionic solutes are also calculated and the results are discussed in the context of their dynamical behavior. The hydrogen bond statistics and dynamics of these mixtures are also calculated over their entire composition range. The energies and lifetimes of hydrogen bonds between an acetone and a methanol molecule or between two methanol molecules are found to increase with increase of acetone mole fraction of the mixture. Residence times of methanol molecules in solvation shells of acetone and methanol are also found to follow the same trend as relaxation times. However, these pair dynamical properties show essentially linear dependence on composition, thus behave almost ideally with respect to changes in composition of the mixture.
Collapse
Affiliation(s)
- RINI GUPTA
- Department of Chemistry, Indian Institute of Technology, Kanpur, India 208016, India
| | - AMALENDU CHANDRA
- Department of Chemistry, Indian Institute of Technology, Kanpur, India 208016, India
| |
Collapse
|
28
|
MALLIK BHABANIS, CHANDRA AMALENDU. Hydrogen bond dynamics and vibrational spectral diffusion in aqueous solution of acetone: A first principles molecular dynamics study#. J CHEM SCI 2012. [DOI: 10.1007/s12039-012-0219-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Gupta R, Chandra A. An ab initio molecular dynamics study of diffusion, orientational relaxation and hydrogen bond dynamics in acetone–water mixtures. J Mol Liq 2012. [DOI: 10.1016/j.molliq.2011.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Rinkevicius Z, Frecuş B, Murugan NA, Vahtras O, Kongsted J, Ågren H. Encapsulation Influence on EPR Parameters of Spin-Labels: 2,2,6,6-Tetramethyl-4-methoxypiperidine-1-oxyl in Cucurbit[8]uril. J Chem Theory Comput 2011; 8:257-63. [DOI: 10.1021/ct200816z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zilvinas Rinkevicius
- Department of Theoretical Chemistry & Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
- Swedish e-Science Research Center (SeRC), Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Bogdan Frecuş
- Department of Theoretical Chemistry & Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - N. Arul Murugan
- Department of Theoretical Chemistry & Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Olav Vahtras
- Department of Theoretical Chemistry & Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Hans Ågren
- Department of Theoretical Chemistry & Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
31
|
A computational approach to the electronic and optical properties of Ru(II) and Ir(III) polypyridyl complexes: Applications to DSC, OLED and NLO. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2011.03.008] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Zazza C, Olsen JM, Kongsted J. Solvatochromic shifts vs nanosolvation patterns: Uracil in water as a test case. COMPUT THEOR CHEM 2011. [DOI: 10.1016/j.comptc.2011.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Jiang T, Wang L, Zhang S, Sun PC, Ding CF, Chu YQ, Zhou P. Interaction of curcumin with Al(III) and its complex structures based on experiments and theoretical calculations. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2011.07.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Lipparini F, Barone V. Polarizable Force Fields and Polarizable Continuum Model: A Fluctuating Charges/PCM Approach. 1. Theory and Implementation. J Chem Theory Comput 2011; 7:3711-24. [DOI: 10.1021/ct200376z] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
35
|
Li YK, Wu HY, Zhu Q, Fu KX, Li XY. Solvent effect on the UV/Vis absorption spectra in aqueous solution: The nonequilibrium polarization with an explicit representation of the solvent environment. COMPUT THEOR CHEM 2011. [DOI: 10.1016/j.comptc.2011.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Rinkevicius Z, Murugan NA, Kongsted J, Frecuş B, Steindal AH, Ågren H. Density Functional Restricted–Unrestricted/Molecular Mechanics Theory for Hyperfine Coupling Constants of Molecules in Solution. J Chem Theory Comput 2011; 7:3261-71. [DOI: 10.1021/ct2003572] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zilvinas Rinkevicius
- Department of Theoretical Chemistry & Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
- Swedish e-Science Research Center (SeRC), Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - N. Arul Murugan
- Department of Theoretical Chemistry & Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Jacob Kongsted
- Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Bogdan Frecuş
- Department of Theoretical Chemistry & Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Arnfinn Hykkerud Steindal
- Centre of Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Hans Ågren
- Department of Theoretical Chemistry & Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
37
|
Li G, He G, Zheng Y, Wang X, Wang H. Surface photografting initiated by benzophenone in water and mixed solvents containing water and ethanol. J Appl Polym Sci 2011. [DOI: 10.1002/app.34683] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Li YK, Zhu Q, Li XY, Fu KX, Wang XJ, Cheng XM. Spectral Shift of the n → π* Transition for Acetone and Formic Acid with an Explicit Solvent Model. J Phys Chem A 2010; 115:232-43. [DOI: 10.1021/jp105663g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yun-Kui Li
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, People’s Republic of China
| | - Quan Zhu
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, People’s Republic of China
| | - Xiang-Yuan Li
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, People’s Republic of China
| | - Ke-Xiang Fu
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, People’s Republic of China
| | - Xing-Jian Wang
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, People’s Republic of China
| | - Xue-Min Cheng
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, People’s Republic of China
| |
Collapse
|
39
|
Zhao XZ, Jiang T, Wang L, Yang H, Zhang S, Zhou P. Interaction of curcumin with Zn(II) and Cu(II) ions based on experiment and theoretical calculation. J Mol Struct 2010. [DOI: 10.1016/j.molstruc.2010.09.049] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Marenich AV, Cramer CJ, Truhlar DG. Sorting Out the Relative Contributions of Electrostatic Polarization, Dispersion, and Hydrogen Bonding to Solvatochromic Shifts on Vertical Electronic Excitation Energies. J Chem Theory Comput 2010; 6:2829-44. [DOI: 10.1021/ct100267s] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Aleksandr V. Marenich
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431
| | - Christopher J. Cramer
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431
| | - Donald G. Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431
| |
Collapse
|
41
|
Pavone M, Biczysko M, Rega N, Barone V. Magnetic Properties of Nitroxide Spin Probes: Reliable Account of Molecular Motions and Nonspecific Solvent Effects by Time-Dependent and Time-Independent Approaches. J Phys Chem B 2010; 114:11509-14. [DOI: 10.1021/jp102232c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Michele Pavone
- Department of Chemistry “P. Corradini”, University of Napoli Federico II and CR-INSTM “Village”, Complesso Universitario Monte Sant’Angelo, Via Cintia 80126, Napoli, Italy; and Scuola Normale Superiore di Pisa, and INFN Sezione di Pisa, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
| | - Malgorzata Biczysko
- Department of Chemistry “P. Corradini”, University of Napoli Federico II and CR-INSTM “Village”, Complesso Universitario Monte Sant’Angelo, Via Cintia 80126, Napoli, Italy; and Scuola Normale Superiore di Pisa, and INFN Sezione di Pisa, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
| | - Nadia Rega
- Department of Chemistry “P. Corradini”, University of Napoli Federico II and CR-INSTM “Village”, Complesso Universitario Monte Sant’Angelo, Via Cintia 80126, Napoli, Italy; and Scuola Normale Superiore di Pisa, and INFN Sezione di Pisa, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
| | - Vincenzo Barone
- Department of Chemistry “P. Corradini”, University of Napoli Federico II and CR-INSTM “Village”, Complesso Universitario Monte Sant’Angelo, Via Cintia 80126, Napoli, Italy; and Scuola Normale Superiore di Pisa, and INFN Sezione di Pisa, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
| |
Collapse
|
42
|
Song A, Zhao D, Rong R, Zhang L, Wang H. Photografting of methacrylic acid onto HDPE initiated by acetaldehyde in aqueous solutions. J Appl Polym Sci 2010. [DOI: 10.1002/app.32683] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Zhao A, Li Z, Wang H. Acetone/Water as a new photoinitiating system for photografting: A theoretical study. POLYMER 2010. [DOI: 10.1016/j.polymer.2010.02.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Mata R. Assessing the accuracy of many-body expansions for the computation of solvatochromic shifts. Mol Phys 2010. [DOI: 10.1080/00268970903499144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Barone V, Biczysko M, Brancato G. Extending the Range of Computational Spectroscopy by QM/MM Approaches: Time-Dependent and Time-Independent Routes. ADVANCES IN QUANTUM CHEMISTRY 2010. [DOI: 10.1016/s0065-3276(10)59002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
46
|
Cimino P, Pedone A, Stendardo E, Barone V. Interplay of stereo-electronic, environmental, and dynamical effects in determining the EPR parameters of aromatic spin-probes: INDCO as a test case. Phys Chem Chem Phys 2010; 12:3741-6. [DOI: 10.1039/b924500f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
47
|
Affiliation(s)
- Indrek Renge
- Institute of Physics, University of Tartu, Riia Street 142, EE51014 Tartu, Estonia
| |
Collapse
|
48
|
Sanna N, Chillemi G, Gontrani L, Grandi A, Mancini G, Castelli S, Zagotto G, Zazza C, Barone V, Desideri A. UV-vis spectra of the anticancer camptothecin family drugs in aqueous solution: specific spectroscopic signatures unraveled by a combined computational and experimental study. J Phys Chem B 2009; 113:5369-75. [PMID: 19334673 DOI: 10.1021/jp809801y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ultraviolet-visible absorption spectrum of camptothecin (CPT) has been been recorded in aqueous solution at pH 5.3, where the equilibrium among the different CPT forms is shifted toward the lactonic one. Time-dependent density functional theory (TD-DFT) computations lead to a remarkable reproduction of the experimental spectrum only upon addition of explicit water molecules in interaction with specific moieties of the camptothecin molecule. Molecular dynamics (MD) simulations enforcing boundary periodic conditions for CPT embedded with 865 water molecules, with a force field derived from DFT computations, show that the experimental spectrum is due to the contributions of CPT molecules with different solvation patterns. A similar solvent effect is observed for several CPT derivatives, including the clinically relevant SN-38 and topotecan drugs. The quantitative agreement between TD-DFT/MD computations and experimental data allow us to identify specific spectroscopic signatures diagnostic of the drug environment and to develop procedures that can be used to monitor the drug-DNA/protein interaction.
Collapse
Affiliation(s)
- Nico Sanna
- CASPUR, Consortium for Supercomputing in Research, Via dei Tizii 6, 00185 Roma, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Pezzella A, Panzella L, Crescenzi O, Napolitano A, Navaratnam S, Edge R, Land EJ, Barone V, d’Ischia M. Lack of Visible Chromophore Development in the Pulse Radiolysis Oxidation of 5,6-Dihydroxyindole-2-carboxylic Acid Oligomers: DFT Investigation and Implications for Eumelanin Absorption Properties. J Org Chem 2009; 74:3727-34. [DOI: 10.1021/jo900250v] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alessandro Pezzella
- Department of Organic Chemistry and Biochemistry and “Paolo Corradini” Department of Chemistry, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy, STFC Daresbury Laboratory, Daresbury, WA4 4AD, United Kingdom, BioScience Research Institute, Peel Building, University of Salford, Salford M5 4WT, United Kingdom, Chemistry Section, School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG, United Kingdom, School of Chemistry, University of Manchester, Oxford Road,
| | - Lucia Panzella
- Department of Organic Chemistry and Biochemistry and “Paolo Corradini” Department of Chemistry, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy, STFC Daresbury Laboratory, Daresbury, WA4 4AD, United Kingdom, BioScience Research Institute, Peel Building, University of Salford, Salford M5 4WT, United Kingdom, Chemistry Section, School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG, United Kingdom, School of Chemistry, University of Manchester, Oxford Road,
| | - Orlando Crescenzi
- Department of Organic Chemistry and Biochemistry and “Paolo Corradini” Department of Chemistry, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy, STFC Daresbury Laboratory, Daresbury, WA4 4AD, United Kingdom, BioScience Research Institute, Peel Building, University of Salford, Salford M5 4WT, United Kingdom, Chemistry Section, School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG, United Kingdom, School of Chemistry, University of Manchester, Oxford Road,
| | - Alessandra Napolitano
- Department of Organic Chemistry and Biochemistry and “Paolo Corradini” Department of Chemistry, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy, STFC Daresbury Laboratory, Daresbury, WA4 4AD, United Kingdom, BioScience Research Institute, Peel Building, University of Salford, Salford M5 4WT, United Kingdom, Chemistry Section, School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG, United Kingdom, School of Chemistry, University of Manchester, Oxford Road,
| | - Suppiah Navaratnam
- Department of Organic Chemistry and Biochemistry and “Paolo Corradini” Department of Chemistry, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy, STFC Daresbury Laboratory, Daresbury, WA4 4AD, United Kingdom, BioScience Research Institute, Peel Building, University of Salford, Salford M5 4WT, United Kingdom, Chemistry Section, School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG, United Kingdom, School of Chemistry, University of Manchester, Oxford Road,
| | - Ruth Edge
- Department of Organic Chemistry and Biochemistry and “Paolo Corradini” Department of Chemistry, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy, STFC Daresbury Laboratory, Daresbury, WA4 4AD, United Kingdom, BioScience Research Institute, Peel Building, University of Salford, Salford M5 4WT, United Kingdom, Chemistry Section, School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG, United Kingdom, School of Chemistry, University of Manchester, Oxford Road,
| | - Edward J. Land
- Department of Organic Chemistry and Biochemistry and “Paolo Corradini” Department of Chemistry, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy, STFC Daresbury Laboratory, Daresbury, WA4 4AD, United Kingdom, BioScience Research Institute, Peel Building, University of Salford, Salford M5 4WT, United Kingdom, Chemistry Section, School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG, United Kingdom, School of Chemistry, University of Manchester, Oxford Road,
| | - Vincenzo Barone
- Department of Organic Chemistry and Biochemistry and “Paolo Corradini” Department of Chemistry, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy, STFC Daresbury Laboratory, Daresbury, WA4 4AD, United Kingdom, BioScience Research Institute, Peel Building, University of Salford, Salford M5 4WT, United Kingdom, Chemistry Section, School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG, United Kingdom, School of Chemistry, University of Manchester, Oxford Road,
| | - Marco d’Ischia
- Department of Organic Chemistry and Biochemistry and “Paolo Corradini” Department of Chemistry, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy, STFC Daresbury Laboratory, Daresbury, WA4 4AD, United Kingdom, BioScience Research Institute, Peel Building, University of Salford, Salford M5 4WT, United Kingdom, Chemistry Section, School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG, United Kingdom, School of Chemistry, University of Manchester, Oxford Road,
| |
Collapse
|
50
|
Barone V, Cimino P. Validation of the B3LYP/N07D and PBE0/N07D Computational Models for the Calculation of Electronic g-Tensors. J Chem Theory Comput 2008; 5:192-9. [DOI: 10.1021/ct800279g] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Vincenzo Barone
- Istituto per i Processi Chimico-Fisici del Consiglio Nazionale delle Ricerche, Via G. Moruzzi 1, I-56124 Pisa, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Salerno, via Ponte don Melillo, I-84084 Fisciano (Sa), Italy
| | - Paola Cimino
- Istituto per i Processi Chimico-Fisici del Consiglio Nazionale delle Ricerche, Via G. Moruzzi 1, I-56124 Pisa, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Salerno, via Ponte don Melillo, I-84084 Fisciano (Sa), Italy
| |
Collapse
|