1
|
Abulimiti B, Ma J, Wei J, An H, Wang X, Yang J, Xiang M, Long J, Zhang S, Zhang B. Ultrafast conformation-dependent charge transfer in N, N, N', N'-tetramethyl-1,3-propanediamine: Effect of flexible carbon skeleton on electron lone pair interactions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124628. [PMID: 38870698 DOI: 10.1016/j.saa.2024.124628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Flexible three-carbon skeleton makes N, N, N', N'-tetramethyl-1,3-propanediamine (TMPDA) an important diamine system to investigate the conformation-dependent electron lone pair interactions and charge delocalization. The charge transfer process linked to structural motions of the three-carbon skeleton has been monitored in real time by the Rydberg electron binding energy (BE) spectra of TMPDA coupled with quantum chemical calculations. Optical excitation to the 3p state with a 200 nm pump pulse initially generated a localized charge on one of the two nitrogen atoms that may partially transfer to the other one. Rapid internal conversion (IC) from the 3p to 3s state occurred within 430 fs, resulting in an initial charge delocalized 3s_h/3s_l population ratio of 23.6 %/76.4 %. A final 3s_h/3s_l (51.9 %/48.1 %) equilibrium proceeded within about 2.64 ps. The 3s_h (TTTT+, GG'TG+ and G'GG'G+) and 3s_l (GG'GG'+ and GG'G'G+) (see text for structure definitions) are identified as the extended and folded conformers, respectively. Two types of electron lone pair interactions, i.e., through-space interaction (TSI) and through-bond interaction (TBI), are found to coexist in TMPDA to drive charge transfer. The GG'GG'+ and GG'G'G+ structures exhibit TSI, while the TTTT+ structure shows TBI. The GG'TG+ and G'GG'G+ structures exhibit both TSI and TBI. Flexible three-carbon skeleton provide more opportunities for the two N-electron lone pairs to overlap in space (i.e., TSI), making TMPDA to be favorable for the most stably folded conformation.
Collapse
Affiliation(s)
- Bumaliya Abulimiti
- Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials, School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiajun Ma
- Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials, School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Jie Wei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Huan An
- Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials, School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Xiaoning Wang
- Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials, School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Jie Yang
- Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials, School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Mei Xiang
- Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials, School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Jinyou Long
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Song Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Bing Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
2
|
Borrego-Varillas R, Lucchini M, Nisoli M. Attosecond spectroscopy for the investigation of ultrafast dynamics in atomic, molecular and solid-state physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:066401. [PMID: 35294930 DOI: 10.1088/1361-6633/ac5e7f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Since the first demonstration of the generation of attosecond pulses (1 as = 10-18s) in the extreme-ultraviolet spectral region, several measurement techniques have been introduced, at the beginning for the temporal characterization of the pulses, and immediately after for the investigation of electronic and nuclear ultrafast dynamics in atoms, molecules and solids with unprecedented temporal resolution. The attosecond spectroscopic tools established in the last two decades, together with the development of sophisticated theoretical methods for the interpretation of the experimental outcomes, allowed to unravel and investigate physical processes never observed before, such as the delay in photoemission from atoms and solids, the motion of electrons in molecules after prompt ionization which precede any notable nuclear motion, the temporal evolution of the tunneling process in dielectrics, and many others. This review focused on applications of attosecond techniques to the investigation of ultrafast processes in atoms, molecules and solids. Thanks to the introduction and ongoing developments of new spectroscopic techniques, the attosecond science is rapidly moving towards the investigation, understanding and control of coupled electron-nuclear dynamics in increasingly complex systems, with ever more accurate and complete investigation techniques. Here we will review the most common techniques presenting the latest results in atoms, molecules and solids.
Collapse
Affiliation(s)
- Rocío Borrego-Varillas
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Matteo Lucchini
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Mauro Nisoli
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
3
|
Hoerner P, Li W, Schlegel HB. Angular Dependence of Strong Field Ionization of 2-Phenylethyl- N, N-dimethylamine (PENNA) Using Time-Dependent Configuration Interaction with an Absorbing Potential. J Phys Chem A 2020; 124:4777-4781. [PMID: 32427475 DOI: 10.1021/acs.jpca.0c03438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ionization of 2-phenylethyl-N,N-dimethylamine (PENNA) may lead to charge migration between the amine group and the phenyl group. The angular dependence of strong field ionization of PENNA has been modeled by time-dependent configuration interaction with an absorbing potential. The total ionization rate can be partitioned into contributions from the amine group and the phenyl group, and these components have very distinct shapes. Ionization from the amine is primarily from the side opposite to the lone pair and is dominated by the CH2 and CH3 groups. Similarly, trimethylamine (N(CH3)3), dimethyl ether (CH3OCH3), and methyl fluoride (CH3F) are also found to ionize primarily from the methyl groups. The predominance of ionization from the methyl groups can be attributed to the fact that the orbital energies of individual lone pairs of N, O, and F are lower than the CH3 groups. Because the angular dependence of ionization of the two groups is quite different, alignment of PENNA could be used to control the ratio of the amine and phenyl cations and potentially probe charge migration in PENNA cation.
Collapse
Affiliation(s)
- Paul Hoerner
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Wen Li
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
4
|
Khalili K, Inhester L, Arnold C, Welsch R, Andreasen JW, Santra R. Hole dynamics in a photovoltaic donor-acceptor couple revealed by simulated time-resolved X-ray absorption spectroscopy. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:044102. [PMID: 31372369 PMCID: PMC6656576 DOI: 10.1063/1.5097653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/27/2019] [Indexed: 06/01/2023]
Abstract
Theoretical and experimental methodologies that can characterize electronic and nuclear dynamics, and the coupling between the two, are needed to understand photoinduced charge transfer in molecular building blocks used in organic photovoltaics. Ongoing developments in ultrafast pump-probe techniques such as time-resolved X-ray absorption spectroscopy, using an X-ray free electron laser in combination with an ultraviolet femtosecond laser, present desirable probes of coupled electronic and nuclear dynamics. In this work, we investigate the charge transfer dynamics of a donor-acceptor pair, which is widely used as a building block in low bandgap block copolymers for organic photovoltaics. We simulate the dynamics of the benzothiadiazole-thiophene molecule upon photoionization with a vacuum ultraviolet (VUV) pulse and study the potential of probing the subsequent charge dynamics using time-resolved X-ray absorption spectroscopy. The photoinduced dynamics are calculated using on-the-fly nonadiabatic molecular dynamics simulations based on Tully's Fewest Switches Surface Hopping approach. We calculate the X-ray absorption spectrum as a function of time after ionization at the Hartree-Fock level. The changes in the time-resolved X-ray absorption spectrum at the sulfur K-edge reveal the ultrafast charge carrier dynamics in the molecule occurring on a femtosecond time scale. These theoretical findings anticipate that ultrafast time-resolved X-ray absorption spectroscopy using an X-ray probe in combination with a VUV pump offers a new approach to investigate the detailed dynamics of organic photovoltaic materials.
Collapse
Affiliation(s)
- Khadijeh Khalili
- Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | | | | | | | - Jens Wenzel Andreasen
- Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | | |
Collapse
|
5
|
Dsouza R, Cheng X, Li Z, Miller RJD, Kochman MA. Oscillatory Photoelectron Signal of N-Methylmorpholine as a Test Case for the Algebraic-Diagrammatic Construction Method of Second Order. J Phys Chem A 2018; 122:9688-9700. [DOI: 10.1021/acs.jpca.8b10241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raison Dsouza
- Max Planck Institute for the Structure and Dynamics of Matter, Bldg. 99 (CFEL), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Xinxin Cheng
- Max Planck Institute for the Structure and Dynamics of Matter, Bldg. 99 (CFEL), Luruper Chaussee 149, 22761 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging (CUI), Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Zheng Li
- Max Planck Institute for the Structure and Dynamics of Matter, Bldg. 99 (CFEL), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R. J. Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Bldg. 99 (CFEL), Luruper Chaussee 149, 22761 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging (CUI), Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Michał Andrzej Kochman
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
6
|
Ayuso D, Palacios A, Decleva P, Martín F. Ultrafast charge dynamics in glycine induced by attosecond pulses. Phys Chem Chem Phys 2018. [PMID: 28631783 DOI: 10.1039/c7cp01856h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The combination of attosecond pump-probe techniques with mass spectrometry methods has recently led to the first experimental demonstration of ultrafast charge dynamics in a biomolecule, the amino acid phenylalanine [Calegari et al., Science, 2014, 346, 336]. Using an extension of the static-exchange density functional theory (DFT) method, the observed dynamics was explained as resulting from the coherent superposition of ionic states produced by the broadband attosecond pulse. Here, we have used the static-exchange DFT method to investigate charge migration induced by attosecond pulses in the glycine molecule. We show that the observed dynamics follows patterns similar to those previously found in phenylalanine, namely that charge fluctuations occur all over the molecule and that they can be explained in terms of a few typical frequencies of the system. We have checked the validity of our approach by explicitly comparing with the photoelectron spectra obtained in synchrotron radiation experiments and with the charge dynamics that follows the removal of an electron from a given molecular orbital, for which fully correlated ab initio results are available in the literature. From this comparison, we conclude that our method provides an accurate description of both the coherent superposition of cationic states generated by the attosecond pulse and its subsequent time evolution. Hence, we expect that the static-exchange DFT method should perform equally well for other medium-size and large molecules, for which the use of fully correlated ab initio methods is not possible.
Collapse
Affiliation(s)
- David Ayuso
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
7
|
Zhang Y, Deb S, Jónsson H, Weber PM. Observation of Structural Wavepacket Motion: The Umbrella Mode in Rydberg-Excited N-Methyl Morpholine. J Phys Chem Lett 2017; 8:3740-3744. [PMID: 28742348 DOI: 10.1021/acs.jpclett.7b01274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We have observed time-resolved, structural dynamics of a coherent vibrational wavepacket in Rydberg-excited N-methyl morpholine, a molecule with 48 internal degrees of freedom. The molecular structure was established by associating the time-dependent Rydberg electron binding energy, obtained from time-resolved photoionization-photoelectron spectroscopy, to the molecular structure using self-interaction corrected density functional calculations. Optical excitation at 226 nm launches an oscillatory wavepacket in the amine umbrella coordinate with a 650 fs period. Even though the Franck-Condon excitation is at an angle of 17°, the wavepacket settles into an oscillation between 4° and -10° within a fraction of a vibrational period and then dephases with a time constant of 750 fs.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Sanghamitra Deb
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Hannes Jónsson
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
- Faculty of Physical Sciences, University of Iceland , 107 Reykjavík, Iceland
| | - Peter M Weber
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| |
Collapse
|
8
|
Fan L, Lee SK, Tu YJ, Mignolet B, Couch D, Dorney K, Nguyen Q, Wooldridge L, Murnane M, Remacle F, Schlegel HB, Li W. A new electron-ion coincidence 3D momentum-imaging method and its application in probing strong field dynamics of 2-phenylethyl-N, N-dimethylamine. J Chem Phys 2017; 147:013920. [DOI: 10.1063/1.4981526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lin Fan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Suk Kyoung Lee
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Yi-Jung Tu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Benoît Mignolet
- Department of Chemistry, B6c, University of Liege, B4000 Liege, Belgium
| | - David Couch
- JILA and University of Colorado at Boulder, Boulder, Colorado 80303, USA
| | - Kevin Dorney
- JILA and University of Colorado at Boulder, Boulder, Colorado 80303, USA
| | - Quynh Nguyen
- JILA and University of Colorado at Boulder, Boulder, Colorado 80303, USA
| | - Laura Wooldridge
- JILA and University of Colorado at Boulder, Boulder, Colorado 80303, USA
| | - Margaret Murnane
- JILA and University of Colorado at Boulder, Boulder, Colorado 80303, USA
| | - Françoise Remacle
- Department of Chemistry, B6c, University of Liege, B4000 Liege, Belgium
| | | | - Wen Li
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| |
Collapse
|
9
|
Ischenko AA, Weber PM, Miller RJD. Capturing Chemistry in Action with Electrons: Realization of Atomically Resolved Reaction Dynamics. Chem Rev 2017; 117:11066-11124. [DOI: 10.1021/acs.chemrev.6b00770] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Anatoly A. Ischenko
- Institute
of Fine Chemical Technologies, Moscow Technological University, Vernadskogo
86, 119571 Moscow, Russia
| | - Peter M. Weber
- Department
of Chemistry, Brown University, 324 Brook Street, 02912 Providence, Rhode Island, United States
| | - R. J. Dwayne Miller
- The Max Planck Institute for the Structure and Dynamics of Matter, Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Departments
of Chemistry and Physics, University of Toronto, 80 St. George, M5S 3H6 Toronto, Canada
| |
Collapse
|
10
|
Nisoli M, Decleva P, Calegari F, Palacios A, Martín F. Attosecond Electron Dynamics in Molecules. Chem Rev 2017; 117:10760-10825. [DOI: 10.1021/acs.chemrev.6b00453] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mauro Nisoli
- Department
of Physics, Politecnico di Milano, 20133 Milano, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
| | - Piero Decleva
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá di Trieste and IOM- CNR, 34127 Trieste, Italy
| | - Francesca Calegari
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department
of Physics, University of Hamburg, 20355 Hamburg, Germany
| | - Alicia Palacios
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
11
|
Cheng X, Gao Y, Rudakov F, Weber PM. Charge transfer and ultrafast nuclear motions: the complex structural dynamics of an electronically excited triamine. Chem Sci 2016; 7:619-627. [PMID: 29861998 PMCID: PMC5952542 DOI: 10.1039/c5sc03042k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/19/2015] [Indexed: 11/21/2022] Open
Abstract
Three ionization centers make 1,3,5-trimethyl-1,3,5-triazacyclohexane (TMTAC) an interesting model system to study intramolecular charge transfer (CT). Because the molecule assumes a Cs symmetric, axial-equatorial-equatorial (aee) conformation in the ground state, there are two distinct types of the nitrogen atoms. We discovered that either nitrogen atom can be ionized independently so that two molecular cations exist with different (localized) charge distributions in the Franck-Condon region. The initially localized charge can delocalize via CT, provided the molecule acquires a suitable structural geometry. These proper structures are all found to have a common structural motif that supports CT via through-space-interaction. The structural dynamics and the CT process in Rydberg-excited TMTAC, where the molecular ion core closely resembles the ion, were probed by time-resolved Rydberg fingerprint spectroscopy. When TMTAC is excited at 230 nm to the Franck-Condon region of the 3s Rydberg state, the two types of nitrogen atom Rydberg chromophores give rise to distinct binding energy peaks. The sequential molecular responses that follow the Rydberg excitation manifest themselves as time-dependent changes of the binding energy and are observed by ionization at 404 nm. A fast transition with 103 fs time constant was attributed to a motion that leads to a local minimum of the charge-localized state on the Rydberg potential energy surface. Because a large amount of energy is deposited into the vibrational manifolds, the molecule continues to sample the potential energy surface and eventually reaches a dynamic equilibrium between charge-localized and charge-delocalized states. The forward and backward time constants were determined to be 1.02 ps and 4.09 ps, respectively. The binding energy spectrum also reveals the existence of an equilibrium among several charge-delocalized states. Quantum chemical calculations were carried out to find the stable minima of the ground state and the ion state. The binding energies of the Franck-Condon structures and the relaxed ion structures were calculated using the Perdew-Zunger self-interaction corrected DFT (PZ-SIC) method to assign the spectra at time zero and at equilibrium, respectively.
Collapse
Affiliation(s)
- Xinxin Cheng
- Department of Chemistry , Brown University , Providence , RI 02912 , USA . ; ; Tel: +1-401-8633767
| | - Yan Gao
- Department of Chemistry , Brown University , Providence , RI 02912 , USA . ; ; Tel: +1-401-8633767
| | - Fedor Rudakov
- Department of Chemistry , University of Missouri - Kansas City , Kansas City , MO 64110 , USA
| | - Peter M Weber
- Department of Chemistry , Brown University , Providence , RI 02912 , USA . ; ; Tel: +1-401-8633767
| |
Collapse
|
12
|
Cheng X, Zhang Y, Gao Y, Jónsson H, Weber PM. Ultrafast structural pathway of charge transfer in n,n,n',n'-tetramethylethylenediamine. J Phys Chem A 2015; 119:2813-8. [PMID: 25714009 DOI: 10.1021/acs.jpca.5b01797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have explored the ultrafast molecular structural dynamics associated with charge transfer in N,N,N',N'-tetramethylethylenediamine using Rydberg fingerprint spectroscopy in conjunction with self-interaction corrected density functional theory. Excitation at 239 nm prepares the molecule in the Franck-Condon region of the 3s state with the charge localized on one of the two amine groups. As seen from the time-dependent Rydberg electron binding energies, the pathway of the rapidly ensuing dynamics leads through several structurally distinct conformers with various degrees of charge localization before reaching the fully charge-delocalized structure on a picosecond time scale. At several steps along the reaction path, the transient structures are identified through a comparison of the spectroscopically observed binding energies with computed values. The molecular structure is seen to evolve dynamically from an initially folded conformer to the stretched form that supports charge delocalization before an equilibrium sets in with forward and backward time constants of 1.19 (0.14) and 2.61 (0.31) ps, respectively. A coherent wavepacket motion in the charge-localized state with a period of 270 (17) fs and damping of 430 (260) fs is observed and tentatively assigned to the nitrogen umbrella motion. The damping time constant indicates the rate of the energy flow into other vibrations that are not activated by the optical excitation.
Collapse
Affiliation(s)
- Xinxin Cheng
- †Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Yao Zhang
- †Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Yan Gao
- †Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hannes Jónsson
- †Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States.,‡Faculty of Physical Sciences, VR-III, University of Iceland, 107 Reykjavı́k, Iceland
| | - Peter M Weber
- †Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
13
|
Cheng X, Zhang Y, Deb S, Minitti MP, Gao Y, Jónsson H, Weber PM. Ultrafast structural dynamics in Rydberg excited N,N,N′,N′-tetramethylethylenediamine: conformation dependent electron lone pair interaction and charge delocalization. Chem Sci 2014. [DOI: 10.1039/c4sc01646g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Time-resolved Rydberg fingerprint spectroscopy and quantum calculations reveal the structure dependent electron lone pair interaction and charge delocalization in real time.
Collapse
Affiliation(s)
- Xinxin Cheng
- Department of Chemistry
- Brown University
- Providence, USA
| | - Yao Zhang
- Department of Chemistry
- Brown University
- Providence, USA
| | | | - Michael P. Minitti
- Linac Coherent Light Source (LCLS)
- SLAC National Accelerator Laboratory
- Menlo Park, USA
| | - Yan Gao
- Department of Chemistry
- Brown University
- Providence, USA
| | - Hannes Jónsson
- Department of Chemistry
- Brown University
- Providence, USA
- Faculty of Physical Sciences
- University of Iceland
| | | |
Collapse
|
14
|
Rudakov F, Weber PM. Ultrafast structural and isomerization dynamics in the Rydberg-exited quadricyclane: norbornadiene system. J Chem Phys 2012; 136:134303. [PMID: 22482548 DOI: 10.1063/1.3697472] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The quadricyclane-norbornadiene system is an important model for the isomerization dynamics between highly strained molecules. In a breakthrough observation for a polyatomic molecular system of that complexity, we follow the photoionization from Rydberg states in the time-domain to derive a measure for the time-dependent structural dynamics and the time-evolving structural dispersion even while the molecule is crossing electronic surfaces. The photoexcitation to the 3s and 3p Rydberg states deposits significant amounts of energy into vibrational motions. We observe the formation and evolution of the vibrational wavepacket on the Rydberg surface and the internal conversion from the 3p Rydberg states to the 3s state. In that state, quadricyclane isomerizes to norbornadiene with a time constant of τ(2) = 136(45) fs. The lifetime of the 3p Rydberg state in quadricyclane is τ(1) = 320(31) and the lifetime of the 3s Rydberg state in norbornadiene is τ(3) = 394(32).
Collapse
Affiliation(s)
- Fedor Rudakov
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37931, USA.
| | | |
Collapse
|
15
|
Minitti MP, Zhang Y, Rosenberg M, Brogaard RY, Deb S, Sølling TI, Weber PM. Far-UV photochemical bond cleavage of n-amyl nitrite: bypassing a repulsive surface. J Phys Chem A 2012; 116:810-9. [PMID: 22175717 DOI: 10.1021/jp209727g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated the deep-UV photoinduced, homolytic bond cleavage of amyl nitrite to form NO and pentoxy radicals. One-color multiphoton ionization with ultrashort laser pulses through the S(2) state resonance gives rise to photoelectron spectra that reflect ionization from the S(1) state. Time-resolved pump-probe photoionization measurements show that upon excitation at 207 nm, the generation of NO in the v = 2 state is delayed, with a rise time of 283 (16) fs. The time-resolved mass spectrum shows the NO to be expelled with a kinetic energy of 1.0 eV, which is consistent with dissociation on the S(1) state potential energy surface. Combined, these observations show that the first step of the dissociation reaction involves an internal conversion from the S(2) to the S(1) state, which is followed by the ejection of the NO radical on the predissociative S(1) state potential energy surface.
Collapse
Affiliation(s)
- Michael P Minitti
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Quantum dynamical study of low-energy photoelectron bands of 2-phenylethyl-N,N-dimethylamine#. J CHEM SCI 2012. [DOI: 10.1007/s12039-012-0223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Brogaard RY, Møller KB, Sølling TI. Real-Time Probing of Structural Dynamics by Interaction between Chromophores. J Phys Chem A 2011; 115:12120-5. [DOI: 10.1021/jp2072588] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Klaus B. Møller
- Department of Chemistry, Building 207, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Theis I. Sølling
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Deb S, Minitti MP, Weber PM. Structural dynamics and energy flow in Rydberg-excited clusters of N,N-dimethylisopropylamine. J Chem Phys 2011; 135:044319. [DOI: 10.1063/1.3609110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
19
|
Deb S, Bayes BA, Minitti MP, Weber PM. Structural Dynamics in Floppy Systems: Ultrafast Conformeric Motions in Rydberg-Excited Triethylamine. J Phys Chem A 2011; 115:1804-9. [DOI: 10.1021/jp110905h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sanghamitra Deb
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Brian A. Bayes
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Michael P. Minitti
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Peter M. Weber
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
20
|
Bush JC, Minitti MP, Weber PM. Dissociative Energy Flow, Vibrational Energy Redistribution, and Conformeric Structural Dynamics in Bifunctional Amine Model Systems. J Phys Chem A 2010; 114:11078-84. [DOI: 10.1021/jp101881x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Joseph C. Bush
- Department of Chemistry, Brown University, Providence, Rhode Island 02912
| | - Michael P. Minitti
- Department of Chemistry, Brown University, Providence, Rhode Island 02912
| | - Peter M. Weber
- Department of Chemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
21
|
Bush JC, Minitti MP, Weber PM. Ultrafast formation of an intramolecular cation–pi bond. J Photochem Photobiol A Chem 2010. [DOI: 10.1016/j.jphotochem.2010.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Ground state recovery and molecular structure upon ultrafast transition through conical intersections in cyclic dienes. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.01.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Mahjoub A, Chakraborty A, Lepere V, Le Barbu-Debus K, Guchhait N, Zehnacker A. Chirality-dependent hydrogen bond direction in jet-cooled (S)-1,2,3,4-tetrahydro-3-isoquinoline methanol (THIQM): IR-ion dip vibrational spectroscopy of the neutral and the ion. Phys Chem Chem Phys 2009; 11:5160-9. [DOI: 10.1039/b822871j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Cardoza JD, Rudakov FM, Weber PM. Electronic spectroscopy and ultrafast energy relaxation pathways in the lowest Rydberg States of trimethylamine. J Phys Chem A 2008; 112:10736-43. [PMID: 18834091 DOI: 10.1021/jp8041236] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Resonance-enhanced multiphoton ionization photoelectron spectroscopy has been applied to study the electronic spectroscopy and relaxation pathways among the 3p and 3s Rydberg states of trimethylamine. The experiments used femtosecond and picosecond duration laser pulses at wavelengths of 416, 266, and 208 nm and employed two-photon and three-photon ionization schemes. The binding energy of the 3s Rydberg state was found to be 3.087 +/- 0.005 eV. The degenerate 3p x, y states have binding energies of 2.251 +/- 0.005 eV, and 3p z is at 2.204 +/- 0.005 eV. Using picosecond and femtosecond time-resolved experiments we spectrally and temporally resolved an intricate sequence of energy relaxation pathways leading from the 3p states to the 3s state. With excitation at 5.96 eV, trimethylamine is found to decay from the 3p z state to 3p x, y in 539 fs. The decay to 3s from all the 3p states takes place with a 2.9 ps time constant. On these time scales, trimethylamine does not fragment at the given internal energies, which range from 0.42 to 1.54 eV depending on the excitation wavelength and electronic state.
Collapse
Affiliation(s)
- Job D Cardoza
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
25
|
|
26
|
Minitti MP, Weber PM. Time-resolved conformational dynamics in hydrocarbon chains. PHYSICAL REVIEW LETTERS 2007; 98:253004. [PMID: 17678022 DOI: 10.1103/physrevlett.98.253004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Indexed: 05/16/2023]
Abstract
Internal rotation about carbon-carbon bonds allows N,N-dimethyl-2-butanamine (DM2BA) and N,N-dimethyl-3-hexanamine (DM3HA) to assume multiple conformeric structures. We explore the equilibrium composition and dynamics between such conformeric structures using Rydberg fingerprint spectroscopy. Time constants for conformeric interconversion of DM2BA (at 1.79 eV of internal energy) are 19 and 66 ps, and for DM3HA (1.78 eV) 23 and 41 ps. For the first time, a time-resolved and quantitative view of conformational dynamics of flexible hydrocarbon molecules at high temperatures is revealed.
Collapse
Affiliation(s)
- Michael P Minitti
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
27
|
Lehrer F, Weinkauf R, Metsala A. Comparison of Photoelectron-Spectroscopy Results to Ab-Initio and Density Functional Calculations: The Ethylbenzene Cation. Z PHYS CHEM 2007. [DOI: 10.1524/zpch.2007.221.5.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this work resonant S
0–S
1 two-photon ionization (R2PI) and high-resolution R(1+1’)PI photoelectron spectroscopy (PES) as well as ab initio and density functional (DFT) calculations of ethylbenzene (EB) are combined. Conformer energies and equilibrium geometries have been calculated for neutral and cationic EB with the HF, UHF, B3LYP and the MP2 methods and different basis sets. In agreement with previous results the tail-to-chromophore orientation of neutral EB is orthogonal. This conformer is also the most stable structure in the cation, but a second local minimum in which all carbons lie in a plane (termed “planar” conformer) lays 325cm-1 higher in energy. R(1+1’)PI PE spectra were recorded by time-of-flight spectrometer with an energy resolution (Δ E) below 8 cm-1 and an absolute accuracy of ± 10 cm-1 for electron energies below 200 meV. Because the experiment starts in the orthogonal conformer and ionization is vertical, the recorded PE spectra show the cation ground state vibrations of this conformer. Beside benzene modes also low-energetic tail-to-chromophore modes are observed and assigned by DFT vibrational mode analysis. The differences of the calculated vibrational frequencies between the two conformers are comparable to the deviation between experiment and theory and a conformer assignment by comparison of theory and experiment would be difficult. R(1+1’)PI PE spectra recorded via selected S
1 vibrations provide vibrational assignments for S
1, qualitative S
1–D
0 geometry changes, vibrational symmetries as well as internal vibrational redistribution dynamics in S
1. Charge and spin densities of the neutral and cation were calculated to elucidate the problem of charge delocalization and electronic tail-to-chromophore coupling.
Collapse
|
28
|
Kuthirummal N, Rudakov FM, Evans CL, Weber PM. Spectroscopy and femtosecond dynamics of the ring opening reaction of 1,3-cyclohexadiene. J Chem Phys 2006; 125:133307. [PMID: 17029460 DOI: 10.1063/1.2345203] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The early stages of the ring opening reaction of 1,3-cyclohexadiene to form its isomer 1,3,5-hexatriene, upon excitation to the ultrashort-lived 1 1B2 state, were explored. A series of one-color two-photon ionization/photoelectron spectra reveal a prominent vibrational progression with a frequency of 1350 cm(-1), which is interpreted in a dynamical picture as resulting from the ultrafast wave packet dynamics associated with the ring opening reaction. Photoionization in two-color three-photon and one-color four-photon ionization schemes show an ionization pathway via the same ultrashort-lived 1 1B2 state, and in addition, a series of Rydberg states with quantum defects of 0.93, 0.76, and 0.15, respectively. Using those Rydberg states as probes for the reaction dynamics in a time-resolved pump-probe experiment provides a direct observation of the elusive 2 1A1 state that has been implicated as an intermediate step between the initially excited 1 1B2 state and the ground electronic state. The rise and decay times for the 2 1A1 state were found to be 55 and 84 fs, respectively.
Collapse
Affiliation(s)
- Narayanan Kuthirummal
- Department of Physics and Astronomy, College of Charleston, Charleston, South Carolina 29424, USA
| | | | | | | |
Collapse
|
29
|
Minitti MP, Cardoza JD, Weber PM. Rydberg fingerprint spectroscopy of hot molecules: structural dispersion in flexible hydrocarbons. J Phys Chem A 2006; 110:10212-8. [PMID: 16928110 DOI: 10.1021/jp062539a] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We explore how structural dispersion in flexible hydrocarbon chain molecules at very high temperatures is reflected in the photoionization spectra of Rydberg levels. The spectra of N,N-dimethylisopropanamine, N,N-dimethyl-1-butanamine, N,N-dimethyl-2-butanamine, N,N-dimethyl-3-hexanamine, and 1,4-dimethylpiperazine, taken at effective vibrational temperatures of 700-1000 K, show well-resolved features stemming from the 3p and 3s Rydberg states. The line shapes observed in molecules with internal rotation degrees of freedom show that multiple structures are populated. Following up on the discovery that low-lying Rydberg states provide sensitive fingerprints of molecular structures, this work supports Rydberg fingerprint spectroscopy as a tool to probe structural details of molecules in the presence of complex energy landscapes and at high vibrational temperatures. A simple model accounts for the sensitivity of Rydberg fingerprint spectroscopy to the molecular shape, as well as the relative insensitivity of the spectra toward vibrational excitation.
Collapse
Affiliation(s)
- Michael P Minitti
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
30
|
Gosselin JL, Minitti MP, Rudakov FM, Sølling TI, Weber PM. Energy Flow and Fragmentation Dynamics of N,N-Dimethylisopropylamine. J Phys Chem A 2006; 110:4251-5. [PMID: 16553377 DOI: 10.1021/jp0574706] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The energy flow and fragmentation dynamics of N,N-dimethylisopropylamine (DMIPA) upon excitation to the 3p Rydberg states has been investigated with use of time-resolved photoelectron and mass spectrometry. The 3p states are short-lived, with a lifetime of 701 +/- 45 fs. From the time dependence of the photoelectron spectra, we infer that the primary reaction channel leads to the 3s level, which itself decays to the ground state with a decay time of 87.9 +/- 10.2 ps. The mass spectrum reveals fragmentation with cleavage at the alpha C-C bond, indicating that the energy deposited in vibrations during the internal conversion from 3p to 3s exceeds the bond energy. A thorough examination of the binding energies and temporal dynamics of the Rydberg states, as well as a comparison to the related fragmentation of N,N-dimethyl-2-butanamine (DM2BA), suggests that the fragments are formed on the ion surfaces, i.e., after ionization and on a time scale much slower than the fluorescence decay from 3s to the ground state.
Collapse
Affiliation(s)
- Jaimie L Gosselin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | |
Collapse
|
31
|
Remacle F, Weinkauf R, Levine RD. Molecule-Based Photonically Switched Half and Full Adder. J Phys Chem A 2005; 110:177-84. [PMID: 16392853 DOI: 10.1021/jp0557417] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A single molecule logic gate using electronically excited states and ionization/fragmentation can take advantage of the differences in cross-sections for one and two photon absorption. Fault tolerant optically pumped half adder and full adder are discussed as applications. A full adder requires two separate additions, and the logic concatenation that is required to implement this is physically achieved by an intramolecular transfer along the side chain of 2-phenylethyl-N,N-dimethylamine (PENNA). Solutions of the kinetic equations for the temporal evolution of the concentration of different states in the presence of time-varying laser fields are used to illustrate the high contrast ratios that are potentially possible for such devices.
Collapse
Affiliation(s)
- Françoise Remacle
- The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | |
Collapse
|
32
|
Lehr L, Horneff T, Weinkauf R, Schlag EW. Femtosecond Dynamics after Ionization: 2-Phenylethyl-N,N-dimethylamine as a Model System for Nonresonant Downhill Charge Transfer in Peptides. J Phys Chem A 2005; 109:8074-80. [PMID: 16834192 DOI: 10.1021/jp0210935] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cation of 2-phenylethyl-N,N-dimethylamine (PENNA) offers two local sites for the charge: the amine group and 0.7 eV higher in energy the phenyl chromophore. In this paper, we investigate the dynamics of the charge transfer (CT) from the phenyl to the amine site. We present a femtosecond resonant two-color photoionization spectrum which shows that the femtosecond pump laser pulse is resonant in the phenyl chromophore. As shown previously with resonant wavelengths the aromatic phenyl chromophore can be then selectively ionized. Because the state "charge in the phenyl chromophore" is the first excited state in the PENNA cation, it can relax to the lower-energetic state "charge in the amine site". To follow this CT dynamics, femtosecond probe photoabsorption of green light (vis) is used. The vis light is absorbed by the charged phenyl chromophore, but not by the neutral phenyl and the neutral or cationic amine group. Thus, the absorption of vis photons of the probe laser pulse is switched off by the CT process. For detection of the resonant absorption of two or more vis photons in the cation the intensity of a fragmentation channel is monitored which opens only at high internal energy. The CT dynamics in PENNA cations has a time constant of 80 +/- 28 fs and is therefore not a purely electronic process. Because of its structural similarity to phenylalanine, PENNA is a model system for a downhill charge transfer in peptide cations.
Collapse
Affiliation(s)
- L Lehr
- Institut für Physikalische und Theoretische Chemie, TU München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | |
Collapse
|
33
|
Gosselin JL, Weber PM. Rydberg Fingerprint Spectroscopy: A New Spectroscopic Tool with Local and Global Structural Sensitivity. J Phys Chem A 2005; 109:4899-904. [PMID: 16833836 DOI: 10.1021/jp0503866] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Rydberg spectra are shown to provide a spectral fingerprint that is sensitive to molecular structure in unique ways. The concepts are demonstrated using a set of isomeric fluorophenols and a sequence of aliphatic diamines. In the fluorophenols, the sensitivity extends to the placement of a single hydrogen atom and can be traced to the molecular charge distributions associated with the locations of atoms and functional groups with respect to the charge center. Experiments on tetramethyl diamines demonstrate that the structural sensitivity encompasses the extended molecular structure, including parts of the molecule that are remote from the ionization center. This global structure sensitivity makes Rydberg fingerprint spectroscopy uniquely suited to characterize structures of large-scale molecular systems.
Collapse
Affiliation(s)
- Jaimie L Gosselin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
34
|
Abstract
This critical review is intended to provide an overview of the state-of-the-art in femtosecond laser technology and recent applications in ultrafast gas phase chemical dynamics. Although "femtochemistry" is not a new subject, there have been some tremendous advances in experimental techniques during the last few years. Time-resolved photoelectron spectroscopy and ultrafast electron diffraction have enabled us to observe molecular dynamics through a wider window. Attosecond laser sources, which have so far only been exploited in atomic physics, have the potential to probe chemical dynamics on an even faster timescale and observe the motions of electrons. Huge progress in pulse shaping and pulse characterisation methodology is paving the way for exciting new advances in the field of coherent control.
Collapse
Affiliation(s)
- R E Carley
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | | | | |
Collapse
|