1
|
D'Agostino C, Preziosi V, Caiazza G, Maiorino MV, Fridjonsson E, Guido S. Effect of surfactant concentration on diffusion and microstructure in water-in-oil emulsions studied by low-field benchtop NMR and optical microscopy. SOFT MATTER 2023; 19:3104-3112. [PMID: 37039250 DOI: 10.1039/d3sm00113j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Emulsions are ubiquitous in many consumer products, including food, cosmetics and pharmaceuticals. Whilst their macroscopic characterisation is well-established, understanding their microscopic behaviour is very challenging. In our previous work we investigated oil-in-water emulsions by studying the effect of water on structuring and dynamics of such systems. In the present work, we investigate the effect of surfactant concentration on microstructure and diffusion within the water-in-oil emulsion system by using low-field pulsed-field gradient (PFG) NMR studies carried out with a benchtop NMR instrument, in conjunction with optical imaging. The results reveal that at high surfactant concentration the formation of smaller droplets gives rise to a third component in the PFG NMR attenuation plot, which is mostly attributed to restricted diffusion near the droplet boundaries. In addition, structuring effects due to increase in surfactant concentration at the boundaries could also contribute to further slowing down water diffusion at the boundaries. As the surfactant concentration decreases, the average droplet size becomes larger and both restriction and structuring effects at the droplet boundaries become less significant, as suggested by the PFG NMR plot, whereby the presence of a third diffusion component becomes less pronounced.
Collapse
Affiliation(s)
- Carmine D'Agostino
- Department of Chemical Engineering and Analytical Science, The University of Manchester, The Mill, Sackville Street, Manchester, M13 9PL, UK.
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Alma Mater Studiorum - Università di Bologna, Via Terracini, 28, 40131 Bologna, Italy
| | - Valentina Preziosi
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, UdR INSTM, Piazzale Tecchio, 80, 80125, Napoli, Italy.
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Giuseppina Caiazza
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, UdR INSTM, Piazzale Tecchio, 80, 80125, Napoli, Italy.
| | - Maria Vittoria Maiorino
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, UdR INSTM, Piazzale Tecchio, 80, 80125, Napoli, Italy.
| | - Einar Fridjonsson
- Department of Chemical Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Stefano Guido
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, UdR INSTM, Piazzale Tecchio, 80, 80125, Napoli, Italy.
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| |
Collapse
|
2
|
Vermeir L, Sabatino P, Balcaen M, Declerck A, Dewettinck K, Martins JC, Van der Meeren P. Effect of molecular exchange on water droplet size analysis in W/O emulsions as determined by diffusion NMR. J Colloid Interface Sci 2016; 463:128-36. [DOI: 10.1016/j.jcis.2015.10.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 11/24/2022]
|
3
|
Method for Determining the Activation Energy Distribution Function of Complex Reactions by Sieving and Thermogravimetric Measurements. J Phys Chem B 2016; 120:244-9. [PMID: 26671287 DOI: 10.1021/acs.jpcb.5b10448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A method for studying the kinetics of thermal degradation of complex compounds is suggested. Although the method is applicable to any matrix whose grain size can be measured, herein we focus our investigation on thermogravimetric analysis, under a nitrogen atmosphere, of ground soft wheat and ground maize. The thermogravimetric curves reveal that there are two well-distinct jumps of mass loss. They correspond to volatilization, which is in the temperature range 298-433 K, and decomposition regions go from 450 to 1073 K. Thermal degradation is schematized as a reaction in the solid state whose kinetics is analyzed separately in each of the two regions. By means of a sieving analysis different size fractions of the material are separated and studied. A quasi-Newton fitting algorithm is used to obtain the grain size distribution as best fit to experimental data. The individual fractions are thermogravimetrically analyzed for deriving the functional relationship between activation energy of the degradation reactions and the particle size. Such functional relationship turns out to be crucial to evaluate the moments of the activation energy distribution, which is unknown in terms of the distribution calculated by sieve analysis. From the knowledge of moments one can reconstruct the reaction conversion. The method is applied first to the volatilization region, then to the decomposition region. The comparison with the experimental data reveals that the method reproduces the experimental conversion with an accuracy of 5-10% in the volatilization region and of 3-5% in the decomposition region.
Collapse
|
4
|
Abstract
Objects making up complex porous systems in Nature usually span a range of sizes. These size distributions play fundamental roles in defining the physicochemical, biophysical and physiological properties of a wide variety of systems - ranging from advanced catalytic materials to Central Nervous System diseases. Accurate and noninvasive measurements of size distributions in opaque, three-dimensional objects, have thus remained long-standing and important challenges. Herein we describe how a recently introduced diffusion-based magnetic resonance methodology, Non-Uniform-Oscillating-Gradient-Spin-Echo (NOGSE), can determine such distributions noninvasively. The method relies on its ability to probe confining lengths with a (length)6 parametric sensitivity, in a constant-time, constant-number-of-gradients fashion; combined, these attributes provide sufficient sensitivity for characterizing the underlying distributions in μm-scaled cellular systems. Theoretical derivations and simulations are presented to verify NOGSE's ability to faithfully reconstruct size distributions through suitable modeling of their distribution parameters. Experiments in yeast cell suspensions - where the ground truth can be determined from ancillary microscopy - corroborate these trends experimentally. Finally, by appending to the NOGSE protocol an imaging acquisition, novel MRI maps of cellular size distributions were collected from a mouse brain. The ensuing micro-architectural contrasts successfully delineated distinctive hallmark anatomical sub-structures, in both white matter and gray matter tissues, in a non-invasive manner. Such findings highlight NOGSE's potential for characterizing aberrations in cellular size distributions upon disease, or during normal processes such as development.
Collapse
Affiliation(s)
- Noam Shemesh
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Gonzalo A. Álvarez
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Lucio Frydman
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
- * E-mail:
| |
Collapse
|
5
|
Monduzzi M, Lampis S, Murgia S, Salis A. From self-assembly fundamental knowledge to nanomedicine developments. Adv Colloid Interface Sci 2014; 205:48-67. [PMID: 24182715 DOI: 10.1016/j.cis.2013.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 02/01/2023]
Abstract
This review highlights the key role of NMR techniques in demonstrating the molecular aspects of the self-assembly of surfactant molecules that nowadays constitute the basic knowledge which modern nanoscience relies on. The aim is to provide a tutorial overview. The story of a rigorous scientific approach to understand self-assembly in surfactant systems and biological membranes starts in the early seventies when the progresses of SAXRD and NMR technological facilities allowed to demonstrate the existence of ordered soft matter, and the validity of Tanford approach concerning self-assembly at a molecular level. Particularly, NMR quadrupolar splittings, NMR chemical shift anisotropy, and NMR relaxation of dipolar and quadrupolar nuclei in micellar solutions, microemulsions, and liquid crystals proved the existence of an ordered polar-apolar interface, on the NMR time scale. NMR data, rationalized in terms of the two-step model of relaxation, allowed to quantify the dynamic aspects of the supramolecular aggregates in different soft matter systems. In addition, NMR techniques allowed to obtain important information on counterion binding as well as on size of the aggregate through molecular self-diffusion. Indeed NMR self-diffusion proved without any doubt the existence of bicontinuous microemulsions and bicontinuous cubic liquid crystals, suggested by pioneering and brilliant interpretation of SAXRD investigations. Moreover, NMR self-diffusion played a fundamental role in the understanding of microemulsion and emulsion nanostructures, phase transitions in phase diagrams, and particularly percolation phenomena in microemulsions. Since the nineties, globalization of the knowledge along with many other technical facilities such as electron microscopy, particularly cryo-EM, produced huge progresses in surfactant and colloid science. Actually we refer to nanoscience: bottom up/top down strategies allow to build nanodevices with applications spanning from ICT to food technology. Developments in the applied fields have also been addressed by important progresses in theoretical skills aimed to understand intermolecular forces, and specific ion interactions. Nevertheless, this is still an open question. Our predictive ability has however increased, hence more ambitious targets can be planned. Nanomedicine represents a major challenging field with its main aims: targeted drug delivery, diagnostic, theranostics, tissue engineering, and personalized medicine. Few recent examples will be mentioned. Although the real applications of these systems still need major work, nevertheless new challenges are open, and perspectives based on integrated multidisciplinary approaches would enable both a deeper basic knowledge and the expected advances in biomedical field.
Collapse
Affiliation(s)
- Maura Monduzzi
- Dept. Scienze Chimiche e Geologiche, CNBS & CSGI, University of Cagliari, SS 554 Bivio Sestu, 09042 Monserrato, CA, Italy.
| | - Sandrina Lampis
- Dept. Scienze Chimiche e Geologiche, CNBS & CSGI, University of Cagliari, SS 554 Bivio Sestu, 09042 Monserrato, CA, Italy
| | - Sergio Murgia
- Dept. Scienze Chimiche e Geologiche, CNBS & CSGI, University of Cagliari, SS 554 Bivio Sestu, 09042 Monserrato, CA, Italy
| | - Andrea Salis
- Dept. Scienze Chimiche e Geologiche, CNBS & CSGI, University of Cagliari, SS 554 Bivio Sestu, 09042 Monserrato, CA, Italy
| |
Collapse
|
6
|
Tan HL, McGrath KM. How does oil type determine emulsion characteristics in concentrated Na-caseinate emulsions? J Colloid Interface Sci 2013; 403:7-15. [PMID: 23683496 DOI: 10.1016/j.jcis.2013.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 11/24/2022]
Abstract
Macroscopic properties and ensemble average diffusion of concentrated (dispersed phase 50-60 wt%) Na-caseinate-stabilised emulsions for three different oils (soybean oil, palm olein and tetradecane) were explored. On a volume fraction basis, pulsed gradient stimulated echo (PGSTE)-NMR data show that droplet dynamics for all three systems are similar within a region of the emulsion morphology diagram. The exact limits of the emulsion space depend however on which oil is considered. The reduced solubility of tetradecane in water, and Na-caseinate in tetradecane, result in the stabilisation of flocs during formulation. Floc formation is not observed when soybean oil or palm olein is used under identical emulsion formulation conditions. Linear rheology experiments provide indirect evidence that the local structure and the properties of the thin film interfacial domain of tetradecane emulsions vary from those of soybean oil and palm olein emulsions. Collectively these data indicate that protein/oil interactions within a system dominate over specific oil droplet structure and size distribution, which are similar in the three systems.
Collapse
Affiliation(s)
- Hui Lin Tan
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
7
|
Na-caseinate/oil/water systems: Emulsion morphology diagrams. J Colloid Interface Sci 2012; 381:48-58. [DOI: 10.1016/j.jcis.2012.05.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 11/19/2022]
|
8
|
Murgia S, Monduzzi M, Palazzo G. Quantification of specific anion binding to non-ionic Triton X-100 micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:1283-1289. [PMID: 22149392 DOI: 10.1021/la203918d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Anion binding to nonionic micelles was quantified by self-diffusion. Four anions were probed by multinuclear PGSTE NMR measurements in a Triton X-100 micellar aqueous solution. The salt concentration used was sufficiently low to avoid any micellar growth affecting surface curvature. The micellar aggregates that provide a model surface are uncharged with hydrophilic headgroups so that electrostatic ion surface interactions play little or no role in prescribing specific anion binding. Anionic affinity to the micellar surface followed a Hofmeister series, (CH(3))(2)AsO(2)(-) ≫ CH(3)COO(-) > H(2)PO(4)(-) > F(-). The observed ion specificity is rationalized by calling into play the nonelectrostatic interactions occurring between the anions and the micellar surface.
Collapse
Affiliation(s)
- Sergio Murgia
- Department of Chemical Science, University of Cagliari, CNBS, and CSGI, ss 554, bivio Sestu, 09042 Monserrato (CA), Italy.
| | | | | |
Collapse
|
9
|
Bernewitz R, Guthausen G, Schuchmann HP. NMR on emulsions: characterisation of liquid dispersed systems. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2011; 49 Suppl 1:S93-S104. [PMID: 22290715 DOI: 10.1002/mrc.2825] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Pulsed field gradient NMR (PFG-NMR) is an important method for the characterisation of emulsions. Apart from its application in quality control and process development, especially high-field NMR methods can be applied to investigate emulsions properties on the molecular level. Meanwhile, complex emulsion structures such as double emulsions have been developed and require analytical tools especially for the determination of droplet size distributions. This contribution provides an overview on the possibilities and methods of PFG-NMR referring to measurement, data processing and interpretation of droplet size distributions. Comparison of techniques and measurements on double emulsions are presented.
Collapse
Affiliation(s)
- R Bernewitz
- SRG10-2, Institute for Mechanical Engineering and Mechanics, KIT, 76131 Karlsruhe, Germany
| | | | | |
Collapse
|
10
|
Coles DJ, Simerska P, Fujita Y, Toth I. The influence of incorporating lipids or liposaccharides on the particle size of peptide therapeutics. Biopolymers 2011; 96:172-6. [PMID: 20564037 DOI: 10.1002/bip.21459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The characterization of peptide-based drugs is essential to obtain information about their potential suitability. In this study, a therapeutic peptide epitope alone or in combination with a lipid or liposaccharide moiety were assessed to determine their particle sizes by diffusion ordered NMR spectroscopy, dynamic light scattering, and mathematical expressions. These methods were compared and their suitability for different types of peptides is discussed herein. When compared with the mathematical expressions, we found that the NMR method resulted in a particle size that was consistent with the radius of the peptide monomer. The dynamic light scattering method showed that when lipids were conjugated to the peptide epitope, the resulting particles had a larger sized distribution compared with the peptide alone. These experiments provided information which can be applied when formulating these peptides as drugs.
Collapse
Affiliation(s)
- Daniel J Coles
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, QLD 4072, Australia
| | | | | | | |
Collapse
|
11
|
Fieber W, Hafner V, Normand V. Oil droplet size determination in complex flavor delivery systems by diffusion NMR spectroscopy. J Colloid Interface Sci 2011; 356:422-8. [DOI: 10.1016/j.jcis.2011.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
|
12
|
Murgia S, Palazzo G, Mamusa M, Lampis S, Monduzzi M. Aerosol-OT in water forms fully-branched cylindrical direct micelles in the presence of the ionic liquid 1-butyl-3-methylimidazolium bromide. Phys Chem Chem Phys 2011; 13:9238-45. [DOI: 10.1039/c1cp20209j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Shemesh N, Ozarslan E, Basser PJ, Cohen Y. Detecting diffusion-diffraction patterns in size distribution phantoms using double-pulsed field gradient NMR: Theory and experiments. J Chem Phys 2010; 132:034703. [PMID: 20095748 DOI: 10.1063/1.3285299] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
NMR observable nuclei undergoing restricted diffusion within confining pores are important reporters for microstructural features of porous media including, inter-alia, biological tissues, emulsions and rocks. Diffusion NMR, and especially the single-pulsed field gradient (s-PFG) methodology, is one of the most important noninvasive tools for studying such opaque samples, enabling extraction of important microstructural information from diffusion-diffraction phenomena. However, when the pores are not monodisperse and are characterized by a size distribution, the diffusion-diffraction patterns disappear from the signal decay, and the relevant microstructural information is mostly lost. A recent theoretical study predicted that the diffusion-diffraction patterns in double-PFG (d-PFG) experiments have unique characteristics, such as zero-crossings, that make them more robust with respect to size distributions. In this study, we theoretically compared the signal decay arising from diffusion in isolated cylindrical pores characterized by lognormal size distributions in both s-PFG and d-PFG methodologies using a recently presented general framework for treating diffusion in NMR experiments. We showed the gradual loss of diffusion-diffraction patterns in broadening size distributions in s-PFG and the robustness of the zero-crossings in d-PFG even for very large standard deviations of the size distribution. We then performed s-PFG and d-PFG experiments on well-controlled size distribution phantoms in which the ground-truth is well-known a priori. We showed that the microstructural information, as manifested in the diffusion-diffraction patterns, is lost in the s-PFG experiments, whereas in d-PFG experiments the zero-crossings of the signal persist from which relevant microstructural information can be extracted. This study provides a proof of concept that d-PFG may be useful in obtaining important microstructural features in samples characterized by size distributions.
Collapse
Affiliation(s)
- Noam Shemesh
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69778, Israel
| | | | | | | |
Collapse
|
14
|
|
15
|
Murgia S, Portesani F, Ninham BW, Monduzzi M. Interaction of Sodium Ions with Cationic Surfactant Interfaces. Chemistry 2006; 12:7889-98. [PMID: 16847988 DOI: 10.1002/chem.200600080] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The thermodynamically stable microemulsion and lamellar phases in the didodecyldimethylammonium bromide/water/n-decane ternary system were explored in the presence of NaBr to gain information on sodium ion-interface interactions. Experimental results, obtained by different NMR techniques, strongly suggest accumulation of sodium ions at the cationic interface. This apparently counterintuitive result is explained by invoking the dispersion potential experienced by the ions near the interface. A mechanism is proposed that can account for the dramatic shrinkage of the microemulsion phase region when an electrolyte is added.
Collapse
Affiliation(s)
- Sergio Murgia
- Dipartimento di Scienze Chimiche, Università di Cagliari - CSGI Cittadella Monserrato, S.S. 554 Bivio Sestu, 09042 Monserrato, Italy
| | | | | | | |
Collapse
|
16
|
Egger H, McGrath KM. Aging of oil-in-water emulsions: The role of the oil. J Colloid Interface Sci 2006; 299:890-9. [PMID: 16600282 DOI: 10.1016/j.jcis.2006.03.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 03/10/2006] [Accepted: 03/11/2006] [Indexed: 11/17/2022]
Abstract
Controlling stability and aging of emulsions is important from commercial and scientific perspectives. Achieving such control comes through gaining an understanding of the relationship between emulsion constituents and microstructure and how these influence the kinetics and mechanism of destabilisation. We present here an investigation determining the rate of destabilisation as a function of time for a series of water/n-alkane/Triton X-100 oil-in-water emulsions. The time dependence of the emulsions was investigated using static light scattering, PFG-NMR and measurement of gross phase separation. By changing the chain length of the oil from hexane to tetradecane, an almost five orders of magnitude variation in emulsion lifetime could be achieved, while maintaining most of the other chemical and physical characteristics of the emulsions. Further, we show that while Ostwald ripening is the dominant destabilisation mechanism, two distinct regimes are evident. Initially, we observed an enhanced Ostwald ripening regime due to the presence of oil-swollen micelles in the aqueous continuum, that is a depletion flocculation mechanism is followed. The presence of oil-swollen micelles was confirmed using PFG-NMR. The micelles aid the gross oil transport between the discrete oil domains. Upon phase separation the oil-swollen micelles are predominantly removed from the emulsion along with the excess water resulting in a concomitant reduction in the ripening rate, producing the more general Ostwald ripening cubic dependence of droplet radius as a function of time for the lower molecular weight oils. The oils with higher molecular weight (decane and above), however, were observed to switch over to destabilisation via creaming. PFG-NMR was shown to be a powerful technique to fully probe emulsion microstructure as a function of time with droplet size and spacing being directly obtained from the data.
Collapse
Affiliation(s)
- Holger Egger
- School of Chemical and Physical Sciences, MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| | | |
Collapse
|
17
|
Liu EH, Egger H, McGrath KM. Effect of Oil on Emulsion Characteristics: Manipulating the Interfacial Domain. J Phys Chem B 2005; 109:13332-41. [PMID: 16852664 DOI: 10.1021/jp0514729] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, two ternary systems (water, Triton X-100, and octane or tetradecane) were investigated using freeze-fracture transmission electron microscopy, rheology, laser diffraction particle sizing, and pulse field gradient NMR (PFG-NMR). Oil-in-water dispersed droplet emulsions were prepared for Triton X-100 concentrations of 8-12 wt % while maintaining a surfactant-to-oil weight ratio of 1:5. The stability of the emulsions significantly increased with both the surfactant concentration and the chain length of the oil component. The PFG-NMR results could be explained as a superposition of three different types of diffusion: restricted diffusion of the oil in the droplets and free and restricted diffusion of the droplets themselves. The PFG-NMR results were correlated with the electron microscopy images and the particle-sizing data. Moreover, to gain a greater understanding of the role of the oil-surfactant interactions, in particular, the present investigations were placed in context with an earlier publication where toluene was used as the oil with the same emulsifier. The change from the aromatic oil, which is a better solvent for the surfactant, to an alkane-based oil dramatically changed the characteristics of the interfacial domain. On one hand, the concentration range for the formation of emulsions and the variety of microstructures realized were severely restricted and reduced when using the alkanes as compared with toluene. On the other hand, the interfacial film was much more stable leading to an extremely reduced rate of droplet coalescence.
Collapse
Affiliation(s)
- En-Hui Liu
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | | | | |
Collapse
|