1
|
Mandal S, Espiritu E, Akram N, Lin S, Williams JC, Allen JP, Woodbury NW. Influence of the Electrochemical Properties of the Bacteriochlorophyll Dimer on Triplet Energy-Transfer Dynamics in Bacterial Reaction Centers. J Phys Chem B 2018; 122:10097-10107. [PMID: 30351114 DOI: 10.1021/acs.jpcb.8b07985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Energetics, protein dynamics, and electronic coupling are the key factors in controlling both electron and energy transfer in photosynthetic bacterial reaction centers (RCs). Here, we examine the rates and mechanistic pathways of the P+HA- radical-pair charge recombination, triplet state formation, and subsequent triplet energy transfer from the triplet state of the bacteriochlorophyll dimer (P) to the carotenoid in a series of mutant RCs (L131LH + M160LH (D1), L131LH + M197FH (D2), and L131LH + M160LH + M197FH (T1)) of Rhodobacter sphaeroides. In these mutants, the electronic structure of P is perturbed and the P/P+ midpoint potential is systematically increased due to addition of hydrogen bonds between P and the introduced residues. High-resolution, broad-band, transient absorption spectroscopy on the femtosecond to microsecond timescale shows that the charge recombination rate increases and the triplet energy transfer rate decreases in these mutants relative to the wild type (WT). The increase of the charge recombination rate is correlated to the increase in the energy level of P+HA- and the increase in the P/P+ midpoint potential. On the other hand, the decrease in rate of triplet energy transfer in the mutants can be explained in terms of a lower energy of 3P and a shift in the electron spin density distribution in the bacteriochlorophylls of P. The triplet energy-transfer rate follows the order of WT > L131LH + M197FH > L131LH + M160LH > L131LH + M160LH + M197FH, both at room temperature and at 77 K. A pronounced temperature dependence of the rate is observed for all of the RC samples. The activation energy associated to this process is increased in the mutants relative to WT, consistent with a lower 3P energy due to the addition of hydrogen bonds between P and the introduced residues.
Collapse
|
2
|
Mandal S, Carey AM, Locsin J, Gao BR, Williams JC, Allen JP, Lin S, Woodbury NW. Mechanism of Triplet Energy Transfer in Photosynthetic Bacterial Reaction Centers. J Phys Chem B 2017; 121:6499-6510. [DOI: 10.1021/acs.jpcb.7b03373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sarthak Mandal
- Center
for Innovations in Medicine, The Biodesign Institute at ASU, Arizona State University, Tempe, Arizona 85287, United States
| | - Anne-Marie Carey
- Center
for Innovations in Medicine, The Biodesign Institute at ASU, Arizona State University, Tempe, Arizona 85287, United States
| | - Joshua Locsin
- Center
for Innovations in Medicine, The Biodesign Institute at ASU, Arizona State University, Tempe, Arizona 85287, United States
| | | | - JoAnn C. Williams
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287−1604, United States
| | - James P. Allen
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287−1604, United States
| | - Su Lin
- Center
for Innovations in Medicine, The Biodesign Institute at ASU, Arizona State University, Tempe, Arizona 85287, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287−1604, United States
| | - Neal W. Woodbury
- Center
for Innovations in Medicine, The Biodesign Institute at ASU, Arizona State University, Tempe, Arizona 85287, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287−1604, United States
| |
Collapse
|
3
|
Ma F, Yu LJ, Wang-Otomo ZY, van Grondelle R. The origin of the unusual Qy red shift in LH1-RC complexes from purple bacteria Thermochromatium tepidum as revealed by Stark absorption spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1479-86. [PMID: 26341015 DOI: 10.1016/j.bbabio.2015.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
Abstract
Native LH1-RC of photosynthetic purple bacteria Thermochromatium (Tch.) tepidum, B915, has an ultra-red BChl a Qy absorption. Two blue-shifted complexes obtained by chemical modification, B893 and B882, have increasing full widths at half maximum (FWHM) and decreasing transition dipole oscillator strength. 77K Stark absorption spectroscopy studies were employed for the three complexes, trying to understand the origin of the 915 nm absorption. We found that Tr(∆α) and |∆μ| of both Qy and carotenoid (Car) bands are larger than for other purple bacterial LH complexes reported previously. Moreover, the red shifts of the Qy bands are associated with (1) increasing Tr(∆α) and |∆μ| of the Qy band, (2) the red shift of the Car Stark signal and (3) the increasing |∆μ| of the Car band. Based on the results and the crystal structure, a combined effect of exciton-charge transfer (CT) states mixing, and inhomogeneous narrowing of the BChl a site energy is proposed to be the origin of the 915 nm absorption. CT-exciton state mixing has long been found to be the origin of strong Stark signal in LH1 and special pair, and the more extent of the mixing in Tch. tepidum LH1 is mainly the consequence of the shorter BChl-BChl distances. The less flexible protein structure results in a smaller site energy disorder (inhomogeneous narrowing), which was demonstrated to be able to influence |∆μ| and absorption.
Collapse
Affiliation(s)
- Fei Ma
- Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| | - Long-Jiang Yu
- Faculty of Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan
| | | | - Rienk van Grondelle
- Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
4
|
Horibe T, Qian P, Hunter CN, Hashimoto H. Stark absorption spectroscopy on the carotenoids bound to B800-820 and B800-850 type LH2 complexes from a purple photosynthetic bacterium, Phaeospirillum molischianum strain DSM120. Arch Biochem Biophys 2015; 572:158-166. [PMID: 25536050 DOI: 10.1016/j.abb.2014.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/16/2022]
Abstract
Stark absorption spectroscopy was applied to clarify the structural differences between carotenoids bound to the B800-820 and B800-850 LH2 complexes from a purple photosynthetic bacterium Phaeospirillum (Phs.) molischianum DSM120. The former complex is produced when the bacteria are grown under stressed conditions of low temperature and dim light. These two LH2 complexes bind carotenoids with similar composition, 10% lycopene and 80% rhodopin, each with the same number of conjugated CC double bonds (n=11). Quantitative classical and semi-quantum chemical analyses of Stark absorption spectra recorded in the carotenoid absorption region reveal that the absolute values of the difference dipole moments |Δμ| have substantial differences (2 [D/f]) for carotenoids bound to either B800-820 or B800-850 complexes. The origin of this striking difference in the |Δμ| values was analyzed using the X-ray crystal structure of the B800-850 LH2 complex from Phs. molischianum DSM119. Semi-empirical molecular orbital calculations predict structural deformations of the major carotenoid, rhodopin, bound within the B800-820 complex. We propose that simultaneous rotations around neighboring CC and CC bonds account for the differences in the 2 [D/f] of the |Δμ| value. The plausible position of the rotation is postulated to be located around C21-C24 bonds of rhodopin.
Collapse
Affiliation(s)
- Tomoko Horibe
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Pu Qian
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Hideki Hashimoto
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan; The Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| |
Collapse
|
5
|
Leonova MM, Fufina TY, Vasilieva LG, Shuvalov VA. Structure-function investigations of bacterial photosynthetic reaction centers. BIOCHEMISTRY (MOSCOW) 2012; 76:1465-83. [DOI: 10.1134/s0006297911130074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Nakata K, Kobayashi T, Tokunaga E. Electric field-controlled dissociation and association of porphyrin J-aggregates in aqueous solution. Phys Chem Chem Phys 2011; 13:17756-67. [DOI: 10.1039/c1cp21964b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
NAKAGAWA K, SAKAI S, KONDO M, DEWA T, HORIBE T, HASHIMOTO H, NANGO M. Structural Forming of Photosynthetic Polypeptide Supramolecule Complexes and Functional Analysis of Carotenoids in These Complexes. KOBUNSHI RONBUNSHU 2010. [DOI: 10.1295/koron.67.574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Kajikawa T, Hasegawa S, Iwashita T, Kusumoto T, Hashimoto H, Niedzwiedzki DM, Frank HA, Katsumura S. Syntheses of C33-, C35-, and C39-peridinin and their spectral characteristics. Org Lett 2009; 11:5006-9. [PMID: 19795872 PMCID: PMC3650678 DOI: 10.1021/ol901940g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peridinin, a nor-carotenoid, exhibits an exceptionally high energy transfer efficiency to chlorophyll a in photosynthesis in the sea. This efficiency would be related to the unique structure of peridinin. To answer the question of why peridinin possesses the irregular C37 skeleton, we have achieved the synthesis of three peridinin derivatives. Their ultrafast time-resolved optical absorption and Stark spectra measurements have shown the presence of the characteristic intramolecular charge transfer state and the featured electrostatic properties of peridinin.
Collapse
|
9
|
Kajikawa T, Aoki K, Singh RS, Iwashita T, Kusumoto T, Frank HA, Hashimoto H, Katsumura S. Syntheses of allene-modified derivatives of peridinin toward elucidation of the effective role of the allene function in high energy transfer efficiencies in photosynthesis. Org Biomol Chem 2009; 7:3723-33. [PMID: 19707676 DOI: 10.1039/b907456b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peridinin is known as the main light-harvesting pigment in photosynthesis in the sea and exhibits exceptionally high energy transfer efficiencies to chlorophyll a. This energy transfer efficiency is thought to be related to the intricate structure of peridinin, which possesses allene and ylidenbutenolide functions in the polyene backbone. There are, however, no studies on the relationship between the structural features of peridinin and its super ability for energy transfer. We then focused on the subjects of why peridinin possesses a unique allene group and how the allene function plays a role in the exceptionally high energy transfer. Toward elucidation of the exact role of the allene function, we now describe the syntheses of three relatively unstable allene-modified derivatives of peridinin along with the results of the Stark spectroscopy of peridinin and the synthesized peridinin derivatives.
Collapse
Affiliation(s)
- Takayuki Kajikawa
- Department of Chemistry and Open Research Center on Organic Tool Molecules, School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Williams JC, Allen JP. Directed Modification of Reaction Centers from Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Jones MR. Structural Plasticity of Reaction Centers from Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Premvardhan L, Sandberg DJ, Fey H, Birge RR, Büchel C, van Grondelle R. The charge-transfer properties of the S2 state of fucoxanthin in solution and in fucoxanthin chlorophyll-a/c2 protein (FCP) based on stark spectroscopy and molecular-orbital theory. J Phys Chem B 2008; 112:11838-53. [PMID: 18722413 PMCID: PMC2844098 DOI: 10.1021/jp802689p] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fucoxanthin chlorophyll-a/c 2 protein (FCP), the membrane-intrinsic light harvesting complex from the diatom Cyclotella meneghiniana, is characterized by Stark spectroscopy to obtain a quantitative measure of the excited-state dipolar properties of the constituent pigments. The electro-optical properties of the carotenoid fucoxanthin (Fx), the primary light harvester in FCP, were determined from the Stark spectrum measured in a MeTHF glass (77 K) and compared to the results from electronic-structure calculations. On photon absorption by Fx, a 17 D change in the static dipole moment (|Delta mu|exp), and a somewhat larger |Delta mu|exp at the red edge, are measured for the S 0 --> S 2 (1 (1)A g (-)-like -->1 (1)B u *+-like) transition. The large change in dipole moment indicates that Fx undergoes photoinduced charge transfer (CT), and underscores the influence of the S 2 state on the polarity-dependent excited-state dynamics of Fx that has so far been attributed to, and discussed in terms of, the S 0 and the S 1/ICT states. MNDO-PSDCI and SACCI-CISD calculations indicate that the 1 (1)B u (*+)-like state intrinsically possesses a dipole moment much smaller than the 2 (1)A g (*-)-like state, suggesting that solvent fields promote the mixing of these two states and could account for the large dipole moments measured here for the S 0 --> S 2 transition. These CT properties of the 1 (1)B u (*+)-like state of Fx are further enhanced in the protein and underpin its photosynthetic capabilities for light harvesting and energy transfer (ET). In FCP, the CT properties of the Fx's vary according to the energetic position: between 450 and 500 nm there appear to be two sets of Fx's that exhibit |Delta mu| exp values on the order of 5 and 15 D, whereas the red-most Fx's, that are very efficient in ET to chlorophyll-a (Chl-a), exhibit strikingly large |Delta mu| exp values on the order of 40 D. Such magnitudes of |Delta mu| exp suggest a mechanism that enhances Coulombic coupling to promote ET from the S 2 state of Fx to Chl-a. These three sets of Fx's, including a fourth red Fx, are identified by fitting the Stark spectrum of FCP with the Stark spectrum of Fx in MeTHF. In contrast to the Fx's in the protein, the electrostatic properties of the Chl's in FCP are comparatively much smaller. Notably, for the Q y band of Chl-a, a |Delta mu| exp of 0.92 D and a change in polarizability ( Delta alpha exp) of 20 A (3), indicate that the Chl-a's are monomeric in nature and decoupled from each other.
Collapse
Affiliation(s)
- Lavanya Premvardhan
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
13
|
Nakagawa K, Suzuki S, Fujii R, Gardiner AT, Cogdell RJ, Nango M, Hashimoto H. Probing the effect of the binding site on the electrostatic behavior of a series of carotenoids reconstituted into the light-harvesting 1 complex from purple photosynthetic bacterium Rhodospirillum rubrum detected by stark spectroscopy. J Phys Chem B 2008; 112:9467-75. [PMID: 18613723 DOI: 10.1021/jp801773j] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reconstitutions of the LH1 complexes from the purple photosynthetic bacterium Rhodospirillum rubrum S1 were performed with a range of carotenoid molecules having different numbers of C=C conjugated double bonds. Since, as we showed previously, some of the added carotenoids tended to aggregate and then to remain with the reconstituted LH1 complexes (Nakagawa, K.; Suzuki, S.; Fujii, R.; Gardiner, A.T.; Cogdell, R.J.; Nango, M.; Hashimoto, H. Photosynth. Res. 2008, 95, 339-344), a further purification step using a sucrose density gradient centrifugation was introduced to improve purity of the final reconstituted sample. The measured absorption, fluorescence-excitation, and Stark spectra of the LH1 complex reconstituted with spirilloxanthin were identical with those obtained with the native, spirilloxanthin-containing, LH1 complex of Rs. rubrum S1. This shows that the electrostatic environments surrounding the carotenoid and bacteriochlorophyll a (BChl a) molecules in both of these LH1 complexes were essentially the same. In the LH1 complexes reconstituted with either rhodopin or spheroidene, however, the wavelength maximum at the BChl a Qy absorption band was slightly different to that of the native LH1 complexes. These differences in the transition energy of the BChl a Qy absorption band can be explained using the values of the nonlinear optical parameters of this absorption band, i.e., the polarizability change Tr(Deltaalpha) and the static dipole-moment change |Deltamu| upon photoexcitation, as determined using Stark spectroscopy. The local electric field around the BChl a in the native LH1 complex (ES) was determined to be approximately 3.0x10(6) V/cm. Furthermore, on the basis of the values of the nonlinear optical parameters of the carotenoids in the reconstituted LH1 complexes, it is possible to suggest that the conformations of carotenoids, anhydrorhodovibrin and spheroidene, in the LH1 complex were similar to that of rhodopin glucoside in crystal structure of the LH2 complex from Rhodopseudomonas acidophila 10050.
Collapse
Affiliation(s)
- Katsunori Nakagawa
- Department of Life and Materials Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Nakagawa K, Suzuki S, Fujii R, Gardiner AT, Cogdell RJ, Nango M, Hashimoto H. Electrostatic effect of surfactant molecules on bacteriochlorophyll a and carotenoid binding sites in the LH1 complex isolated from Rhodospirillum rubrum S1 probed by Stark spectroscopy. PHOTOSYNTHESIS RESEARCH 2008; 95:345-351. [PMID: 17922213 DOI: 10.1007/s11120-007-9257-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 09/10/2007] [Indexed: 05/25/2023]
Abstract
The LH1 complexes were isolated from the purple photosynthetic bacterium Rhodospirillum rubrum strain S1. They were initially solubilized using LDAO and then purified in the presence of Triton X-100. The purified complexes were then either used directly or following an exchange into LDAO. Stark spectroscopy was applied to probe the electrostatic field around the bacteriochlorophyll a (BChl a) and carotenoid binding sites in the LH1 complexes surrounded by these two different surfactant molecules. Polarizabilty change (deltaalpha)) and dipole moment change (deltamicrom) upon photoexcitation were determined for the BChl a Q(y) band. Both of these parameters show smaller values in the presence of LDAO than in Triton X-100. This indicates that polar detergent molecules, like LDAO, affect the electrostatic environment around BChl a, and modify the nonlinear optical parameters (deltaalpha and deltamicrom values). The electrostatic field around the BChl a binding site, which is generated by the presence of LDAO, was determined to be |E ( L )| = approximately 3.9 x 10(5) [V/cm]. Interestingly, this kind of electrostatic effect was not observed for the carotenoid-binding site. The present study demonstrates a unique electrostatic interaction between the polar detergent molecules surrounding the LH1 complex and the Q(y) absorption band of BChl a that is bound to the LH1 complex.
Collapse
Affiliation(s)
- Katsunori Nakagawa
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Nagoya, 466-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Nakagawa K, Suzuki S, Fujii R, Gardiner AT, Cogdell RJ, Nango M, Hashimoto H. Probing binding site of bacteriochlorophyll a and carotenoid in the reconstituted LH1 complex from Rhodospirillum rubrum S1 by Stark spectroscopy. PHOTOSYNTHESIS RESEARCH 2008; 95:339-44. [PMID: 17912603 DOI: 10.1007/s11120-007-9261-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 09/10/2007] [Indexed: 05/17/2023]
Abstract
Stark spectroscopy is a powerful technique to investigate the electrostatic interactions between pigments as well as between the pigments and the proteins in photosynthetic pigment-protein complexes. In this study, Stark spectroscopy has been used to determine two nonlinear optical parameters (polarizability change Tr(Deltaalpha) and static dipole-moment change |Deltamu| upon photoexcitation) of isolated and of reconstituted LH1 complexes from the purple photosynthetic bacterium, Rhodospirillum (Rs.) rubrum. The integral LH1 complex was prepared from Rs. rubrum S1, while the reconstituted complex was assembled by addition of purified carotenoid (all-trans-spirilloxanthin) to the monomeric subunit of LH1 from Rs. rubrum S1. The reconstituted LH1 complex has its Q(y) absorption maximum at 878 nm. This is shifted to the blue by 3 nm in comparison to the isolated LH1 complex. The energy transfer efficiency from carotenoid to bacteriochlorophyll a (BChl a), which was determined by fluorescence excitation spectroscopy of the reconstituted LH1 complex, is increased to 40%, while the efficiency in the isolated LH1 complex is only 28%. Based on the differences in the values of Tr(Deltaalpha) and |Deltamu|, between these two preparations, we can calculate the change in the electric field around the BChl a molecules in the two situations to be E (Delta) approximately 3.4 x 10(5) [V/cm]. This change can explain the 3 nm wavelength shift of the Q(y) absorption band in the reconstituted LH1 complex.
Collapse
Affiliation(s)
- Katsunori Nakagawa
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Nagoya, 466-8555, Japan
| | | | | | | | | | | | | |
Collapse
|