Sim E. Effect of the Donor−Bridge Energy Gap on the Electron-Transfer Mechanism in Donor−Bridge−Acceptor Systems.
J Phys Chem B 2005;
109:11829-35. [PMID:
16852452 DOI:
10.1021/jp0503112]
[Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of the energy gap between donor and bridge states in the electron transfer of a double mutant photosynthetic purple bacterial reaction center is thoroughly investigated using a recently introduced modified on-the-fly filtered propagator important path integral formalism. By decomposition of the reduced density matrix of a system coupled to a dissipative environment, partial contributions of incoherent hopping, coherent superexchange, and partially coherent hopping transport to the overall electron or charge transfer are evaluated. Within the tight-binding donor-bridge-acceptor model, the three mechanisms coexist for a wide range of donor-bridge energy gap values, and the governing mechanism changes from incoherent hopping to partially coherent hopping and eventually to coherent superexchange as the donor-bridge energy gap becomes large.
Collapse