1
|
Kim M, Park S, Song D, You Y, Lim M, Lee HI. Effect of Electron-donating Group on NO Photolysis of {RuNO} 6 Ruthenium Nitrosyl Complexes with N 2 O 2 Lgands Bearing π-Extended Rings. Chem Asian J 2024; 19:e202300908. [PMID: 37969065 DOI: 10.1002/asia.202300908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/17/2023]
Abstract
In this study, we introduced the electron-donating group (-OH) to the aromatic rings of Ru(salophen)(NO)Cl (0) (salophenH2 =N,N'-(1,2-phenylene)bis(salicylideneimine)) to investigate the influence of the substitution on NO photolysis and NO-releasing dynamics. Three derivative complexes, Ru((o-OH)2 -salophen)(NO)Cl (1), Ru((m-OH)2 -salophen)(NO)Cl (2), and Ru((p-OH)2 -salophen)(NO)Cl (3) were developed and their NO photolysis was monitored by using UV/Vis, EPR, NMR, and IR spectroscopies under white room light. Spectroscopic results indicated that the complexes were diamagnetic Ru(II)-NO+ species which were converted to low-spin Ru(III) species (d5 , S=1/2) and released NO radicals by photons. The conversion was also confirmed by determining the single-crystal structure of the photoproduct of 1. The photochemical quantum yields (ΦNO s) of the photolysis were determined to be 0>1, 2, 3 at both the visible and UV excitations. Femtosecond (fs) time-resolved mid-IR spectroscopy was employed for studying NO-releasing dynamics. The geminate rebinding (GR) rates of the photoreleased NO to the photolyzed complexes were estimated to be 0≃1, 2, 3. DFT and TDDFT computations found that the introduction of the hydroxyl groups elevated the ligand π-bonding orbitals (π (salophen)), resulting in decrease of the HOMO-LUMO gaps in 1-3. The theoretical calculations suggested that the Ru-NNO bond dissociations of the complexes were mostly initiated by the ligand-to-ligand charge transfer (LLCT) of π(salophen)→π*(Ru-NO) with both the visible and UV excitations and the decreasing ΦNO s could be explained by the changes of the electronic structures in which the photoactivable bands of 1-3 have relatively less contribution of transitions related with Ru-NO bond than those of 0.
Collapse
Affiliation(s)
- Minyoung Kim
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Dayoon Song
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Youngmin You
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Hong-In Lee
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
2
|
Kim M, Park S, Song D, Moon D, You Y, Lim M, Lee HI. Visible-light NO photolysis of ruthenium nitrosyl complexes with N 2O 2 ligands bearing π-extended rings and their photorelease dynamics. Dalton Trans 2022; 51:11404-11415. [PMID: 35822310 DOI: 10.1039/d2dt01019d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NO photorelease and its dynamics for two {RuNO}6 complexes, Ru(salophen)(NO)Cl (1) and Ru(naphophen)(NO)Cl (2), with salen-type ligands bearing π-extended systems (salophenH2 = N,N'-(1,2-phenylene)-bis(salicylideneimine) and naphophenH2 = N,N'-1,2-phenylene-bis(2-hydroxy-1-naphthylmethyleneimine)) were investigated. NO photolysis was performed under white room light and monitored by UV/Vis, EPR, and NMR spectroscopies. NO photolysis was also performed under 459 and 489 nm irradiation for 1 and 2, respectively. The photochemical quantum yields of the NO photolysis (ΦNO) of both 1 and 2 were determined to be 9% at the irradiation wavelengths. The structural and spectroscopic characteristics of the complexes before and after the photolysis confirmed the conversion of diamagnetic Ru(II)(L)(Cl)-NO+ to paramagnetic S = ½ Ru(III)(L)(Cl)-solvent by photons (L = salophen2- and naphophen2-). The photoreleased NO radicals were detected by spin-trapping EPR. DFT and TDDFT calculations found that the photoactive bands are configured as mostly the ligand-to-ligand charge transfer (LLCT) of π(L) → π*(Ru-NO), suggesting that the NO photorelease was initiated by the LLCT. Dynamics of NO photorelease from the complexes in DMSO under 320 nm excitation were investigated by femtosecond (fs) time-resolved mid-IR spectroscopy. The primary photorelease of NO occurred for less than 0.32 ps after the excitation. The rate constants (k-1) of the geminate rebinding of NO to the photolyzed 1 and 2 were determined to be (15 ps)-1 and (13 ps)-1, respectively. The photochemical quantum yields of NO photolysis (ΦNO, λ = 320 nm) were estimated to be no higher than 14% for 1 and 11% for 2, based on the analysis of the fs time-resolved IR data. The results of fs time-resolved IR spectroscopy and theoretical calculations provided some insight into the overall kinetic reaction pathway, localized electron pathway or resonance pathway, of the NO photolysis of 1 and 2. Overall, our study found that the investigated {RuNO}6 complexes, 1 and 2, with planar N2O2 ligands bearing π-extended rings effectively released NO under visible light.
Collapse
Affiliation(s)
- Minyoung Kim
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| | - Dayoon Song
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dohyun Moon
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| | - Hong-In Lee
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
3
|
Photoacid-induced aqueous acid-base reactions probed by femtosecond infrared spectroscopy. Photochem Photobiol Sci 2022; 21:1419-1431. [PMID: 35526216 DOI: 10.1007/s43630-022-00232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
Acid-base reactions involving an excited photoacid have typically been investigated at high base concentrations, but the mechanisms at low base concentrations require clarification. Herein, the dynamics of acid-base reactions induced by an excited photoacid, pyranine (DA), were investigated in the presence of azide ion (N3-) in D2O solution using femtosecond infrared spectroscopy. Specifically, the spectral characteristics of four species (DA, electronically excited DA (DA*), the conjugate base of DA* (A*-), and the conjugate base of DA (A-)) were probed in the spectral region of 1400-1670 cm-1 in the time range of 1 ps-1 μs. This broad timescale encompassed all the acid-base reactions initiated by photoexcitation at 400 nm; thus, reactions related to both DA* and A- could be probed. Furthermore, changes in the populations of N3- and DN3 were monitored using the absorption bands at 2042 and 2133 cm-1, respectively. Following excitation, approximately half of DA* relaxed to DA with a time constant of 0.44 ± 0.04 ns. The remainder underwent an acid-base reaction to produce A*-, which relaxed to A- with a time constant of 3.9 ± 0.3 ns. The acid-base reaction proceeded via two paths, namely, proton exchange with the added base or simple deuteron release to D2O (protolysis). Notably, all the acid-base reactions were well described by the rate constant at the steady-state limit. Thus, although the acid-base reactions at low base concentrations (< 0.1 M) were diffusion controlled, they could be described using a simple rate equation.
Collapse
|
4
|
Jung J, Shin J, Dzhaparova A, Park JK, Lim M. Photoexcitation dynamics of bromodiphenyl ethers in acetonitrile-d 3 studied by femtosecond time-resolved infrared spectroscopy. Phys Chem Chem Phys 2022; 24:9203-9212. [PMID: 35388852 DOI: 10.1039/d2cp00063f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficient decomposition of polybrominated diphenyl ethers (PBDEs), onetime prevalent flame retardants, is central to the reduction of their harmful effects on human health. PBDE photodecomposition is a promising method, but its mechanism and products are not well understood. The photoexcitation dynamics of 3- and 4-bromodiphenyl ethers (BDE-2 and BDE-3) in CD3CN were studied from 0.3 ps to 10 μs using time-resolved infrared spectroscopy. An excitation at 267 nm dissociated the Br atom from BDE-2 and BDE-3 within 0.3 ps and 14 ± 3 ps, respectively, producing a radical compound (R) and a Br atom. About 85% of R formed an intermediate (IM) that weakly interacted with the Br atom and the surrounding CD3CN solvent in 7-12 ps. The remaining R separated from the dissociated Br and underwent slow geminate rebinding (GR) with Br within 35 to 54 ns. The IM competitively engaged in GR with the interacting Br in 40-60 ps or formed CD3CN-bound radical compounds (RS) in 100-130 ps. The RS further degraded via either the dissociation of CD3-producing a cyano-bound diphenyl ether (DE) in 150 or 550 ns-or the deuterium abstraction of CD3CN in 180 or 430 ns-producing a deuterated DE. Overall, 33 ± 3 (22 ± 3)% of the photoexcited BDE-2 (BDE-3) decomposed in CD3CN under 267 nm excitation. Efficient binding of the CD3CN solvent to R deterred the yield-diminishing GR and slowed the rate of product formation. The observed photoexcitation dynamics of BDE suggest methods for the efficient decomposition of PBDE.
Collapse
Affiliation(s)
- Jisik Jung
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | - Juhyang Shin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | - Alina Dzhaparova
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | - Jin Kyoon Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
5
|
Park Y, Park S, Shin J, Lim M. Photodissociation dynamics of chlorobenzene and
4‐fluoroiodobenzene
in
CCl
4
probed using time‐resolved infrared spectroscopy. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yejin Park
- Department of Chemistry and Chemical Institute for Functional Materials Pusan National University Busan Korea
| | - Seongchul Park
- Department of Chemistry and Chemical Institute for Functional Materials Pusan National University Busan Korea
| | - Juhyang Shin
- Department of Chemistry and Chemical Institute for Functional Materials Pusan National University Busan Korea
| | - Manho Lim
- Department of Chemistry and Chemical Institute for Functional Materials Pusan National University Busan Korea
| |
Collapse
|
6
|
Bacellar C, Kinschel D, Cannelli O, Sorokin B, Katayama T, Mancini GF, Rouxel JR, Obara Y, Nishitani J, Ito H, Ito T, Kurahashi N, Higashimura C, Kudo S, Cirelli C, Knopp G, Nass K, Johnson PJM, Wach A, Szlachetko J, Lima FA, Milne CJ, Yabashi M, Suzuki T, Misawa K, Chergui M. Femtosecond X-ray spectroscopy of haem proteins. Faraday Discuss 2021; 228:312-328. [PMID: 33565544 DOI: 10.1039/d0fd00131g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss our recently reported femtosecond (fs) X-ray emission spectroscopy results on the ligand dissociation and recombination in nitrosylmyoglobin (MbNO) in the context of previous studies on ferrous haem proteins. We also present a preliminary account of femtosecond X-ray absorption studies on MbNO, pointing to the presence of more than one species formed upon photolysis.
Collapse
Affiliation(s)
- Camila Bacellar
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Dominik Kinschel
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Oliviero Cannelli
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Boris Sorokin
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho Sayo-gun, Hyogo 679-5198, Japan
| | - Giulia F Mancini
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Jeremy R Rouxel
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Yuki Obara
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Junichi Nishitani
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hironori Ito
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Terumasa Ito
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Naoya Kurahashi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, 7-1, Chiyoda, 102-8554 Tokyo, Japan
| | - Chika Higashimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Shotaro Kudo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Claudio Cirelli
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Gregor Knopp
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Karol Nass
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | | | - Anna Wach
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | - Jakub Szlachetko
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | | | | | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho Sayo-gun, Hyogo 679-5198, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Kazuhiko Misawa
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
7
|
Park S, Lee T, Shin J, Yoon H, Pak Y, Lim M. Conformer-Specific Photodissociation Dynamics of CF2ICF2I in Solution Probed by Time-Resolved Infrared Spectroscopy. J Phys Chem B 2020; 124:8640-8650. [DOI: 10.1021/acs.jpcb.0c06241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Taegon Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Juhyang Shin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Hojeong Yoon
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Youngshang Pak
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
8
|
Femtosecond X-ray emission study of the spin cross-over dynamics in haem proteins. Nat Commun 2020; 11:4145. [PMID: 32811825 PMCID: PMC7434878 DOI: 10.1038/s41467-020-17923-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/21/2020] [Indexed: 12/27/2022] Open
Abstract
In haemoglobin the change from the low-spin (LS) hexacoordinated haem to the high spin (HS, S = 2) pentacoordinated domed deoxy-myoglobin (deoxyMb) form upon ligand detachment from the haem and the reverse process upon ligand binding are what ultimately drives the respiratory function. Here we probe them in the case of Myoglobin-NO (MbNO) using element- and spin-sensitive femtosecond Fe Kα and Kβ X-ray emission spectroscopy at an X-ray free-electron laser (FEL). We find that the change from the LS (S = 1/2) MbNO to the HS haem occurs in ~800 fs, and that it proceeds via an intermediate (S = 1) spin state. We also show that upon NO recombination, the return to the planar MbNO ground state is an electronic relaxation from HS to LS taking place in ~30 ps. Thus, the entire ligand dissociation-recombination cycle in MbNO is a spin cross-over followed by a reverse spin cross-over process. The change from low-spin hexacoordinated to high-spin pentacoordinated domed form in heam upon ligand detachment and the reverse process underlie the respiratory function. The authors, using femtosecond time-resolved X-ray emission spectroscopy, capture the transient states connecting the two forms in myoglobin-NO upon NO photoinduced detachment.
Collapse
|
9
|
Unke OT, Koner D, Patra S, Käser S, Meuwly M. High-dimensional potential energy surfaces for molecular simulations: from empiricism to machine learning. MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1088/2632-2153/ab5922] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Diamantis P, Hage KE, Meuwly M. Effect of Single-Point Mutations on Nitric Oxide Rebinding and the Thermodynamic Stability of Myoglobin. J Phys Chem B 2019; 123:1961-1972. [PMID: 30724565 DOI: 10.1021/acs.jpcb.8b11454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of single amino acid mutations on the rebinding dynamics of nitrogen monoxide (NO) to myoglobin is investigated using reactive molecular dynamics simulations. In particular, mutations of residues surrounding the heme-active site (Leu29, His64, Val68) were considered. Consistent with experiments, all mutations studied here have a significant effect on the kinetics of the NO-rebinding process, which consists of a rapid (several 10 ps) and a slow (100s of ps) time scale. For all modifications considered, the time scales and rebinding fractions agree to within a few percents with results from experiments by adjusting one single, physically meaningful, conformationally averaged quantity: the asymptotic energy separation between the NO-bound (2A) and photodissociated (4A) states. It is furthermore shown that the thermodynamic stability of wild-type versus mutant Mb for the ligand-free and ligand-bound variants of the protein can be described by the same computational model. Therefore, ligand kinetics and thermodynamics are related in a direct fashion akin to Φ-value analysis, which establishes a relationship between protein folding rates and thermal stability of proteins.
Collapse
Affiliation(s)
- Polydefkis Diamantis
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4056 Basel , Switzerland
| | - Krystel El Hage
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4056 Basel , Switzerland
| | - Markus Meuwly
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4056 Basel , Switzerland.,Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| |
Collapse
|
11
|
Park S, Shin J, Yoon H, Pak Y, Lim M. Complete photodissociation dynamics of CF2I2in solution. Phys Chem Chem Phys 2019; 21:6859-6867. [DOI: 10.1039/c9cp00507b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoexcited CF2I2in c-C6H12undergoes various secondary reactions including complex and isomer formation, after ultrafast two- or three-body dissociations.
Collapse
Affiliation(s)
- Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 46241
- Korea
| | - Juhyang Shin
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 46241
- Korea
| | - Hojeong Yoon
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 46241
- Korea
| | - Youngshang Pak
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 46241
- Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 46241
- Korea
| |
Collapse
|
12
|
Meuwly M. Reactive molecular dynamics: From small molecules to proteins. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1386] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Markus Meuwly
- Department of Chemistry University of Basel Basel Switzerland
- Department of Chemistry Brown University Providence Rhode Island
| |
Collapse
|
13
|
Solvent Composition Drives the Rebinding Kinetics of Nitric Oxide to Microperoxidase. Sci Rep 2018; 8:5281. [PMID: 29588445 PMCID: PMC5869715 DOI: 10.1038/s41598-018-22944-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/27/2018] [Indexed: 12/25/2022] Open
Abstract
The rebinding kinetics of NO after photodissociation from microperoxidase (Mp-9) is studied in different solvent environments. In mixed glycerol/water (G/W) mixtures the dissociating ligand rebinds with a yield close to 1 due to the cavities formed by the solvent whereas in pure water the ligand can diffuse into the solvent after photodissociation. In the G/W mixture, only geminate rebinding on the sub-picosecond and 5 ps time scales was found and the rebinding fraction is unity which compares well with available experiments. Contrary to that, simulations in pure water find two time scales – ~10 ps and ~200 ps - indicating that both, geminate rebinding and rebinding after diffusion of NO in the surrounding water contribute. The rebinding fraction is around 0.63 within 1 ns which is in stark contrast with experiment. Including ions (Na and Cl) at 0.15 M concentration in water leads to rebinding kinetics tending to that in the glycerol/water mixture and yields agreement with experiments. The effect of temperature is also probed and found to be non-negligible. The present simulations suggest that NO rebinding in Mp is primarily driven by thermal fluctuations which is consistent with recent resonance Raman spectroscopy experiments and simulations on MbNO.
Collapse
|
14
|
El Hage K, Mondal P, Meuwly M. Free energy simulations for protein ligand binding and stability. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2017.1416115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Krystel El Hage
- Department of Chemistry, University of Basel , Basel, Switzerland
| | - Padmabati Mondal
- Department of Chemistry, University of Basel , Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel , Basel, Switzerland
| |
Collapse
|
15
|
El Hage K, Brickel S, Hermelin S, Gaulier G, Schmidt C, Bonacina L, van Keulen SC, Bhattacharyya S, Chergui M, Hamm P, Rothlisberger U, Wolf JP, Meuwly M. Implications of short time scale dynamics on long time processes. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061507. [PMID: 29308419 PMCID: PMC5741438 DOI: 10.1063/1.4996448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/15/2017] [Indexed: 05/02/2023]
Abstract
This review provides a comprehensive overview of the structural dynamics in topical gas- and condensed-phase systems on multiple length and time scales. Starting from vibrationally induced dissociation of small molecules in the gas phase, the question of vibrational and internal energy redistribution through conformational dynamics is further developed by considering coupled electron/proton transfer in a model peptide over many orders of magnitude. The influence of the surrounding solvent is probed for electron transfer to the solvent in hydrated I-. Next, the dynamics of a modified PDZ domain over many time scales is analyzed following activation of a photoswitch. The hydration dynamics around halogenated amino acid side chains and their structural dynamics in proteins are relevant for iodinated TyrB26 insulin. Binding of nitric oxide to myoglobin is a process for which experimental and computational analyses have converged to a common view which connects rebinding time scales and the underlying dynamics. Finally, rhodopsin is a paradigmatic system for multiple length- and time-scale processes for which experimental and computational methods provide valuable insights into the functional dynamics. The systems discussed here highlight that for a comprehensive understanding of how structure, flexibility, energetics, and dynamics contribute to functional dynamics, experimental studies in multiple wavelength regions and computational studies including quantum, classical, and more coarse grained levels are required.
Collapse
Affiliation(s)
- Krystel El Hage
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sebastian Brickel
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sylvain Hermelin
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Geoffrey Gaulier
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Cédric Schmidt
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Luigi Bonacina
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Siri C van Keulen
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | | | - Majed Chergui
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - Jean-Pierre Wolf
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
16
|
Kim S, Shin J, Park S, Pak Y, Lim M. Vibrational Energy Transfer Dynamics of HCO 2
CH 3
in CH 3
CN Solution. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Seongheun Kim
- Pohang Accelerator Laboratory, POSTECH; Pohang 790-784 Korea
| | - Juhyang Shin
- Department of Chemistry; Pusan National University; Busan 609-735 Korea
| | - Seongchul Park
- Department of Chemistry; Pusan National University; Busan 609-735 Korea
| | - Youngshang Pak
- Department of Chemistry; Pusan National University; Busan 609-735 Korea
| | - Manho Lim
- Department of Chemistry; Pusan National University; Busan 609-735 Korea
| |
Collapse
|
17
|
|
18
|
Kruglik SG, Yoo BK, Lambry JC, Martin JL, Negrerie M. Structural changes and picosecond to second dynamics of cytochrome c in interaction with nitric oxide in ferrous and ferric redox states. Phys Chem Chem Phys 2017; 19:21317-21334. [DOI: 10.1039/c7cp02634j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
After dissociation NO rebinds to Cyt c in 10 ps whereas Met80 rebinds in 5 μs after NO release from Cyt c. A complete view of heme – NO dynamics within 12 orders of magnitude of time in Cyt c is presented.
Collapse
Affiliation(s)
- Sergei G. Kruglik
- Laboratoire Jean Perrin
- Sorbonne Universités
- UPMC Univ. Paris 06
- CNRS
- 75005 Paris
| | - Byung-Kuk Yoo
- Laboratoire d'Optique et Biosciences
- INSERM
- Ecole Polytechnique
- 91128 Palaiseau
- France
| | | | - Jean-Louis Martin
- Laboratoire d'Optique et Biosciences
- INSERM
- Ecole Polytechnique
- 91128 Palaiseau
- France
| | - Michel Negrerie
- Laboratoire d'Optique et Biosciences
- INSERM
- Ecole Polytechnique
- 91128 Palaiseau
- France
| |
Collapse
|
19
|
Empirical Force Fields for Mechanistic Studies of Chemical Reactions in Proteins. Methods Enzymol 2016. [PMID: 27498633 DOI: 10.1016/bs.mie.2016.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Following chemical reactions in atomistic detail is one of the most challenging aspects of current computational approaches to chemistry. In this chapter the application of adiabatic reactive MD (ARMD) and its multistate version (MS-ARMD) are discussed. Both methods allow to study bond-breaking and bond-forming processes in chemical and biological processes. Particular emphasis is put on practical aspects for applying the methods to investigate the dynamics of chemical reactions. The chapter closes with an outlook of possible generalizations of the methods discussed.
Collapse
|
20
|
Soloviov M, Das AK, Meuwly M. Strukturelle Interpretation metastabiler Zustände in Myoglobin-NO. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maksym Soloviov
- Departement für Chemie; Universität Basel; Klingelbergstraße 80 4056 Basel Schweiz
| | - Akshaya K. Das
- Departement für Chemie; Universität Basel; Klingelbergstraße 80 4056 Basel Schweiz
| | - Markus Meuwly
- Departement für Chemie; Universität Basel; Klingelbergstraße 80 4056 Basel Schweiz
| |
Collapse
|
21
|
Soloviov M, Das AK, Meuwly M. Structural Interpretation of Metastable States in Myoglobin-NO. Angew Chem Int Ed Engl 2016; 55:10126-30. [DOI: 10.1002/anie.201604552] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Maksym Soloviov
- Department of Chemistry; University of Basel; Klingelbergstrasse 80 4056 Basel Switzerland
| | - Akshaya K. Das
- Department of Chemistry; University of Basel; Klingelbergstrasse 80 4056 Basel Switzerland
| | - Markus Meuwly
- Department of Chemistry; University of Basel; Klingelbergstrasse 80 4056 Basel Switzerland
| |
Collapse
|
22
|
Manna A, Park S, Lee T, Lim M. Photoexcitation Dynamics of Thymine in Acetonitrile and an Ionic Liquid Probed by Time-resolved Infrared Spectroscopy. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Arpan Manna
- Department of Chemistry and Chemistry Institute for Functional Materials; Pusan National University; Busan 46241 Korea
| | - Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional Materials; Pusan National University; Busan 46241 Korea
| | - Taegon Lee
- Department of Chemistry and Chemistry Institute for Functional Materials; Pusan National University; Busan 46241 Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials; Pusan National University; Busan 46241 Korea
| |
Collapse
|
23
|
Soloviov M, Meuwly M. Reproducing kernel potential energy surfaces in biomolecular simulations: Nitric oxide binding to myoglobin. J Chem Phys 2016; 143:105103. [PMID: 26374062 DOI: 10.1063/1.4929527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multidimensional potential energy surfaces based on reproducing kernel-interpolation are employed to explore the energetics and dynamics of free and bound nitric oxide in myoglobin (Mb). Combining a force field description for the majority of degrees of freedom and the higher-accuracy representation for the NO ligand and the Fe out-of-plane motion allows for a simulation approach akin to a mixed quantum mechanics/molecular mechanics treatment. However, the kernel-representation can be evaluated at conventional force-field speed. With the explicit inclusion of the Fe-out-of-plane (Fe-oop) coordinate, the dynamics and structural equilibrium after photodissociation of the ligand are correctly described compared to experiment. Experimentally, the Fe-oop coordinate plays an important role for the ligand dynamics. This is also found here where the isomerization dynamics between the Fe-ON and Fe-NO state is significantly affected whether or not this co-ordinate is explicitly included. Although the Fe-ON conformation is metastable when considering only the bound (2)A state, it may disappear once the (4)A state is included. This explains the absence of the Fe-ON state in previous experimental investigations of MbNO.
Collapse
Affiliation(s)
- Maksym Soloviov
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
24
|
Lee T, Kim J, Park J, Pak Y, Kim H, Lim M. Rebinding dynamics of NO to microperoxidase-8 probed by time-resolved vibrational spectroscopy. Phys Chem Chem Phys 2016; 18:5192-202. [PMID: 26813691 DOI: 10.1039/c5cp06336a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Femtosecond vibrational spectroscopy was used to probe the rebinding kinetics of NO to microperoxidase-8 (Mp), an ideal model system for the active site of ligand-binding heme proteins, including myoglobin and hemoglobin, after the photodeligation of MpNO in glycerol/water (G/W) solutions at 294 K. The geminate rebinding (GR) of NO to Mp in viscous solutions was highly efficient and ultrafast and negligibly dependent on the solution viscosity, which was adjusted by changing the glycerol content from 65% to 90% by volume in G/W mixtures. The kinetics of the GR of NO to Mp in viscous solutions was well represented by an exponential function with a time constant of ca. 11 ps. Although the kinetic traces of the GR of NO to Mp in solutions with three different viscosities (18, 81, and 252 cP) almost overlap, they show a slight difference early in the decay process. The kinetic traces were also described by the diffusion-controlled reaction theory with a Coulomb potential. Since the ligand is deligated in a neutral form, an ionic pair of NO(-) and Mp(+) may be produced before forming the Mp-NO bond by an electron transfer from Mp to NO as the deligated NO is sufficiently near to the Fe atom of Mp. The strong reactivity between NO and ferrous heme may arise from the Coulomb interaction between the reacting pair, which is consistent with the harpooning mechanism for NO binding to heme.
Collapse
Affiliation(s)
- Taegon Lee
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 46241 Korea.
| | | | | | | | | | | |
Collapse
|
25
|
NO binding kinetics in myoglobin investigated by picosecond Fe K-edge absorption spectroscopy. Proc Natl Acad Sci U S A 2015; 112:12922-7. [PMID: 26438842 DOI: 10.1073/pnas.1424446112] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diatomic ligands in hemoproteins and the way they bind to the active center are central to the protein's function. Using picosecond Fe K-edge X-ray absorption spectroscopy, we probe the NO-heme recombination kinetics with direct sensitivity to the Fe-NO binding after 532-nm photoexcitation of nitrosylmyoglobin (MbNO) in physiological solutions. The transients at 70 and 300 ps are identical, but they deviate from the difference between the static spectra of deoxymyoglobin and MbNO, showing the formation of an intermediate species. We propose the latter to be a six-coordinated domed species that is populated on a timescale of ∼ 200 ps by recombination with NO ligands. This work shows the feasibility of ultrafast pump-probe X-ray spectroscopic studies of proteins in physiological media, delivering insight into the electronic and geometric structure of the active center.
Collapse
|
26
|
Lee T, Hwang S, Lim M. Picosecond Dynamics of Photoexcited DNO-Bound Myoglobin Probed by Femtosecond Vibrational Spectroscopy. J Phys Chem B 2015; 119:1814-22. [DOI: 10.1021/jp509644m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Taegon Lee
- Department
of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Sungu Hwang
- Department
of Applied Nanoscience, Pusan National University, Miryang 627-706, Korea
| | - Manho Lim
- Department
of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
27
|
Park S, Park J, Lin HW, Lim M. Vibrational Relaxation of Cyanate or Thiocyanate Bound to Ferric Heme Proteins Studied by Femtosecond Infrared Spectroscopy. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.3.758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Kim HM, Park J, Noh HC, Lim M, Chung YK, Kang YK. Unidirectional Photo-induced Charge Separation and Thermal Charge Recombination of Cofacially Aligned Donor-Acceptor System Probed by Ultrafast Visible-Pump/Mid-IR-Probe Spectroscopy. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.2.587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Lee SN, Park J, Lim M, Joo T. Identification of an emitting molecular species by time-resolved fluorescence applied to the excited state dynamics of pigment yellow 101. Phys Chem Chem Phys 2014; 16:9394-402. [DOI: 10.1039/c3cp54546f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-resolved fluorescence (TRF) with a resolution higher than the periods of vibrations may provide the vibrational spectrum of an emitting species by directly recording the vibrational wave packet motions in time.
Collapse
Affiliation(s)
- Seung Noh Lee
- Department of Chemistry
- Pohang University of Science and Technology (POSTECH)
- Pohang, South Korea
| | - Jaeheung Park
- Department of Chemistry and Chemistry Institute for Functional Materials
- Busan National University
- Busan, South Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials
- Busan National University
- Busan, South Korea
| | - Taiha Joo
- Department of Chemistry
- Pohang University of Science and Technology (POSTECH)
- Pohang, South Korea
| |
Collapse
|
30
|
Park J, Lee T, Lim M. Direct Observation of the Low-Spin Fe(III)–NO(radical) Intermediate State during Rebinding of NO to Photodeligated Ferric Cytochrome c. J Phys Chem B 2013; 117:12039-50. [DOI: 10.1021/jp407733g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jaeheung Park
- Department of Chemistry and
Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Taegon Lee
- Department of Chemistry and
Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Manho Lim
- Department of Chemistry and
Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
31
|
Park J, Lee T, Lim M. Vibrational relaxation of NO stretching modes in ferrous NO and ferric NO in model heme. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2012.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
|
33
|
Kim J, Park J, Lee T, Pak Y, Lim M. Dynamics of geminate rebinding of CO to cytochrome c in guanidine HCl probed by femtosecond vibrational spectroscopy. J Phys Chem B 2013; 117:4934-44. [PMID: 23590118 DOI: 10.1021/jp401481q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Femtosecond vibrational spectroscopy was used to probe the rebinding dynamics of CO to cytochrome c (Cytc) in 1.8 and 7 M guanidine HCl (GdnHCl) after photodeligation of the corresponding CO-bound protein in D2O buffer (pD = 7.4) at 283 K. Geminate rebinding (GR) dynamics of CO to the folded Cytc in 1.8 M GdnHCl (nCytc) is similar to that to chemically modified cytochrome c (cCytc), suggesting that the overall conformations of nCytcCO and cCytcCO are similar. About 86% of the dissociated CO molecules were geminately rebound to nCytc nonexponentially within 1 ns. The efficient GR of CO to the folded Cytc can be attributed to the organized protein matrix near the active site of nCytc that provides an efficient trap for the diffusing CO ligand after photodissociation. Although the concentration of nCytc did not affect its GR yield of CO, GR yield of CO to the unfolded Cytc in 7 M GdnHCl (uCytc) increased from 5 to 30% as the protein concentration increased from 0.3 to 9 mM. Time-resolved spectra of the (13)CO dissociated from both 9 mM nCytc(13)CO and 9 mM uCytc(13)CO showed a growing band with a peak at 2090 cm(-1) on the picosecond time scale, which was assigned to (13)CO in D2O solvent. At 1 ns, the fraction of the CO band in the solvent was about 10% of the nascent photodeligated protein in nCytc and more than 50% in the concentrated uCytc. Whereas a small opening in the active site of nCytc is responsible for the ultrafast escape of CO to solution in the folded protein, a large fraction of the CO escape to the solvent in uCytc results from the denatured structure of the active site in the unfolded protein. The spectrum of the CO dissociated from the concentrated uCytcCO contained a band that decayed as efficiently as that for the folded protein, suggesting that some fraction of uCytcCO might form aggregates even in 7 M denaturant, such that the aggregate acts as an efficient trap for the diffusing CO after deligation. No hint of precipitate in the concentrated uCytcCO and protein refolding upon dilution of the GdnHCl indicate that the aggregate does not grow continuously but remains as a soluble oligomer. The delayed appearance of the solvated CO and the inefficient GR of CO in uCytcCO suggest that the monomeric unfolded CytcCO so loosely arranged that the protein matrix cannot trap CO efficiently but the bound CO is still buried within hydrophobic residues even under the harsh denaturation condition.
Collapse
Affiliation(s)
- Jooyoung Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 609-735 Korea
| | | | | | | | | |
Collapse
|
34
|
Park J, Lee T, Lim M. Geminate rebinding dynamics of nitric oxide to ferric hemoglobin in D2O solution. Photochem Photobiol Sci 2013; 12:1008-15. [PMID: 23512239 DOI: 10.1039/c3pp50014d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Femtosecond mid-infrared (mid-IR) spectroscopy was used to probe geminate rebinding (GR) dynamics of photo-released nitric oxide (NO) to ferric hemoglobin (Hb(III)) in D2O solution at room temperature. Time-resolved vibrational spectra exhibit two overlapping NO bands for NO-bound Hb(III) (Hb(III)NO), a major band at 1925 cm(-1) (89%) and a minor one at 1905 cm(-1) (11%), suggesting that Hb(III)NO has at least two conformational substates. Both bands decay nonexponentially, each with a different time scale, and the decays are described by a stretched exponential function; the major band's decay is described by 0.96 exp(-t/40 ps)(0.86) + 0.04 and the minor band's decay is described by exp(-t/85 ps)(0.75). These decays arise mainly from the GR of the photo-released NO to Hb(III), indicating that the bound state's conformer influences the NO binding. In particular, the His64 residue, known to have inward conformation in the major band and outward conformation in the minor band, plays a significant role in controlling the binding of NO to Hb(III). The GR of NO to ferric Hb is slower than that to ferrous Hb, which shows fast and efficient GR due to the high reactivity of NO to the heme Fe(ii). The slower GR of NO to Hb(III) may be caused by the lower reactivity of NO to the heme Fe(iii).
Collapse
Affiliation(s)
- Jaeheung Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | | | | |
Collapse
|
35
|
Park J, Lee T, Park J, Lim M. Photoexcitation Dynamics of NO-Bound Ferric Myoglobin Investigated by Femtosecond Vibrational Spectroscopy. J Phys Chem B 2013; 117:2850-63. [DOI: 10.1021/jp400055d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jaeheung Park
- Department of Chemistry and
Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Taegon Lee
- Department of Chemistry and
Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Jaehun Park
- Pohang Accelerator Laboratory, Pohang 790-784, Korea
| | - Manho Lim
- Department of Chemistry and
Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
36
|
Park J, Lee T, Park J, Lim M. Photoexcitation dynamics of nitric oxide bound ferric myoglobin probed by femtosecond IR spectroscopy. EPJ WEB OF CONFERENCES 2013. [DOI: 10.1051/epjconf/20134107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Lange KM, Golnak R, Bonhommeau S, Aziz EF. Ligand discrimination of myoglobin in solution: an iron L-edge X-ray absorption study of the active centre. Chem Commun (Camb) 2013; 49:4163-5. [DOI: 10.1039/c3cc37973f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron L-edge X-ray absorption spectra of the active centre of myoglobin in the met-form, in the reduced form and upon ligation to O2, CO, NO and CN are presented.
Collapse
Affiliation(s)
| | - Ronny Golnak
- Joint Ultrafast Dynamics Lab in Solutions and at Interfaces (JULiq)
- Helmholtz-Zentrum Berlin für Materialien und Energie
- 12489 Berlin
- Germany
| | | | - Emad F. Aziz
- Joint Ultrafast Dynamics Lab in Solutions and at Interfaces (JULiq)
- Helmholtz-Zentrum Berlin für Materialien und Energie
- 12489 Berlin
- Germany
- Freie Universität Berlin
| |
Collapse
|
38
|
Kim J, Park J, Lee T, Lim M. Dynamics of Geminate Rebinding of NO with Cytochrome c in Aqueous Solution Using Femtosecond Vibrational Spectroscopy. J Phys Chem B 2012; 116:13663-71. [PMID: 23113639 DOI: 10.1021/jp308468j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jooyoung Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735,
Korea
| | - Jaeheung Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735,
Korea
| | - Taegon Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735,
Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735,
Korea
| |
Collapse
|
39
|
Kim S, Park J, Lee T, Lim M. Direct Observation of Ligand Rebinding Pathways in Hemoglobin Using Femtosecond Mid-IR Spectroscopy. J Phys Chem B 2012; 116:6346-55. [PMID: 22587393 DOI: 10.1021/jp3026495] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Seongheun Kim
- Department of Chemistry and Chemistry
Institute for
Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Jaeheung Park
- Department of Chemistry and Chemistry
Institute for
Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Taegon Lee
- Department of Chemistry and Chemistry
Institute for
Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Manho Lim
- Department of Chemistry and Chemistry
Institute for
Functional Materials, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
40
|
Kim S, Lim M. Protein Conformation-Controlled Rebinding Barrier of NO and Its Binding Trajectories in Myoglobin and Hemoglobin at Room Temperature. J Phys Chem B 2012; 116:5819-30. [DOI: 10.1021/jp300176q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Seongheun Kim
- Department of Chemistry and Chemistry Institute for
Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for
Functional Materials, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
41
|
Cazade PA, Huang J, Yosa J, Szymczak JJ, Meuwly M. Atomistic simulations of reactive processes in the gas- and condensed-phase. INT REV PHYS CHEM 2012. [DOI: 10.1080/0144235x.2012.694694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Lee MW, Meuwly M. Molecular Dynamics Simulation of Nitric Oxide in Myoglobin. J Phys Chem B 2012; 116:4154-62. [DOI: 10.1021/jp212112f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Myung Won Lee
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
43
|
Yoo BK, Kruglik SG, Lamarre I, Martin JL, Negrerie M. Absorption Band III Kinetics Probe the Picosecond Heme Iron Motion Triggered by Nitric Oxide Binding to Hemoglobin and Myoglobin. J Phys Chem B 2012; 116:4106-14. [DOI: 10.1021/jp300849y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Byung-Kuk Yoo
- Laboratoire d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| | - Sergei G. Kruglik
- Laboratoire Jean Perrin, UPMC Université Paris 06, CNRS FRE 3231, 75005 Paris, France
| | - Isabelle Lamarre
- Laboratoire d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| | - Jean-Louis Martin
- Laboratoire d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| | - Michel Negrerie
- Laboratoire d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
44
|
Adamczyk K, Candelaresi M, Kania R, Robb K, Bellota-Antón C, Greetham GM, Pollard MR, Towrie M, Parker AW, Hoskisson PA, Tucker NP, Hunt NT. The effect of point mutation on the equilibrium structural fluctuations of ferric Myoglobin. Phys Chem Chem Phys 2012; 14:7411-9. [DOI: 10.1039/c2cp23568d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
Mishra S, Meuwly M. Quantitative analysis of ligand migration from transition networks. Biophys J 2011; 99:3969-78. [PMID: 21156139 DOI: 10.1016/j.bpj.2010.09.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 09/22/2010] [Accepted: 09/29/2010] [Indexed: 11/24/2022] Open
Abstract
In this work we use transition network analysis for the first time to investigate ligand migration in truncated hemoglobin (trHbN) and obtain kinetic information about the docking-site dynamics in the protein. A comparison with explicit water molecular dynamics simulations (100 ns in total) shows that the rate constants derived from the network analysis are realistic. The transition network analysis provides 1) The time-resolved connectivity network in the protein; 2) The half-lives of the docking sites; 3) The transition timescales between two given docking sites; and 4) The extent of population transfer among different docking sites of the protein as a function of lag time. We investigate the role of the Tyr33 and Gln58 residues in ligand migration by studying ligand migration in four mutants of trHbN. The mutation study suggests that residues Tyr33 and Gln58 stabilize the NO ligand in the Xe2 docking site of trHbN, thus facilitating the efficiency of the NO detoxification reaction.
Collapse
|
46
|
Relationship between protein structural fluctuations and rebinding dynamics in ferric haem nitrosyls. Biochem J 2011; 433:459-68. [DOI: 10.1042/bj20101496] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The interaction of nitric oxide (NO) with haem proteins is widespread in biology. In the current paper, we present the first ultrafast 2D-IR (two-dimensional infrared) spectroscopic analysis of haem nitrosylation, which has been combined with time-resolved IR pump–probe studies to investigate the relationship between equilibrium vibrational dynamics of the haem environment and ligand rebinding behaviour following photolysis of NO from the Fe(III)–NO site. Studies of two haem proteins, Mb (myoglobin) and Cc (cytochrome c), which play different physiological roles, reveal marked contrasts in the ultrafast fluctuations of the protein pockets containing the haem, showing that the Mb pocket is somewhat more flexible than that of Cc. This correlates strongly with slower observed photolysis rebinding kinetics of Mb–NO compared with Cc–NO, and indicates a direct link between ultrafast fluctuations and biological functionality. Furthermore, this indicates the validity of linear response theories in relation to protein ligand binding. Finally, 2D-IR shows that Cc–NO displays two distinct structural sub-sites at room temperature that do not exchange on the timescales accessible via the NO vibrational lifetime.
Collapse
|
47
|
Kim JY, Park JH, Chowdhury SA, Lim MH. Picosecond Dynamics of CN--Ligated Ferric Cytochrome c after Photoexcitation Using Time-resolved Vibrational Spectroscopy. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.12.3771] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Park J, Lee T, Lim M. Viscosity-Dependent Dynamics of CO Rebinding to Microperoxidase-8 in Glycerol/Water Solution. J Phys Chem B 2010; 114:10897-904. [DOI: 10.1021/jp1050436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jaeheung Park
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 609-735 Korea
| | - Taegon Lee
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 609-735 Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 609-735 Korea
| |
Collapse
|
49
|
Picosecond primary structural transition of the heme is retarded after nitric oxide binding to heme proteins. Proc Natl Acad Sci U S A 2010; 107:13678-83. [PMID: 20643970 DOI: 10.1073/pnas.0912938107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We investigated the ultrafast structural transitions of the heme induced by nitric oxide (NO) binding for several heme proteins by subpicosecond time-resolved resonance Raman and femtosecond transient absorption spectroscopy. We probed the heme iron motion by the evolution of the iron-histidine Raman band intensity after NO photolysis. Unexpectedly, we found that the heme response and iron motion do not follow the kinetics of NO rebinding. Whereas NO dissociation induces quasi-instantaneous iron motion and heme doming (<0.6 ps), the reverse process results in a much slower picosecond movement of the iron toward the planar heme configuration after NO binding. The time constant for this primary domed-to-planar heme transition varies among proteins (approximately 30 ps for myoglobin and its H64V mutant, approximately 15 ps for hemoglobin, approximately 7 ps for dehaloperoxidase, and approximately 6 ps for cytochrome c) and depends upon constraints exerted by the protein structure on the heme cofactor. This observed phenomenon constitutes the primary structural transition in heme proteins induced by NO binding.
Collapse
|
50
|
Mishra S, Meuwly M. Atomistic Simulation of NO Dioxygenation in Group I Truncated Hemoglobin. J Am Chem Soc 2010; 132:2968-82. [DOI: 10.1021/ja9078144] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Basel, Switzerland
| |
Collapse
|