1
|
Gelin MF, Chen L, Domcke W. Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved 4-Wave-Mixing and N-Wave-Mixing Signals. Chem Rev 2022; 122:17339-17396. [PMID: 36278801 DOI: 10.1021/acs.chemrev.2c00329] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lipeng Chen
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching,Germany
| |
Collapse
|
2
|
Lyu N, Soley MB, Batista VS. Tensor-Train Split-Operator KSL (TT-SOKSL) Method for Quantum Dynamics Simulations. J Chem Theory Comput 2022; 18:3327-3346. [PMID: 35649210 DOI: 10.1021/acs.jctc.2c00209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Numerically exact simulations of quantum reaction dynamics, including nonadiabatic effects in excited electronic states, are essential to gain fundamental insights into ultrafast chemical reactivity and rigorous interpretations of molecular spectroscopy. Here, we introduce the tensor-train split-operator KSL (TT-SOKSL) method for quantum simulations in tensor-train (TT)/matrix product state (MPS) representations. TT-SOKSL propagates the quantum state as a tensor train using the Trotter expansion of the time-evolution operator, as in the tensor-train split-operator Fourier transform (TT-SOFT) method. However, the exponential operators of the Trotter expansion are applied using a rank-adaptive TT-KSL scheme instead of using the scaling and squaring approach as in TT-SOFT. We demonstrate the accuracy and efficiency of TT-SOKSL as applied to simulations of the photoisomerization of the retinal chromophore in rhodopsin, including nonadiabatic dynamics at a conical intersection of potential energy surfaces. The quantum evolution is described in full dimensionality by a time-dependent wavepacket evolving according to a two-state 25-dimensional model Hamiltonian. We find that TT-SOKSL converges faster than TT-SOFT with respect to the maximally allowed memory requirement of the tensor-train representation and better preserves the norm of the time-evolving state. When compared to the corresponding simulations based on the TT-KSL method, TT-SOKSL has the advantage of avoiding the need to construct the matrix product state Laplacian by exploiting the linear scaling of multidimensional tensor-train Fourier transforms.
Collapse
Affiliation(s)
- Ningyi Lyu
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Micheline B Soley
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States.,Yale Quantum Institute, Yale University, P.O. Box 208334, New Haven, Connecticut 06520-8263, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States.,Yale Quantum Institute, Yale University, P.O. Box 208334, New Haven, Connecticut 06520-8263, United States
| |
Collapse
|
3
|
Talotta F, Lauvergnat D, Agostini F. Describing the photo-isomerization of a retinal chromophore model with coupled and quantum trajectories. J Chem Phys 2022; 156:184104. [DOI: 10.1063/5.0089415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The exact factorization of the electron-nuclear wavefunction is applied to the study of the photo- isomerization of a retinal chromophore model. We describe such an ultrafast nonadiabatic process by analyzing the time-dependent potentials of the theory and by mimicking nuclear dynamics with quantum and coupled trajectories. The time-dependent vector and scalar potentials are the signature of the exact factorization, as they guide nuclear dynamics by encoding the complete electronic dynamics and including excited-state effects. Analysis of the potentials is, thus, essential - when possible - to predict the time-dependent behavior of the system of interest. In this work, we employ the exact time-dependent potentials, available for the numerically-exactly solvable model used here, to propagate quantum nuclear trajectories representing the isomerization reaction of the retinal chromophore. The quantum trajectories are the best possible trajectory-based description of the reaction when using the exact-factorization formalism, and thus allow us to assess the performance of the coupled-trajectory, fully approximate, schemes derived from the exact-factorization equations.
Collapse
Affiliation(s)
| | - David Lauvergnat
- Institut de Chimie Physique, UMR 8000, CNRS Délégation Ile-de-France Sud, France
| | | |
Collapse
|
4
|
Pieroni C, Marsili E, Lauvergnat D, Agostini F. Relaxation dynamics through a conical intersection: Quantum and quantum-classical studies. J Chem Phys 2021; 154:034104. [PMID: 33499611 DOI: 10.1063/5.0036726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We study the relaxation process through a conical intersection of a photo-excited retinal chromophore model. The analysis is based on a two-electronic-state two-dimensional Hamiltonian developed by Hahn and Stock [J. Phys. Chem. B 104 1146 (2000)] to reproduce, with a minimal model, the main features of the 11-cis to all-trans isomerization of the retinal of rhodopsin. In particular, we focus on the performance of various trajectory-based schemes to nonadiabatic dynamics, and we compare quantum-classical results to the numerically exact quantum vibronic wavepacket dynamics. The purpose of this work is to investigate, by analyzing electronic and nuclear observables, how the sampling of initial conditions for the trajectories affects the subsequent dynamics.
Collapse
Affiliation(s)
- Carlotta Pieroni
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| | - Emanuele Marsili
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - David Lauvergnat
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| |
Collapse
|
5
|
Dey D, Henriksen NE. On Weak-Field (One-Photon) Coherent Control of Photoisomerization. J Phys Chem Lett 2020; 11:8470-8476. [PMID: 32936656 DOI: 10.1021/acs.jpclett.0c02273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photochemistry induced by phase-coherent laser light is an intriguing topic. The possibility of weak-field (one-photon) phase-only control of photoisomerization is controversial. Experimental studies on the weak-field coherent control of cis-trans isomerization have led to conflicting results. Here we address this issue by quantum dynamical calculations, focusing on a mechanism where different "phase-shaped" wave packets are quickly stabilized ("dumped") in the trans configuration because of prompt energy dissipation. We systematically investigate different relaxation rates with the system-bath dynamics described within the time-dependent Hartree approximation leading to a friction-type force. We find evidence for phase control of trans-isomer yields (about 5%) in this model with pure energy dissipation given sufficiently strong dampening.
Collapse
Affiliation(s)
- Diptesh Dey
- Department of Chemistry, Technical University of Denmark, Building 207, DK-2800 Lyngby, Denmark
| | - Niels E Henriksen
- Department of Chemistry, Technical University of Denmark, Building 207, DK-2800 Lyngby, Denmark
| |
Collapse
|
6
|
Farag MH, Jansen TLC, Knoester J. The origin of absorptive features in the two-dimensional electronic spectra of rhodopsin. Phys Chem Chem Phys 2018; 20:12746-12754. [DOI: 10.1039/c8cp00638e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A three-state three-mode model Hamiltonian reveals the origin of the absorptive features in the two-dimensional electronic spectra of rhodopsin.
Collapse
Affiliation(s)
- Marwa H. Farag
- University of Groningen
- Zernike Institute for Advanced Materials
- 9747 AG Groningen
- The Netherlands
| | - Thomas L. C. Jansen
- University of Groningen
- Zernike Institute for Advanced Materials
- 9747 AG Groningen
- The Netherlands
| | - Jasper Knoester
- University of Groningen
- Zernike Institute for Advanced Materials
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
7
|
Farag MH, Jansen TLC, Knoester J. Probing the Interstate Coupling near a Conical Intersection by Optical Spectroscopy. J Phys Chem Lett 2016; 7:3328-3334. [PMID: 27509384 DOI: 10.1021/acs.jpclett.6b01463] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Conical intersections are points where adiabatic potential energy surfaces cross. The interstate coupling between the potential energy surfaces plays a crucial role in many processes associated with conical intersections. Still no method exists to measure this coupling driving the chemical reactions between the potential energy surfaces involved. In this Letter, using a generic model for photoisomerization, we propose a novel experimental approach to estimate the coupling that mixes the electronic states near a conical intersection. The approach is based on analyzing the vibrational wavepacket of the reactant in the adiabatic ground and excited electronic states. The nuclear wavepacket dynamics are extracted from linear absorption and two-dimensional electronic spectroscopy. Comparing the frequencies of the coupling mode in the adiabatic ground and excited states from models with and without coupling between the potential energy surfaces suggests an experimental tool to determine the interstate coupling.
Collapse
Affiliation(s)
- Marwa H Farag
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jasper Knoester
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
8
|
Shen H, Zhang Y, Yan TM, Wang Z, Jiang Y. Moderately strong pump-induced ultrafast dynamics in solution. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Chen L, Gelin MF, Chernyak VY, Domcke W, Zhao Y. Dissipative dynamics at conical intersections: simulations with the hierarchy equations of motion method. Faraday Discuss 2016; 194:61-80. [DOI: 10.1039/c6fd00088f] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of a dissipative environment on the ultrafast nonadiabatic dynamics at conical intersections is analyzed for a two-state two-mode model chosen to represent the S2(ππ*)–S1(nπ*) conical intersection in pyrazine (the system) which is bilinearly coupled to infinitely many harmonic oscillators in thermal equilibrium (the bath). The system–bath coupling is modeled by the Drude spectral function. The equation of motion for the reduced density matrix of the system is solved numerically exactly with the hierarchy equation of motion method using graphics-processor-unit (GPU) technology. The simulations are valid for arbitrary strength of the system–bath coupling and arbitrary bath memory relaxation time. The present computational studies overcome the limitations of weak system–bath coupling and short memory relaxation time inherent in previous simulations based on multi-level Redfield theory [A. Kühl and W. Domcke, J. Chem. Phys. 2002, 116, 263]. Time evolutions of electronic state populations and time-dependent reduced probability densities of the coupling and tuning modes of the conical intersection have been obtained. It is found that even weak coupling to the bath effectively suppresses the irregular fluctuations of the electronic populations of the isolated two-mode conical intersection. While the population of the upper adiabatic electronic state (S2) is very efficiently quenched by the system–bath coupling, the population of the diabatic ππ* electronic state exhibits long-lived oscillations driven by coherent motion of the tuning mode. Counterintuitively, the coupling to the bath can lead to an enhanced lifetime of the coherence of the tuning mode as a result of effective damping of the highly excited coupling mode, which reduces the strong mode–mode coupling inherent to the conical intersection. The present results extend previous studies of the dissipative dynamics at conical intersections to the nonperturbative regime of system–bath coupling. They pave the way for future first-principles simulations of femtosecond time-resolved four-wave-mixing spectra of chromophores in condensed phases which are nonperturbative in the system dynamics, the system–bath coupling as well as the field-matter coupling.
Collapse
Affiliation(s)
- Lipeng Chen
- Division of Materials Science
- Nanyang Technological University
- Singapore 639798
| | - Maxim F. Gelin
- Department of Chemistry
- Technische Universität München
- Garching D-85747
- Germany
| | | | - Wolfgang Domcke
- Department of Chemistry
- Technische Universität München
- Garching D-85747
- Germany
| | - Yang Zhao
- Division of Materials Science
- Nanyang Technological University
- Singapore 639798
| |
Collapse
|
10
|
Tscherbul TV, Brumer P. Excitation of Biomolecules with Incoherent Light: Quantum Yield for the Photoisomerization of Model Retinal. J Phys Chem A 2014; 118:3100-11. [DOI: 10.1021/jp501700t] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- T. V. Tscherbul
- Chemical Physics
Theory Group, Department of Chemistry, and Center for Quantum Information and
Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - P. Brumer
- Chemical Physics
Theory Group, Department of Chemistry, and Center for Quantum Information and
Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
11
|
Gelin MF, Egorova D, Domcke W. Optical N-wave-mixing spectroscopy with strong and temporally well-separated pulses: the doorway-window representation. J Phys Chem B 2011; 115:5648-58. [PMID: 21425818 DOI: 10.1021/jp112055h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have extended the doorway-window representation of optical pump-probe spectroscopy with weak pulses toward N-wave-mixing spectroscopy with temporally well-separated pulses of arbitrary strength. The expressions for the signals in the strong-pulse doorway-window representation are derived in the framework of the nonperturbative theory of N-wave-mixing spectroscopy. The strong-pulse doorway-window representation is complementary to the equation-of-motion phase-matching approach. The latter fully accounts for pulse-overlap effects in signals induced by weak pulses but is computationally more expensive. The performance of the doorway-window approximation for temporally well-separated strong pulses is illustrated for an electronic two-level system with an underdamped Condon-active vibrational mode.
Collapse
Affiliation(s)
- Maxim F Gelin
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | | | | |
Collapse
|
12
|
|
13
|
Egorova D, Gelin MF, Domcke W. Analysis of cross peaks in two-dimensional electronic photon-echo spectroscopy for simple models with vibrations and dissipation. J Chem Phys 2007; 126:074314. [PMID: 17328612 DOI: 10.1063/1.2435353] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The recently developed efficient method for the calculation of four-wave mixing signals [M. F. Gelin et al., J. Chem. Phys. 123, 164112 (2005)] is employed for the calculation of two-dimensional electronic photon-echo spectra. The effect of the explicit treatment of vibrations coupled to the electronic transitions is systematically analyzed. The impact of pulse durations, optical dephasing, and temperature on the spectra is investigated. The study aims at an understanding of the mechanisms which may give rise to cross peaks in the two-dimensional electronic spectra and at clarifying the conditions of their detection.
Collapse
Affiliation(s)
- Dassia Egorova
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | | | | |
Collapse
|
14
|
Classical description of the dynamics and time-resolved spectroscopy of nonadiabatic cis–trans photoisomerization. Chem Phys 2006. [DOI: 10.1016/j.chemphys.2006.07.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Mancal T, Pisliakov AV, Fleming GR. Two-dimensional optical three-pulse photon echo spectroscopy. I. Nonperturbative approach to the calculation of spectra. J Chem Phys 2006; 124:234504. [PMID: 16821926 DOI: 10.1063/1.2200704] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The nonperturbative approach to the calculation of nonlinear optical spectra of Seidner et al. [J. Chem. Phys. 103, 3998 (1995)] is extended to describe four-wave mixing experiments. The system-field interaction is treated nonperturbatively in the semiclassical dipole approximation, enabling a calculation of third order nonlinear spectroscopic signals directly from molecular dynamics and an efficient modeling of multilevel systems exhibiting relaxation and transfer phenomena. The method, coupled with the treatment of dynamics within the Bloch model, is illustrated by calculations of the two-dimensional three-pulse photon echo spectra of a simple model system-a two-electronic-level molecule. The nonperturbative calculations reproduce well-known results obtained by perturbative methods. Technical limitations of the nonperturbative approach in dealing with a dynamic inhomogeneity are discussed, and possible solutions are suggested. An application of the approach to an excitonically coupled dimer system with emphasis on the manifestation of complex exciton dynamics in two-dimensional optical spectra is presented in paper II Pisliakov et al. [J. Chem. Phys. 124, 234505 (2006), following paper].
Collapse
Affiliation(s)
- Tomás Mancal
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
16
|
Strodel B, Stock G. Quantum modeling of transient infrared spectra reflecting photoinduced electron-transfer dynamics. J Chem Phys 2006; 124:114105. [PMID: 16555872 DOI: 10.1063/1.2166629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A theoretical description of transient vibrational spectra following the impulsive optical excitation of a molecular system is presented. The approach combines the nonsecular evaluation of the Redfield equations to describe the dissipative dynamics of the system with an efficient implementation of the doorway-window formalism to calculate optical pump/infrared probe (vis/IR) spectra. Both parts of the calculation scale with N2, thus facilitating the treatment of systems with a dimension up to 10(4). The formulation is applied to a simple model of photoinduced electron transfer, which takes into account two coupled electronic states and a single anharmonic vibrational mode. Despite its simplicity, the model is found to exhibit quite complex electronic and vibrational relaxation dynamics, which in turn give rise to rather complex time- and frequency-resolved vis/IR spectra. Interestingly, the calculated IR spectra of the electron-transfer system predict the appearance of novel vibronically induced sidebands, which may even dominate the spectrum at early times.
Collapse
Affiliation(s)
- Birgit Strodel
- Institute of Physical and Theoretical Chemistry, J. W. Goethe University, Marie-Curie-Strasse 11, D-60439 Frankfurt, Germany
| | | |
Collapse
|
17
|
Gelin MF, Egorova D, Pisliakov AV, Domcke W. Transient Phenomena in Time- and Frequency-Gated Spontaneous Emission. J Phys Chem A 2005; 109:3587-97. [PMID: 16839025 DOI: 10.1021/jp044463t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of overlapping pump and gate pulses on time- and frequency-gated spontaneous emission spectra is explored for a model of material dynamics that accounts for strong nonadiabatic and electron-vibrational coupling effects, vibrational relaxation, and optical dephasing, thus representing characteristic features of photoinduced excited-state dynamics in large molecules in the gas phase or in condensed phases. The behaviors of the sequential, coherent, and doorway-window contributions to the spontaneous emission spectrum are studied separately. The interrelation between the sequential and coherent contributions is demonstrated to be sensitive to the carrier frequencies of the pump and gate pulses and also to the optical dephasing rate, opening the possibility of an experimental determination of the latter. The coherent contribution is shown to dominate the spectrum at specific emission frequencies.
Collapse
Affiliation(s)
- Maxim F Gelin
- Department of Chemistry, Technical University of Munich D-85747 Garching, Germany
| | | | | | | |
Collapse
|