1
|
Zhao L, Li Z, Yang J, Sun J, Zhai X, Ma F, Duan J, Ju P, Hou B. In Situ Electrochemical Synthesis of Squamous-like Cu 2S Induced by Sulfate-Reducing Bacteria as a Fenton-like Catalyst in Wastewater Treatment: Catalytic Performance and Mechanism. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:621. [PMID: 38607155 PMCID: PMC11013312 DOI: 10.3390/nano14070621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
In this paper, a novel method was proposed for the synthesis of Cu2S on copper mesh via electrolysis in SRB culture medium. It was found that following electrolysis in SRB medium, squamous-like Cu2S arrays were obtained on the copper mesh, and the Cu2S loading contents varied with the electrolyzing parameters. The resultant Cu2S on copper mesh in SRB (CSCM-SRB) with the highest catalytic MB degradation properties was produced by electrolysis at 3.75 mA/cm2 for 900 s. The optimized MB-degrading conditions were determined to be 1.2 cm2/mL CSCM-SRB with 0.05 M H2O2 at 35 °C when pH = 6, under which the degradation of MB reached over 99% after 120 min of reaction. Disinfecting properties was also proven by antibacterial tests, revealing that an almost 100% antibacterial rate against E. coli was obtained after 8 min. The organic compounds produced by SRB adsorbed on CSCM-SRB strongly promoted the degradation of MB. Furthermore, possible Fenton-like mechanisms of CSCM-SRB were proposed, illustrating that ·O2-, ·OH, and 1O2 acted as the main functional species during Fenton-like reactions, leading to effective MB degradation and high antibacterial properties. Finally, a simple device for wastewater treatment was designed, providing possible applications in real environments.
Collapse
Affiliation(s)
- Liuhui Zhao
- School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China; (L.Z.)
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Zhenzhou Road, Sanya 572000, China
| | - Zihao Li
- School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China; (L.Z.)
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Zhenzhou Road, Sanya 572000, China
| | - Jing Yang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Zhenzhou Road, Sanya 572000, China
| | - Jiawen Sun
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Zhenzhou Road, Sanya 572000, China
| | - Xiaofan Zhai
- School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China; (L.Z.)
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Zhenzhou Road, Sanya 572000, China
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning 530007, China
| | - Fubin Ma
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Zhenzhou Road, Sanya 572000, China
| | - Jizhou Duan
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Zhenzhou Road, Sanya 572000, China
| | - Peng Ju
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao 266061, China
| | - Baorong Hou
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Zhenzhou Road, Sanya 572000, China
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
2
|
Karmakar G, Tyagi A, Halankar KK, Nigam S, Mandal BP, Wadawale AP, Kedarnath G, Debnath AK. Molecular precursor-mediated facile synthesis of phase pure metal-rich digenite (Cu 1.8S) nanocrystals: an efficient anode for lithium-ion batteries. Dalton Trans 2023; 52:1461-1475. [PMID: 36645001 DOI: 10.1039/d2dt03757b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Copper sulfides have gained significant attention as alternative electrodes for rechargeable batteries. A simple and easily scalable synthetic pathway to access these materials is highly desirable. This paper describes the facile synthesis of metal-rich digenite Cu1.8S nanocrystals from a structurally characterized new single-source molecular precursor in various high boiling solvents of varied polarity. The as-prepared nanostructures were thoroughly characterized by PXRD, Raman spectroscopy, EDS, XPS, electron microscopy techniques and diffuse reflectance spectroscopy to understand the crystal structure, phase purity, elemental composition, morphology and band gap. It was found that the reaction solvent has a profound role on their crystallite size, morphology and band gap, however the crystal structure and phase purity remained unaffected. Pristine Cu1.8S nanostructures have been employed as an anode material in lithium-ion batteries (LIBs). The cell delivers a high initial charge capacity of ∼462 mA h g-1 and retains a capacity of 240 mA h g-1 even after 300 cycles at 0.1 A g-1. DFT calculations revealed that multi-size polyhedron layers in the direction perpendicular to the two Li movement channels aid in the sustainable uptake of Li atoms with controlled volume expansion. The structure-mediated flexibility of the metal-rich Cu1.8S lattice during lithiation permits high cyclability with reasonable retention of capacity.
Collapse
Affiliation(s)
- Gourab Karmakar
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - Adish Tyagi
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - Kruti K Halankar
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
| | - Sandeep Nigam
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - B P Mandal
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - A P Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
| | - G Kedarnath
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - Anil K Debnath
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India.,Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| |
Collapse
|
3
|
Synthesis of Cu2S Ultrasmall Nanoparticles in Zeolite 4A Nanoreactor. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02330-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Development and characterization of La2O3 nanoparticles@snowflake-like Cu2S nanostructure composite modified electrode and application for simultaneous detection of catechol, hydroquinone and resorcinol as an electrochemical sensor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
|
6
|
Dual-Modified Cu2S with MoS2 and Reduced Graphene Oxides as Efficient Photocatalysts for H2 Evolution Reaction. Catalysts 2021. [DOI: 10.3390/catal11111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Noble metal-free cocatalysts have drawn great interest in accelerating the catalytic reactions of metal chalcogenide semiconductor photocatalyst. In particular, great efforts have been made on modifying a semiconductor with dual cocatalysts, which show synergistic effect of a fast transfer of exciton and energy simultaneously. Herein, we report the dual-modified Cu2S with MoS2 and reduced graphene oxides (Cu2S-MoS2/rGO). The in situ growth of Cu2S nanoparticles in the presence of MoS2/rGO resulted in high density of nanoscale interfacial contacts among Cu2S nanoparticles, MoS2, and rGO, which is beneficial for reducing the photogenerated electrons’ and holes’ recombination. The Cu2S-MoS2/rGO system also demonstrated stable photocatalytic activity for H2 evolution reaction for the long term.
Collapse
|
7
|
Li P, Kang Z, Rao F, Lu Y, Zhang Y. Nanowelding in Whole-Lifetime Bottom-Up Manufacturing: From Assembly to Service. SMALL METHODS 2021; 5:e2100654. [PMID: 34927947 DOI: 10.1002/smtd.202100654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Indexed: 06/14/2023]
Abstract
The continuous miniaturization of microelectronics is pushing the transformation of nanomanufacturing modes from top-down to bottom-up. Bottom-up manufacturing is essentially the way of assembling nanostructures from atoms, clusters, quantum dots, etc. The assembly process relies on nanowelding which also existed in the synthesis process of nanostructures, construction and repair of nanonetworks, interconnects, integrated circuits, and nanodevices. First, many kinds of novel nanomaterials and nanostructures from 0D to 1D, and even 2D are synthesized by nanowelding. Second, the connection of nanostructures and interfaces between metal/semiconductor-metal/semiconductor is realized through low-temperature heat-assisted nanowelding, mechanical-assisted nanowelding, or cold welding. Finally, 2D and 3D interconnects, flexible transparent electrodes, integrated circuits, and nanodevices are constructed, functioned, or self-healed by nanowelding. All of the three nanomanufacturing stages follow the rule of "oriented attachment" mechanisms. Thus, the whole-lifetime bottom-up manufacturing process from the synthesis and connection of nanostructures to the construction and service of nanodevices can be organically integrated by nanowelding. The authors hope this review can bring some new perspective in future semiconductor industrialization development in the expansion of multi-material systems, technology pathway for the refined design, controlled synthesis and in situ characterization of complex nanostructures, and the strategies to develop and repair novel nanodevices in service.
Collapse
Affiliation(s)
- Peifeng Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhuo Kang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Feng Rao
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Nanomanufacturing Laboratory (NML), Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Yue Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
8
|
Copper Dithiocarbamates: Coordination Chemistry and Applications in Materials Science, Biosciences and Beyond. INORGANICS 2021. [DOI: 10.3390/inorganics9090070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Copper dithiocarbamate complexes have been known for ca. 120 years and find relevance in biology and medicine, especially as anticancer agents and applications in materials science as a single-source precursor (SSPs) to nanoscale copper sulfides. Dithiocarbamates support Cu(I), Cu(II) and Cu(III) and show a rich and diverse coordination chemistry. Homoleptic [Cu(S2CNR2)2] are most common, being known for hundreds of substituents. All contain a Cu(II) centre, being either monomeric (distorted square planar) or dimeric (distorted trigonal bipyramidal) in the solid state, the latter being held together by intermolecular C···S interactions. Their d9 electronic configuration renders them paramagnetic and thus readily detected by electron paramagnetic resonance (EPR) spectroscopy. Reaction with a range of oxidants affords d8 Cu(III) complexes, [Cu(S2CNR2)2][X], in which copper remains in a square-planar geometry, but Cu–S bonds shorten by ca. 0.1 Å. These show a wide range of different structural motifs in the solid-state, varying with changes in anion and dithiocarbamate substituents. Cu(I) complexes, [Cu(S2CNR2)2]−, are (briefly) accessible in an electrochemical cell, and the only stable example is recently reported [Cu(S2CNH2)2][NH4]·H2O. Others readily lose a dithiocarbamate and the d10 centres can either be trapped with other coordinating ligands, especially phosphines, or form clusters with tetrahedral [Cu(μ3-S2CNR2)]4 being most common. Over the past decade, a wide range of Cu(I) dithiocarbamate clusters have been prepared and structurally characterised with nuclearities of 3–28, especially exciting being those with interstitial hydride and/or acetylide co-ligands. A range of mixed-valence Cu(I)–Cu(II) and Cu(II)–Cu(III) complexes are known, many of which show novel physical properties, and one Cu(I)–Cu(II)–Cu(III) species has been reported. Copper dithiocarbamates have been widely used as SSPs to nanoscale copper sulfides, allowing control over the phase, particle size and morphology of nanomaterials, and thus giving access to materials with tuneable physical properties. The identification of copper in a range of neurological diseases and the use of disulfiram as a drug for over 50 years makes understanding of the biological formation and action of [Cu(S2CNEt2)2] especially important. Furthermore, the finding that it and related Cu(II) dithiocarbamates are active anticancer agents has pushed them to the fore in studies of metal-based biomedicines.
Collapse
|
9
|
Sarker JC, Hogarth G. Dithiocarbamate Complexes as Single Source Precursors to Nanoscale Binary, Ternary and Quaternary Metal Sulfides. Chem Rev 2021; 121:6057-6123. [PMID: 33847480 DOI: 10.1021/acs.chemrev.0c01183] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanodimensional metal sulfides are a developing class of low-cost materials with potential applications in areas as wide-ranging as energy storage, electrocatalysis, and imaging. An attractive synthetic strategy, which allows careful control over stoichiometry, is the single source precursor (SSP) approach in which well-defined molecular species containing preformed metal-sulfur bonds are heated to decomposition, either in the vapor or solution phase, resulting in facile loss of organics and formation of nanodimensional metal sulfides. By careful control of the precursor, the decomposition environment and addition of surfactants, this approach affords a range of nanocrystalline materials from a library of precursors. Dithiocarbamates (DTCs) are monoanionic chelating ligands that have been known for over a century and find applications in agriculture, medicine, and materials science. They are easily prepared from nontoxic secondary and primary amines and form stable complexes with all elements. Since pioneering work in the late 1980s, the use of DTC complexes as SSPs to a wide range of binary, ternary, and multinary sulfides has been extensively documented. This review maps these developments, from the formation of thin films, often comprised of embedded nanocrystals, to quantum dots coated with organic ligands or shelled by other metal sulfides that show high photoluminescence quantum yields, and a range of other nanomaterials in which both the phase and morphology of the nanocrystals can be engineered, allowing fine-tuning of technologically important physical properties, thus opening up a myriad of potential applications.
Collapse
Affiliation(s)
- Jagodish C Sarker
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.,Department of Chemistry, Jagannath University, Dhaka-1100, Bangladesh
| | - Graeme Hogarth
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| |
Collapse
|
10
|
Roffey A, Hollingsworth N, Hogarth G. Synthesis of ternary sulfide nanomaterials using dithiocarbamate complexes as single source precursors. NANOSCALE ADVANCES 2019; 1:3056-3066. [PMID: 36133587 PMCID: PMC9418161 DOI: 10.1039/c9na00275h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/13/2019] [Indexed: 05/05/2023]
Abstract
We report the use of cheap, readily accessible and easy to handle di-isobutyl-dithiocarbamate complexes, [M(S2CNiBu2) n ], as single source precursors (SSPs) to ternary sulfides of iron-nickel, iron-copper and nickel-cobalt. Varying decomposition temperature and precursor concentrations has a significant effect on both the phase and size of the nanomaterials, and in some instances meta-stable phases are accessible. Decomposition of [Fe(S2CNiBu2)3]/[Ni(S2CNiBu2)2] at ca. 210-230 °C affords metastable FeNi2S4 (violarite) nanoparticles, while at higher temperatures the thermodynamic product (Fe,Ni)9S8 (pentlandite) results. Addition of tetra-isobutyl-thiuram disulfide to the decomposition mixture can significantly affect the nature of the product at any particular temperature-concentration, being attributed to suppression of the intramolecular Fe(iii) to Fe(ii) reduction. Attempts to replicate this simple approach to ternary metal sulfides of iron-indium and iron-zinc were unsuccessful, mixtures of binary metal sulfides resulting. Oleylamine is non-innocent in these transformations, and we propose that SSP decomposition occurs via primary-secondary backbone amide-exchange with primary dithiocarbamate complexes, [M(S2CNHoleyl) n ], being the active decomposition precursors.
Collapse
Affiliation(s)
- Anna Roffey
- Department of Chemistry, King's College London Britannia House, 7 Trinity Street London SE1 1DB UK
- Department of Chemistry, University College London 20 Gordon Street London WC1H OAJ UK
| | - Nathan Hollingsworth
- Department of Chemistry, University College London 20 Gordon Street London WC1H OAJ UK
| | - Graeme Hogarth
- Department of Chemistry, King's College London Britannia House, 7 Trinity Street London SE1 1DB UK
| |
Collapse
|
11
|
Li D, Hao S, Xing G, Li Y, Li X, Fan L, Yang S. Solution Grown Single-Unit-Cell Quantum Wires Affording Self-Powered Solar-Blind UV Photodetectors with Ultrahigh Selectivity and Sensitivity. J Am Chem Soc 2019; 141:3480-3488. [PMID: 30714725 DOI: 10.1021/jacs.8b10791] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
As crystalline semiconductor nanowires are thinned down to a single-unit-cell thickness, many fascinating properties could arise pointing to promising applications in various fields. A grand challenge is to be able to controllably synthesize such ultrathin nanowires. Herein, we report a strategy, which synergizes a soft template with oriented attachment (ST-OA), to prepare high-quality single-unit-cell semiconductor nanowires (SSNWs). Using this protocol, we are able to synthesize for the first time ZnS and ZnSe nanowires (NWs) with only a single-unit-cell thickness (less than 1.0 nm) and a cluster-like absorption feature (i.e., with a sharp, strong, and significantly blue-shifted absorption peak). Particularly, the growth mechanism and the single-unit-cell structure of the as-prepared ZnS SSNWs are firmly established by both experimental observations and theoretical calculations. Thanks to falling into the extreme quantum confinement regime, these NWs are found to only absorb the light with wavelengths shorter than 280 nm (i.e., solar-blind UV absorption). Utilizing such a unique property, self-powered photoelectrochemical-type photodetectors (PEC PDs) based on the ZnS SSNWs are successfully fabricated. The PDs after interface modification with TiO2 exhibit an excellent solar-blind UV photoresponse performance, with a typical on/off ratio of 6008, a detectivity of 1.5 × 1012 Jones, and a responsivity of 33.7 mA/W. This work opens the door to synthesizing and investigating a new dimension of nanomaterials with a wide range of applications.
Collapse
Affiliation(s)
- Dong Li
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Simeng Hao
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Guanjie Xing
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Yunchao Li
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Xiaohong Li
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Louzhen Fan
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Shihe Yang
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School , Peking University , Shenzhen 518055 , China
| |
Collapse
|
12
|
Tang YQ, Zhang K, Ge ZH, Feng J. Facile synthesis and thermoelectric properties of Cu1.96S compounds. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Chen X, Yang J, Wu T, Li L, Luo W, Jiang W, Wang L. Nanostructured binary copper chalcogenides: synthesis strategies and common applications. NANOSCALE 2018; 10:15130-15163. [PMID: 30063055 DOI: 10.1039/c8nr05558k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanostructured binary copper chalcogenides (NBCCs) have been the subject of extensive research as promising candidates in energy-related and biological applications due to their advantageous properties, environmental compatibility, and abundance. The remarkable properties of these materials is born out of the variable stoichiometry between the copper and chalcogens, as well as the structural versatility, with zero-dimension to three-dimension structures, which consequently improves their electrical, optical, and catalytic properties. Here, the research history and development process of the binary copper chalcogenides are introduced. Typical synthesis strategies for NBCCs vary according to structure dimensionality and specific energy-related and biological applications dependent on the structure and stoichiometry are summarized. The future development of designed nanostructures and tuned stoichiometry in NBCCs for further high-performance applications are outlined.
Collapse
Affiliation(s)
- Xinqi Chen
- Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Duan J, Liu L, Wu Z, Fang J, Chen D. Probing into dimension and shape control mechanism of copper(i) sulfide nanomaterials via solventless thermolysis based on mesogenic thiolate precursors. CrystEngComm 2018. [DOI: 10.1039/c8ce00571k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Well-controlled Cu2S nanomaterials mediated by the confined space of the undulated lamellar structures of mesogenic thiolate precursors.
Collapse
Affiliation(s)
- Junfei Duan
- School of Materials Science and Engineering
- Changsha University of Science and Technology
- Changsha
- China
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education
| | - Liang Liu
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education
- Collaborative Innovation Centre of Chemistry for Life Sciences
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Zhongying Wu
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education
- Collaborative Innovation Centre of Chemistry for Life Sciences
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Jianglin Fang
- Centre for Materials Analysis
- Nanjing University
- Nanjing
- China
| | - Dongzhong Chen
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education
- Collaborative Innovation Centre of Chemistry for Life Sciences
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
| |
Collapse
|
15
|
Mulla R, Rabinal MK. Large-scale synthesis of copper sulfide by using elemental sources via simple chemical route. ULTRASONICS SONOCHEMISTRY 2017; 39:528-533. [PMID: 28732977 DOI: 10.1016/j.ultsonch.2017.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
Copper sulfide is a low-cost and non-toxic material which is very attractive and promising for various applications. There is a need of a large-scale production of this material by simple methods. Here, a simple and ambient method is proposed for a large-scale preparation of copper sulfide. The synthesis is carried out at room temperature by using ultrasonication method where the elemental precursors, copper and sulfur are directly used. The present method gives gram scale synthesis with high yield in a short period of time. The materials are characterized by different techniques, their electrical conductivity and Seebeck coefficient are also measured and analyzed. The present method is one of the simple ways of producing copper sulfide just at room temperature.
Collapse
Affiliation(s)
- Rafiq Mulla
- Department of Physics, Karnatak University Dharwad, Karnataka State 580003, India
| | - M K Rabinal
- Department of Physics, Karnatak University Dharwad, Karnataka State 580003, India.
| |
Collapse
|
16
|
Li D, Xing G, Tang S, Li X, Fan L, Li Y. Ultrathin ZnSe nanowires: one-pot synthesis via a heat-triggered precursor slow releasing route, controllable Mn doping and application in UV and near-visible light detection. NANOSCALE 2017; 9:15044-15055. [PMID: 28967660 DOI: 10.1039/c7nr03547k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report herein a heat-triggered precursor slow releasing route for the one-pot synthesis of ultrathin ZnSe nanowires (NWs), which relies on the gradual dissolving of Se powder into oleylamine containing a soluble Zn precursor under heating. This route allows the reaction system to maintain a high monomer concentration throughout the entire reaction process, thus enabling the generation of ZnSe NWs with diameter down to 2.1 nm and length approaching 400 nm. The size-dependent optical properties and band-edge energy levels of the ZnSe NWs were then explored in depth by UV-visible spectroscopy and cyclic voltammetry, respectively. Considering their unique absorption properties, these NWs were specially utilized for fabricating photoelectrochemical-type photodetectors (PDs). Impressively, the PDs based on the ZnSe NWs with diameters of 2.1 and 4.5 nm exhibited excellent responses to UVA and near-visible light, respectively: both possessed ultrahigh on/off ratios (5150 for UVA and 4213 for near-visible light) and ultrawide linear response ranges (from 2.0 to 9000 μW cm-2 for UVA and 5.0 to 8000 μW cm-2 for near-visible light). Furthermore, these ZnSe NWs were selectively doped with various amounts of Mn2+ to tune their emission properties. As a result, ZnSe NW film-based photochromic cards were creatively developed for visually detecting UVA and near-visible radiation.
Collapse
Affiliation(s)
- Dong Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | | | | | | | | | | |
Collapse
|
17
|
Berends AC, de Mello Donega C. Ultrathin One- and Two-Dimensional Colloidal Semiconductor Nanocrystals: Pushing Quantum Confinement to the Limit. J Phys Chem Lett 2017; 8:4077-4090. [PMID: 28799764 PMCID: PMC5592648 DOI: 10.1021/acs.jpclett.7b01640] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/11/2017] [Indexed: 05/22/2023]
Abstract
Research on ultrathin nanomaterials is one of the fastest developing areas in contemporary nanoscience. The field of ultrathin one- (1D) and two-dimensional (2D) colloidal nanocrystals (NCs) is still in its infancy, but offers the prospect of production of ultrathin nanomaterials in liquid-phase at relatively low costs, with versatility in terms of composition, size, shape, and surface control. In this Perspective, the state of the art in the field is concisely outlined and critically discussed to highlight the essential concepts and challenges. We start by presenting a brief overview of the ultrathin colloidal 1D and 2D semiconductor NCs prepared to date, after which the synthesis strategies and formation mechanisms of both 1D and 2D NCs are discussed. The properties of these low-dimensional materials are then reviewed, with emphasis on the optical properties of luminescent NCs. Finally, the future prospects for the field are addressed.
Collapse
|
18
|
Sun S, Li P, Liang S, Yang Z. Diversified copper sulfide (Cu 2-xS) micro-/nanostructures: a comprehensive review on synthesis, modifications and applications. NANOSCALE 2017; 9:11357-11404. [PMID: 28776056 DOI: 10.1039/c7nr03828c] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As a significant metal chalcogenide, copper sulfide (Cu2-xS, 0 < x < 1), with a unique semiconducting and nontoxic nature, has received significant attention over the past few decades. Extensive investigations have been employed to the various Cu2-xS micro-/nanostructures owing to their excellent optoelectronic behavior, potential thermoelectric properties, and promising biomedical applications. As a result, micro-/nanostructured Cu2-xS with well-controlled morphologies, sizes, crystalline phases, and compositions have been rationally synthesized and applied in the fields of photocatalysis, energy conversion, in vitro biosensing, and in vivo imaging and therapy. However, a comprehensive review on diversified Cu2-xS micro-/nanostructures is still lacking; therefore, there is an imperative need to thoroughly highlight the new advances made in function-directed Cu2-xS-based nanocomposites. In this review, we have summarized the important progress made in the diversified Cu2-xS micro-/nanostructures, including that in the synthetic strategies for the preparation of 0D, 1D, 2D, and 3D micro-/nanostructures (including polyhedral, hierarchical, hollow architectures, and superlattices) and in the development of modified Cu2-xS-based composites for enhanced performance, as well as their various applications. Furthermore, the present issues and promising research directions are briefly discussed.
Collapse
Affiliation(s)
- Shaodong Sun
- Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, School of Material Science and Engineering, Xi'an University of Technology, Xi'an 710048, ShaanXi, People's Republic of China.
| | | | | | | |
Collapse
|
19
|
Synthesis and Thermoelectric Properties of Copper Sulfides via Solution Phase Methods and Spark Plasma Sintering. CRYSTALS 2017. [DOI: 10.3390/cryst7050141] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Large-scale Cu2S tetradecahedrons microcrystals and sheet-like Cu2S nanocrystals were synthesized by employing a hydrothermal synthesis (HS) method and wet chemistry method (WCM), respectively. The morphology of α-Cu2S powders prepared by the HS method is a tetradecahedron with the size of 1–7 μm. The morphology of β-Cu2S is a hexagonal sheet-like structure with a thickness of 5–20 nm. The results indicate that the morphologies and phase structures of Cu2S are highly dependent on the reaction temperature and time, even though the precursors are the exact same. The polycrystalline copper sulfides bulk materials were obtained by densifying the as-prepared powders using the spark plasma sintering (SPS) technique. The electrical and thermal transport properties of all bulk samples were measured from 323 K to 773 K. The pure Cu2S bulk samples sintered by using the powders prepared via HS reached the highest thermoelectric figure of merit (ZT) value of 0.38 at 573 K. The main phase of the bulk sample sintered by using the powder prepared via WCM changed from β-Cu2S to Cu1.8S after sintering due to the instability of β-Cu2S during the sintering process. The Cu1.8S bulk sample with a Cu1.96S impurity achieved the highest ZT value of 0.62 at 773 K.
Collapse
|
20
|
Coughlan C, Ibáñez M, Dobrozhan O, Singh A, Cabot A, Ryan KM. Compound Copper Chalcogenide Nanocrystals. Chem Rev 2017; 117:5865-6109. [PMID: 28394585 DOI: 10.1021/acs.chemrev.6b00376] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review captures the synthesis, assembly, properties, and applications of copper chalcogenide NCs, which have achieved significant research interest in the last decade due to their compositional and structural versatility. The outstanding functional properties of these materials stems from the relationship between their band structure and defect concentration, including charge carrier concentration and electronic conductivity character, which consequently affects their optoelectronic, optical, and plasmonic properties. This, combined with several metastable crystal phases and stoichiometries and the low energy of formation of defects, makes the reproducible synthesis of these materials, with tunable parameters, remarkable. Further to this, the review captures the progress of the hierarchical assembly of these NCs, which bridges the link between their discrete and collective properties. Their ubiquitous application set has cross-cut energy conversion (photovoltaics, photocatalysis, thermoelectrics), energy storage (lithium-ion batteries, hydrogen generation), emissive materials (plasmonics, LEDs, biolabelling), sensors (electrochemical, biochemical), biomedical devices (magnetic resonance imaging, X-ray computer tomography), and medical therapies (photochemothermal therapies, immunotherapy, radiotherapy, and drug delivery). The confluence of advances in the synthesis, assembly, and application of these NCs in the past decade has the potential to significantly impact society, both economically and environmentally.
Collapse
Affiliation(s)
- Claudia Coughlan
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick, Ireland
| | - Maria Ibáñez
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain
| | - Oleksandr Dobrozhan
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain.,Department of Electronics and Computing, Sumy State University , 2 Rymskogo-Korsakova st., 40007 Sumy, Ukraine
| | - Ajay Singh
- Materials Physics & Applications Division: Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Andreu Cabot
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Kevin M Ryan
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick, Ireland
| |
Collapse
|
21
|
Kao TL, Tuan HY. Polymer-mediated metallophilic interactions for gram-scale production, high-yield (∼90%) synthesis of ultrathin bismuth nanowires. Chem Commun (Camb) 2017; 53:12020-12023. [DOI: 10.1039/c7cc06209e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-yields (∼90%) of ultrathin (<4 nm) bismuth nanowires (Bi UNWs) were obtained by reducing the polymeric strands of oleylamine-bismuth 2-ethylhexanoate complexes formed via metallophilic interactions with the mediation of a copolymer (PVP–HDE).
Collapse
Affiliation(s)
- Tzu-Lun Kao
- Department of Chemical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Hsing-Yu Tuan
- Department of Chemical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| |
Collapse
|
22
|
Zhang D, Yu Y, Bekenstein Y, Wong AB, Alivisatos AP, Yang P. Ultrathin Colloidal Cesium Lead Halide Perovskite Nanowires. J Am Chem Soc 2016; 138:13155-13158. [PMID: 27673493 DOI: 10.1021/jacs.6b08373] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Highly uniform single crystal ultrathin CsPbBr3 nanowires (NWs) with diameter of 2.2 ± 0.2 nm and length up to several microns were successfully synthesized and purified using a catalyst-free colloidal synthesis method followed by a stepwise purification strategy. The NWs have bright photoluminescence (PL) with a photoluminescence quantum yield (PLQY) of about 30% after surface treatment. Large blue-shifted UV-vis absorption and PL spectra have been observed due to strong two-dimensional quantum confinement effects. A small angle X-ray scattering (SAXS) pattern shows the periodic packing of the ultrathin NWs along the radial direction, demonstrates the narrow radial distribution of the wires, and emphasizes the deep intercalation of the surfactants. Despite the extreme aspect ratios of the ultrathin NWs, their composition and the resulting optical properties can be readily tuned by an anion-exchange reaction with good morphology preservation. These bright ultrathin NWs may be used as a model system to study strong quantum confinement effects in a one-dimensional halide perovskite system.
Collapse
Affiliation(s)
- Dandan Zhang
- Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Yi Yu
- Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Yehonadav Bekenstein
- Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute , Berkeley, California 94720, United States
| | - Andrew B Wong
- Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - A Paul Alivisatos
- Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute , Berkeley, California 94720, United States
| | - Peidong Yang
- Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute , Berkeley, California 94720, United States
| |
Collapse
|
23
|
Cao L, Wan Y, Wang Y, Gao J. Fabrication and mechanical durability of a superhydrophobic copper surface with morphological development from hydrothermal reaction. SURF INTERFACE ANAL 2016. [DOI: 10.1002/sia.6052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Lei Cao
- School of Mechanical Engineering; Qingdao University of Technology; Qingdao 266033 China
| | - Yong Wan
- School of Mechanical Engineering; Qingdao University of Technology; Qingdao 266033 China
| | - Yinghu Wang
- School of Mechanical Engineering; Qingdao University of Technology; Qingdao 266033 China
| | - Jianguo Gao
- Inspection and Quarantine Center; Shandong Exit and Entry Inspection and Quarantine Bureau; Qingdao 266001 China
| |
Collapse
|
24
|
Lu W, Sun Y, Dai H, Ni P, Jiang S, Wang Y, Li Z, Li Z. Fabrication of cuprous sulfide nanorods supported on copper foam for nonenzymatic amperometric determination of glucose and hydrogen peroxide. RSC Adv 2016. [DOI: 10.1039/c6ra18641f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cuprous sulfide nanothorns were fabricated on copper foam for nonenzymatic amperometric determination of glucose and hydrogen peroxide.
Collapse
Affiliation(s)
- Wangdong Lu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun
- P. R. China
- University of Chinese Academy of Sciences
| | - Yujing Sun
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun
- P. R. China
| | - Haichao Dai
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun
- P. R. China
- University of Chinese Academy of Sciences
| | - Pengjuan Ni
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun
- P. R. China
- University of Chinese Academy of Sciences
| | - Shu Jiang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun
- P. R. China
- University of Chinese Academy of Sciences
| | - Yilin Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun
- P. R. China
- University of Chinese Academy of Sciences
| | - Zhen Li
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun
- P. R. China
- University of Chinese Academy of Sciences
| | - Zhuang Li
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun
- P. R. China
| |
Collapse
|
25
|
Yang H, Kim CE, Giri A, Soon A, Jeong U. Synthesis of surfactant-free SnS nanoplates in an aqueous solution. RSC Adv 2015. [DOI: 10.1039/c5ra17768e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A synthetic route to produce surfactant-free SnS nanoplates with the Pbnm crystal structure is suggested. The process is quick and environmentally-friendly, accomplished under mild aqueous conditions by chemical transformation.
Collapse
Affiliation(s)
- Heeseung Yang
- Department of Materials Science and Engineering
- Yonsei University
- Seoul 120-749
- Korea
| | - Chang-Eun Kim
- Department of Materials Science and Engineering
- Yonsei University
- Seoul 120-749
- Korea
| | - Anupam Giri
- Department of Materials Science and Engineering
- POSTECH
- Pohang
- Korea
| | - Aloysius Soon
- Department of Materials Science and Engineering
- Yonsei University
- Seoul 120-749
- Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering
- POSTECH
- Pohang
- Korea
| |
Collapse
|
26
|
Kwak J, Kim CE, Min Y, Lee JH, Soon A, Jeong U. The effect of Se doping on the growth of Te nanorods. CrystEngComm 2015. [DOI: 10.1039/c4ce02431a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
|
28
|
Shuai X, Shen W, Hou Z, Ke S, Xu C, Jiang C. A versatile chemical conversion synthesis of Cu2S nanotubes and the photovoltaic activities for dye-sensitized solar cell. NANOSCALE RESEARCH LETTERS 2014; 9:513. [PMID: 25246878 PMCID: PMC4169704 DOI: 10.1186/1556-276x-9-513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/10/2014] [Indexed: 06/03/2023]
Abstract
A versatile, low-temperature, and low-cost chemical conversion synthesis has been developed to prepare copper sulfide (Cu2S) nanotubes. The successful chemical conversion from ZnS nanotubes to Cu2S ones profits by the large difference in solubility between ZnS and Cu2S. The morphology, structure, and composition of the yielded products have been examined by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction measurements. We have further successfully employed the obtained Cu2S nanotubes as counter electrodes in dye-sensitized solar cells. The light-to-electricity conversion results show that the Cu2S nanostructures exhibit high photovoltaic conversion efficiency due to the increased surface area and the good electrocatalytical activity of Cu2S. The present chemical route provides a simple way to synthesize Cu2S nanotubes with a high surface area for nanodevice applications.
Collapse
Affiliation(s)
- Xuemin Shuai
- Department of Applied Physics, Chang’an University, Xi’an 710064, China
| | - Wenzhong Shen
- Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhaoyang Hou
- Department of Applied Physics, Chang’an University, Xi’an 710064, China
| | - Sanmin Ke
- Department of Applied Physics, Chang’an University, Xi’an 710064, China
| | - Chunlong Xu
- Department of Applied Physics, Chang’an University, Xi’an 710064, China
| | - Cheng Jiang
- School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, 111 West Chang Jiang Road, Huaian 223300, China
| |
Collapse
|
29
|
Latimer E, Spence D, Feng C, Boatwright A, Ellis AM, Yang S. Preparation of ultrathin nanowires using superfluid helium droplets. NANO LETTERS 2014; 14:2902-6. [PMID: 24742117 DOI: 10.1021/nl500946u] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Direct preparation of long one-dimensional (1D) nanostructures with diameters <10 nm inside superfluid helium droplets is reported. Unlike conventional chemical synthetic techniques, where stabilizers, templates, or external fields are often required to induce 1D growth, here, we exploit the use of quantized vortices to guide the formation of ultrathin nanowires. A variety of elements have been added to the droplets to demonstrate that this is a general phenomenon, including Ni, Cr, Au, and Si. Control of the length and diameter of the nanowires is also demonstrated.
Collapse
Affiliation(s)
- Elspeth Latimer
- Department of Chemistry, University of Leicester , Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | |
Collapse
|
30
|
Mondal G, Bera P, Santra A, Jana S, Mandal TN, Mondal A, Seok SI, Bera P. Precursor-driven selective synthesis of hexagonal chalcocite (Cu2S) nanocrystals: structural, optical, electrical and photocatalytic properties. NEW J CHEM 2014. [DOI: 10.1039/c4nj00584h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new single-source precursor, [Cu(mdpa)2][CuCl2], is used to prepare selectively high chalcocite (Cu2S) with excellent photodegradation of Congo red (CR).
Collapse
Affiliation(s)
- Gopinath Mondal
- Post Graduate Department of Chemistry
- Panskura Banamali College
- Vidyasagar University
- Midnapore (E), India
| | - Pradip Bera
- Post Graduate Department of Chemistry
- Panskura Banamali College
- Vidyasagar University
- Midnapore (E), India
| | - Ananyakumari Santra
- Post Graduate Department of Chemistry
- Panskura Banamali College
- Vidyasagar University
- Midnapore (E), India
| | - Sumanta Jana
- Department of Chemistry
- Indian Institute of Engineering Science and Technology (IIEST)
- Shibpur, India
| | - Tarak Nath Mandal
- KRICT-EPFL Global Research Laboratory
- Division of Advanced Materials
- Korea Research Institute of Chemical Technology
- Yuseong-Gu, South Korea
| | - Anup Mondal
- Department of Chemistry
- Indian Institute of Engineering Science and Technology (IIEST)
- Shibpur, India
| | - Sang Il Seok
- KRICT-EPFL Global Research Laboratory
- Division of Advanced Materials
- Korea Research Institute of Chemical Technology
- Yuseong-Gu, South Korea
- Department of Energy Science
| | - Pulakesh Bera
- Post Graduate Department of Chemistry
- Panskura Banamali College
- Vidyasagar University
- Midnapore (E), India
| |
Collapse
|
31
|
Ma G, Zhou Y, Li X, Sun K, Liu S, Hu J, Kotov NA. Self-assembly of copper sulfide nanoparticles into nanoribbons with continuous crystallinity. ACS NANO 2013; 7:9010-9018. [PMID: 23888839 DOI: 10.1021/nn4035525] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Copper chalcogenide nanoparticles (NPs) represent a promising material for solar energy conversion, electrical charge storage, and plasmonic devices. However, it is difficult to achieve high-quality NP dispersions in experimentally convenient and technologically preferred aqueous media. Also problematic is the transition from NP dispersion to continuously crystalline nanoscale materials, for instance, nanowires, nanoribbons, or similar high aspect ratio nano/microstructures capable of charge transport necessary for such applications. All previous examples of copper sulfide assemblies contained insulating gaps between NPs. Here we show that aqueous synthesis of high-quality monodispersed high-chalcocite β-Cu2S NPs, with sizes from 2 to 10 nm, is possible. When reaction time increased, the NP shape evolved from nearly spherical particles into disks with predominantly hexagonal shape. Moreover, the monodispersed β-Cu2S NPs were found to spontaneously self-assemble into nanochains and, subsequently, to nanoribbons. The width and length of the nanoribbons were 4-20 nm and 50-950 nm, respectively, depending on the assembly conditions. We observed the formation of the nanoribbons with continuous crystal lattice and charge transport pathways, making possible the utilization of self-assembly processes in the manufacturing of photovoltaic, plasmonic, and charge storage devices.
Collapse
Affiliation(s)
- Guanxiang Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , China
| | | | | | | | | | | | | |
Collapse
|
32
|
Shaw S, Cademartiri L. Nanowires and nanostructures that grow like polymer molecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:4829-4844. [PMID: 23794436 DOI: 10.1002/adma.201300850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/04/2013] [Indexed: 06/02/2023]
Abstract
Unique properties (e.g., rubber elasticity, viscoelasticity, folding, reptation) determine the utility of polymer molecules and derive from their morphology (i.e., one-dimensional connectivity and large aspect ratios) and flexibility. Crystals do not display similar properties because they have smaller aspect ratios, they are rigid, and they are often too large and heavy to be colloidally stable. We argue, with the support of recent experimental studies, that these limitations are not fundamental and that they might be overcome by growth processes that mimic polymerization. Furthermore, we (i) discuss the similarities between crystallization and polymerization, (ii) critically review the existing experimental evidence of polymer-like growth kinetic and behavior in crystals and nanostructures, and (iii) propose heuristic guidelines for the synthesis of "polymer-like" crystals and assemblies. Understanding these anisotropic materials at the boundary between molecules and solids will determine whether we can confer the unique properties of polymer molecules to crystals, expanding them with topology, dynamics, and information and not just tuning them with size.
Collapse
Affiliation(s)
- Santosh Shaw
- Department of Materials Science & Engineering, Iowa State University of Science and Technology, 2220 Hoover Hall, Ames, IA, 50011, USA
| | | |
Collapse
|
33
|
Li Q, Zhai L, Zou C, Huang X, Zhang L, Yang Y, Chen X, Huang S. Wurtzite CuInS₂ and CuInxGa₁-xS₂ nanoribbons: synthesis, optical and photoelectrical properties. NANOSCALE 2013; 5:1638-1648. [PMID: 23334175 DOI: 10.1039/c2nr33173j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Single crystalline wurtzite ternary and quaternary semiconductor nanoribbons (CuInS(2), CuIn(x)Ga(1-x)S(2)) were synthesized through a solution-based method. The structure and composition of the nanoribbons were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), the corresponding fast Fourier transform (FFT) and nanoscale-resolved elemental mapping. Detailed investigation of the growth mechanism by monitoring the structures and morphologies of the nanoribbons during the growth indicates that Cu(1.75)S nanocrystals are formed first and act as a catalyst for the further growth of the nanoribbons. The high mobility of Cu(+) promotes the generation of Cu(+) vacancies in Cu(1.75)S, which will facilitate the diffusion of Cu, In or Ga species from solution into Cu(1.75)S to reach supersaturated states. The supersaturated species in the Cu(1.75)S catalyst, Cu-In-S and Cu-In-Ga-S species, start to condense and crystallize to form wurtzite CuInS(2) or CuIn(x)Ga(1-x)S(2) phases, firstly resulting in two-sided nanoparticles. Successive crystallizations gradually impel the Cu(1.75)S catalyst head forward and prolong the length of the CuInS(2) or CuIn(x)Ga(1-x)S(2) body, forming heterostructured nanorods and thus nanoribbons. The optical band gaps of CuIn(x)Ga(1-x)S(2) nanoribbons can be continuously adjusted between 1.44 eV and 1.91 eV, depending on the Ga concentration in nanoribbons. The successful preparation of those ternary and quaternary semiconductor nanoribbons provide us an opportunity to study their photovoltaic properties. The primary photoresponsive current measurements demonstrate that wurtzite CuIn(x)Ga(1-x)S(2) nanoribbons are excellent photoactive materials. Furthermore, this facile method could open a new way to synthesize other various nano-structured ternary and quaternary semiconductors, such as CuInSe(2) and CuIn(x)Ga(1-x)Se(2), for applications in solar cells and other fields.
Collapse
Affiliation(s)
- Qiang Li
- Nanomaterials & Chemistry Key Laboratory, College of Chemistry and Material Engineering, Wenzhou University, Wenzhou 325027, PR China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Isac L, Andronic L, Enesca A, Duta A. Copper sulfide films obtained by spray pyrolysis for dyes photodegradation under visible light irradiation. J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2012.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Gao MR, Xu YF, Jiang J, Yu SH. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev 2013; 42:2986-3017. [DOI: 10.1039/c2cs35310e] [Citation(s) in RCA: 1243] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Li Q, Zou C, Zhai L, Zhang L, Yang Y, Chen X, Huang S. Synthesis of wurtzite CuInS2 nanowires by Ag2S-catalyzed growth. CrystEngComm 2013. [DOI: 10.1039/c2ce26944a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Abstract
We review critically the advances in the synthesis of colloidal nanowires that have occurred over the past three years, with a focus on those that produced very thin (or “ultrathin”) nanowires (∼2–3 nm in diameter or less). We discuss the importance of these ultrathin nanowires, especially in light of the emerging evidence of their topological properties and their potential similarities with polymers.
Collapse
Affiliation(s)
- Anton Repko
- Department of Materials Science & Engineering, Iowa State University of Science and Technology, 2240J Hoover Hall, Ames, IA 50011, USA
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Ludovico Cademartiri
- Department of Materials Science & Engineering, Iowa State University of Science and Technology, 2240J Hoover Hall, Ames, IA 50011, USA
| |
Collapse
|
38
|
A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat Commun 2012; 3:1177. [DOI: 10.1038/ncomms2181] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/01/2012] [Indexed: 11/08/2022] Open
|
39
|
Xu M, Wu H, Da P, Zhao D, Zheng G. Unconventional 0-, 1-, and 2-dimensional single-crystalline copper sulfide nanostructures. NANOSCALE 2012; 4:1794-1799. [PMID: 22310992 DOI: 10.1039/c2nr11931e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report the synthesis of several unconventional 0-, 1- and 2-dimensional copper sulfide nanostrucutures by the chemical vapor deposition method. The key factor for morphology and structure control of a variety of copper sulfide products is the tuning of deposition and growth temperature to fit for the surface energy barriers and promote different growth directions. At a high growth temperature (480 °C) that provides enough thermal energy, a 0-D octahedral copper sulfide single crystal structure was synthesized. At a slightly lower growth temperature (460 °C), a new 1-D copper sulfide nanorod structure with a nanocrystal head was discovered for the first time. At a much lower growth temperature (150 °C), 2-D copper sulfide nanoflakes with a single crystal hexagonal structure were obtained. These novel structural varieties of copper sulfide can lead to discovering more unconventional material structures and growth mechanisms of other transitional metal chalcogenides, and may allow for new copper sulfide based devices and applications.
Collapse
Affiliation(s)
- Ming Xu
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China
| | | | | | | | | |
Collapse
|
40
|
Amperometric biosensor based on hemoglobin immobilized on Cu2S nanorods/nafion nanocomposite film for the determination of polyphenols. J Solid State Electrochem 2012. [DOI: 10.1007/s10008-012-1673-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
41
|
Gao MR, Jiang J, Yu SH. Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:13-27. [PMID: 21972127 DOI: 10.1002/smll.201101573] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Indexed: 05/05/2023]
Abstract
Late transition metal chalcogenide (LTMC) nanomaterials have been introduced as a promising Pt-free oxygen reduction reaction (ORR) electrocatalysts because of their low cost, good ORR activity, high methanol tolerance, and facile synthesis. Herein, an overview on the design and synthesis of LTMC nanomaterials by solution-based strategies is presented along with their ORR performances. Current solution-based synthetic approaches towards LTMC nanomaterials include a hydrothermal/solvothermal approach, single-source precursor approach, hot-injection approach, template-directed soft synthesis, and Kirkendall-effect-induced soft synthesis. Although the ORR activity and stability of LTMC nanomaterials are still far from what is needed for practical fuel-cell applications, much enhanced electrocatalytic performance can be expected. Recent advances have emphasized that decorating the surface of the LTMC nanostructures with other functional nanoparticles can lead to much better ORR catalytic activity. It is believed that new synthesis approaches to LTMCs, modification techniques of LTMCs, and LTMCs with desirable morphology, size, composition, and structures are expected to be developed in the future to satisfy the requirements of commercial fuel cells.
Collapse
Affiliation(s)
- Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P.R. China
| | | | | |
Collapse
|
42
|
Wang JJ, Xue DJ, Guo YG, Hu JS, Wan LJ. Bandgap Engineering of Monodispersed Cu2–xSySe1–y Nanocrystals through Chalcogen Ratio and Crystal Structure. J Am Chem Soc 2011; 133:18558-61. [DOI: 10.1021/ja208043g] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian-Jun Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Ding-Jiang Xue
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Yu-Guo Guo
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Jin-Song Hu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Li-Jun Wan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
43
|
Zhu G, Zhang S, Xu Z, Ma J, Shen X. Ultrathin ZnS Single Crystal Nanowires: Controlled Synthesis and Room-Temperature Ferromagnetism Properties. J Am Chem Soc 2011; 133:15605-12. [DOI: 10.1021/ja2049258] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guoxing Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shuguang Zhang
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | | | | | - Xiaoping Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
44
|
Cademartiri L, Kitaev V. On the nature and importance of the transition between molecules and nanocrystals: towards a chemistry of "nanoscale perfection". NANOSCALE 2011; 3:3435-46. [PMID: 21796281 DOI: 10.1039/c1nr10365b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This paper discusses the importance of the transition between molecular compounds and nanocrystals. The boundary between molecular and nanocrystals/nanoclusters can be defined by the emergence of the bulk phase; atoms in the core of the nanoclusters that are not bound to ligands. This transition in dimensions and structural organization is important because it overlaps with the boundary between atomically defined moieties (molecules can be isolated with increasing purity) and mixtures (nanocrystals have a distribution of sizes, shapes, and defects; they cannot be easily separated into batches of structurally identical species). Passing through this boundary, as the size of a structure increases beyond a few nanometres, the information about the position of each atom gradually disappears. This loss of structural information about a chemical structure fundamentally compromises our ability to use it as a part of a complex chemical system. If we are to engineer complex functions encoded in a chemical language, we will need pure batches of atomically defined (truly monodisperse) nanoscale compounds, and we will need to understand how to make them and preserve them over a broad range of length scales, compositions, and timeframes. In this review we survey most classes of monodisperse nanomaterials (mostly nanoclusters) and highlight the recent breakthroughs in this area which might be spearheading the development of a chemistry of "nanoscale perfection".
Collapse
Affiliation(s)
- Ludovico Cademartiri
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| | | |
Collapse
|
45
|
Rengaraj S, Venkataraj S, Tai CW, Kim Y, Repo E, Sillanpää M. Self-assembled mesoporous hierarchical-like In2S3 hollow microspheres composed of nanofibers and nanosheets and their photocatalytic activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5534-5541. [PMID: 21466160 DOI: 10.1021/la104780d] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Novel template-free hierarchical-like In(2)S(3) hollow microspheres were synthesized using thiosemicarbazide (NH(2)NHCSNH(2)) as both a sulfur source and a capping ligand in a ethanol/water system. In this study, we demonstrate that several process parameters, such as the reaction time and precursor ratio, strongly influence the morphology of the final product. The In(NO(3))(3)/thiosemicarbazide ratios were found to effectively play crucial roles in the morphologies of the hierarchical-like In(2)S(3) hollow microsphere nanostructure. With the ratios increasing from two to four, the In(2)S(3) crystals exhibited almost spherical morphologies. The synthesized products have been characterized by a variety of methods, including X-ray powder diffraction (XRD), Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffused reflectance spectroscopy (UV-vis DRS). XRD analysis confirmed the tetragonal structure of the In(2)S(3) hollow microspheres. The products show complex hierarchical structures assembled from nanoscale building blocks. The morphology evolution can be realized on both outside (surface) and inside (hollow cavity) the microsphere. The surface area analysis showed that the porous In(2)S(3) possesses a specific surface area of 108 m(2)/g and uniform distribution of pore sizes corresponding to the size of pores resulting from the self-assembled structures with flakes. The optical properties of In(2)S(3) were also investigated by UV-vis DRS, which indicated that our In(2)S(3) microsphere samples possess a band gap of ∼1.96 eV. Furthermore, the photocatalytic activity studies revealed that the synthesized In(2)S(3) hollow microspheres exhibit an excellent photocatalytic performance in rapidly degrading aqueous methylene blue dye solution under visible light irradiation. These results suggest that In(2)S(3) hollow microspheres will be an interesting candidate for photocatalytic detoxification studies under visible light radiation.
Collapse
Affiliation(s)
- Selvaraj Rengaraj
- Laboratory of Applied Environmental Chemistry, University of Eastern Finland, Patteristonkatu 1, FI-50100 Mikkeli, Finland.
| | | | | | | | | | | |
Collapse
|
46
|
Regulacio MD, Ye C, Lim SH, Bosman M, Polavarapu L, Koh WL, Zhang J, Xu QH, Han MY. One-pot synthesis of Cu1.94S-CdS and Cu1.94S-Zn(x)Cd(1-x)S nanodisk heterostructures. J Am Chem Soc 2011; 133:2052-5. [PMID: 21280573 DOI: 10.1021/ja1090589] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanodisk heterostructures consisting of monoclinic Cu(1.94)S and wurtzite CdS have been colloidally synthesized for the first time. Initially, hexagonal-shaped nanodisks of Cu(1.94)S were produced upon thermolysis of a copper complex in a solvent mixture of HDA and TOA at 250 °C. Rapid addition of Cd precursor to the reaction mixture resulted in the partial conversion of Cu(1.94)S into CdS, yielding Cu(1.94)S-CdS nanoheterostructures. The original morphology of the Cu(1.94)S nanodisks was conserved during the transformation. When Zn precursor was added together with the Cd precursor, Cu(1.94)S-Zn(x)Cd(1-x)S nanodisks were generated. These two-component nanostructures are potentially useful in the fabrication of heterojunction solar cells.
Collapse
Affiliation(s)
- Michelle D Regulacio
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 3 Research Link, Singapore 117602
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Li N, Zhang X, Chen S, Yang W, Kang H, Tan W. One-pot self-assembly of flower-like Cu2S structures with near-infrared photoluminescent properties. CrystEngComm 2011. [DOI: 10.1039/c1ce05603d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Li G, Liu M, Liu H. Controlled synthesis of porous flowerlike Cu2S microspheres with nanosheet-assembly. CrystEngComm 2011. [DOI: 10.1039/c0ce00973c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Zhu Y, Mei T, Wang Y, Qian Y. Formation and morphology control of nanoparticles via solution routes in an autoclave. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11079a] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Li W, Shavel A, Guzman R, Rubio-Garcia J, Flox C, Fan J, Cadavid D, Ibáñez M, Arbiol J, Morante JR, Cabot A. Morphology evolution of Cu2−xS nanoparticles: from spheres to dodecahedrons. Chem Commun (Camb) 2011; 47:10332-4. [DOI: 10.1039/c1cc13803k] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|