1
|
Yeung CS, Tse HY, Lau CY, Guan J, Huang J, Phillips DL, Leu SY. Insights into unexpected photoisomerization from photooxidation of tribromoacetic acid in aqueous environment using ultrafast spectroscopy. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126214. [PMID: 34102359 DOI: 10.1016/j.jhazmat.2021.126214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Haloacetic acids are carcinogenic disinfection by-products (DPBs) and their photo-decomposition pathways, especially for those containing bromine and iodine, are not fully understood. In this study, femtosecond transient absorption (fs-TA) spectroscopy experiments were introduced for the first time to investigate the photochemistry of tribromoacetic acid. The fs-TA experiments showed that a photoisomerization intermediate species HOOCCBr2-Br (iso-TBAA) was formed within several picoseconds after the excitation of TBAA. The absorption wavelength of the iso-TBAA was supported by time-dependent density calculations. With the Second-order Møller-Plesset perturbation theory, the structures and thermodynamics of the OH-insertion reactions of iso-TBAA were elucidated when water molecules were involved in the reaction complex. The calculations also revealed that the isomer species were able to react with water with its reaction dynamics dramatically catalyzed by the hydrogen bonding network. The proposed water catalyzed OH-insertion/HBr elimination mechanism predicted three major photoproducts, namely, HBr, CO and CO2, which was consistent with the photolysis experiments with firstly reported CO formation rate and mass conversion yield as 0.096 min-1 and 0.75 ± 0.1 respectively. The spectroscopic technique, numerical tool and disclosed mechanisms provided insights on photodecomposition and subsequent reactions of polyhalo-DPBs contain heavy atom(s) (e.g., Br, I) with water, aliphatic alcohols or other nucleophiles.
Collapse
Affiliation(s)
- Chi Shun Yeung
- Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Ho-Yin Tse
- Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Chun Yin Lau
- Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Jianyu Guan
- Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Shao-Yuan Leu
- Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
2
|
Yan Z, Du L, Lan X, Zhang X, Phillips DL. Time-resolved spectroscopic and density functional theory investigation of the influence of the leaving group on the generation of a binol quinone methide. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Marcellini M, Nasedkin A, Zietz B, Petersson J, Vincent J, Palazzetti F, Malmerberg E, Kong Q, Wulff M, van der Spoel D, Neutze R, Davidsson J. Transient isomers in the photodissociation of bromoiodomethane. J Chem Phys 2018; 148:134307. [PMID: 29626862 DOI: 10.1063/1.5005595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The photochemistry of halomethanes is fascinating for the complex cascade reactions toward either the parent or newly synthesized molecules. Here, we address the structural rearrangement of photodissociated CH2IBr in methanol and cyclohexane, probed by time-resolved X-ray scattering in liquid solution. Upon selective laser cleavage of the C-I bond, we follow the reaction cascade of the two geminate geometrical isomers, CH2I-Br and CH2Br-I. Both meta-stable isomers decay on different time scales, mediated by solvent interaction, toward the original parent molecule. We observe the internal rearrangement of CH2Br-I to CH2I-Br in cyclohexane by extending the time window up to 3 μs. We track the photoproduct kinetics of CH2Br-I in methanol solution where only one isomer is observed. The effect of the polarity of solvent on the geminate recombination pathways is discussed.
Collapse
Affiliation(s)
- Moreno Marcellini
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Alexandr Nasedkin
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Burkhard Zietz
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Jonas Petersson
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Jonathan Vincent
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Federico Palazzetti
- Universitá di Perugia, Dipartimento di Chimica, Biologia e Biotecnologie, 06123 Perugia, Italy
| | - Erik Malmerberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Qingyu Kong
- Argonne National Laboratory's, Xray Science Division, 9700 S Cass Ave., Argonne, Illinois 60439, USA
| | - Michael Wulff
- European Synchrotron Radiation Facility, B.P. 220, F-380 43 Grenoble Cedex, France
| | - David van der Spoel
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, P.O. Box 596, SE-751 24 Uppsala, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Jan Davidsson
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| |
Collapse
|
4
|
Dai X, Song D, Liu K, Su H. Photoinduced C—I bond homolysis of 5-iodouracil: A singlet predissociation pathway. J Chem Phys 2017; 146:025103. [DOI: 10.1063/1.4973650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Xiaojuan Dai
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Kunhui Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hongmei Su
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Reid SA. When isomerisation is electron transfer: the intriguing story of the iso-halocarbons. INT REV PHYS CHEM 2014. [DOI: 10.1080/0144235x.2014.942548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Li MD, Du Y, Chuang YP, Xue J, Phillips DL. Water concentration dependent photochemistry of ketoprofen in aqueous solutions. Phys Chem Chem Phys 2010; 12:4800-8. [DOI: 10.1039/b919330h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Chuang YP, Xue J, Du Y, Li M, An HY, Phillips DL. Time-Resolved Resonance Raman and Density Functional Theory Investigation of the Photochemistry of (S)-Ketoprofen. J Phys Chem B 2009; 113:10530-9. [DOI: 10.1021/jp903234m] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yung Ping Chuang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Jiadan Xue
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Yong Du
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Mingde Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Hui-Ying An
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| |
Collapse
|
8
|
Du Y, Xue J, Li M, Phillips DL. Time-Resolved Resonance Raman and Density Functional Theory Investigation of the Photoreactions of Benzophenone in Aqueous Solution. J Phys Chem A 2009; 113:3344-52. [DOI: 10.1021/jp811173x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yong Du
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Jiadan Xue
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Mingde Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| |
Collapse
|
9
|
Zepp RG, Erickson DJ, Paul ND, Sulzberger B. Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photochem Photobiol Sci 2007; 6:286-300. [PMID: 17344963 DOI: 10.1039/b700021a] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This report assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are often linked to concurrent exposure to UV-A radiation (315-400 nm), which is influenced by global climate change. These interactions involving UV radiation (the combination of UV-B and UV-A) are central to the prediction and evaluation of future Earth environmental conditions. There is increasing evidence that elevated UV-B radiation has significant effects on the terrestrial biosphere with implications for the cycling of carbon, nitrogen and other elements. The cycling of carbon and inorganic nutrients such as nitrogen can be affected by UV-B-mediated changes in communities of soil organisms, probably due to the effects of UV-B radiation on plant root exudation and/or the chemistry of dead plant material falling to the soil. In arid environments direct photodegradation can play a major role in the decay of plant litter, and UV-B radiation is responsible for a significant part of this photodegradation. UV-B radiation strongly influences aquatic carbon, nitrogen, sulfur and metals cycling that affect a wide range of life processes. UV-B radiation changes the biological availability of dissolved organic matter to microorganisms, and accelerates its transformation into dissolved inorganic carbon and nitrogen, including carbon dioxide and ammonium. The coloured part of dissolved organic matter (CDOM) controls the penetration of UV radiation into water bodies, but CDOM is also photodegraded by solar UV radiation. Changes in CDOM influence the penetration of UV radiation into water bodies with major consequences for aquatic biogeochemical processes. Changes in aquatic primary productivity and decomposition due to climate-related changes in circulation and nutrient supply occur concurrently with exposure to increased UV-B radiation, and have synergistic effects on the penetration of light into aquatic ecosystems. Future changes in climate will enhance stratification of lakes and the ocean, which will intensify photodegradation of CDOM by UV radiation. The resultant increase in the transparency of water bodies may increase UV-B effects on aquatic biogeochemistry in the surface layer. Changing solar UV radiation and climate also interact to influence exchanges of trace gases, such as halocarbons (e.g., methyl bromide) which influence ozone depletion, and sulfur gases (e.g., dimethylsulfide) that oxidize to produce sulfate aerosols that cool the marine atmosphere. UV radiation affects the biological availability of iron, copper and other trace metals in aquatic environments thus potentially affecting metal toxicity and the growth of phytoplankton and other microorganisms that are involved in carbon and nitrogen cycling. Future changes in ecosystem distribution due to alterations in the physical and chemical climate interact with ozone-modulated changes in UV-B radiation. These interactions between the effects of climate change and UV-B radiation on biogeochemical cycles in terrestrial and aquatic systems may partially offset the beneficial effects of an ozone recovery.
Collapse
Affiliation(s)
- R G Zepp
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, 960 College Station Road, Athens, Georgia 30605-2700, USA
| | | | | | | |
Collapse
|
10
|
Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2005. Photochem Photobiol Sci 2006. [DOI: 10.1039/b515670j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|