1
|
Smith BT, Hashmi SM. In situ polymer gelation in confined flow controls intermittent dynamics. SOFT MATTER 2024; 20:1858-1868. [PMID: 38315155 DOI: 10.1039/d3sm01389h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Polymer flows through pores, nozzles and other small channels govern engineered and naturally occurring dynamics in many processes, from 3D printing to oil recovery in the earth's subsurface to a wide variety of biological flows. The crosslinking of polymers can change their material properties dramatically, and it is advantageous to know a priori whether or not crosslinking polymers will lead to clogged channels or cessation of flow. In this study, we investigate the flow of a common biopolymer, alginate, while it undergoes crosslinking by the addition of a crosslinker, calcium, driven through a microfluidic channel at constant flow rate. We map the boundaries defining complete clogging and flow as a function of flow rate, polymer concentration, and crosslinker concentration. Interestingly, the boundaries of the dynamic behavior qualitatively match the thermodynamic jamming phase diagram of attractive colloidal particles. That is, polymer clogging occurs in a region analogous to colloids in a jammed state, while the polymer flows in regions corresponding to colloids in a liquid phase. However, between the dynamic regimes of complete clogging and unrestricted flow, we observe a remarkable phenomenon in which the crosslinked polymer intermittently clogs the channel. This pattern of deposition and removal of a crosslinked gel is simultaneously highly reproducible, long-lasting, and controllable by system parameters. Higher concentrations of polymer and cross-linker result in more frequent ablation, while gels formed at lower component concentrations ablate less frequently. Upon ablation, the eluted gel maintains its shape, resulting in micro-rods several hundred microns long. Our results suggest both rich dynamics of intermittent flows in crosslinking polymers and the ability to control them.
Collapse
Affiliation(s)
- Barrett T Smith
- Department of Chemical Engineering, Northeastern University, USA.
| | - Sara M Hashmi
- Department of Chemical Engineering, Northeastern University, USA.
- Department of Mechanical & Industrial Engineering, Northeastern University, USA
- Department of Chemistry & Chemical Biology, Northeastern University, USA
| |
Collapse
|
2
|
Gautam S, Lapcik L, Lapcikova B, Repka D, Szyk-Warszyńska L. Physicochemical Characterisation of Polysaccharide Films with Embedded Bioactive Substances. Foods 2023; 12:4454. [PMID: 38137258 PMCID: PMC10743232 DOI: 10.3390/foods12244454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, sodium carboxymethyl cellulose (CMCNa) bioactive films, crosslinked with citric acid (CA), were prepared and comprehensively examined for their suitability in various applications, focusing on food packaging. The films displayed favourable properties, including appropriate thickness, transparency, and moisture content, essential for packaging purposes. Moreover, the films exhibited excellent moisture absorption rate and barrier properties, attributed to the high concentration of CMCNa and the inclusion of a CA. These films presented no significant effect of crosslinking and bioactive components on their mechanical strength, as evidenced by tensile strength and elongation at break values. Thermal stability was demonstrated in the distinct weight loss events at different temperature ranges, with crosslinking contributing to slightly enhanced thermal performance. Furthermore, the films showed varying antioxidant activity levels, influenced by temperature and the solubility of the films in different media, indicating their potential for diverse applications. Overall, these bioactive films showed promise as versatile materials with desirable properties for food packaging and related applications, where the controlled release of bioactive components is advantageous for enhancing the shelf life and safety of food products. These findings contribute to the growing research in biodegradable and functional food packaging materials.
Collapse
Affiliation(s)
- Shweta Gautam
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlín, Nam. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic; (S.G.); or (B.L.)
| | - Lubomir Lapcik
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlín, Nam. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic; (S.G.); or (B.L.)
- Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Barbora Lapcikova
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlín, Nam. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic; (S.G.); or (B.L.)
- Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - David Repka
- Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Lilianna Szyk-Warszyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland;
| |
Collapse
|
3
|
Keldibekova R, Suleimenova S, Nurgozhina G, Kopishev E. Interpolymer Complexes Based on Cellulose Ethers: Application. Polymers (Basel) 2023; 15:3326. [PMID: 37571220 PMCID: PMC10422396 DOI: 10.3390/polym15153326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Interpolymer complexes based on cellulose ethers have gained significant interest in recent years due to their versatile applications. These complexes are formed by combining different polymers through non-covalent interactions, resulting in stable structures. This article provides an overview of the various fields where IPCs based on cellulose ethers find application. IPCs based on cellulose ethers show great potential in drug delivery systems. These complexes can encapsulate drugs and enable controlled release, making them suitable for sustained drug delivery. They offer advantages in terms of precise dosage and enhanced therapeutic efficacy. Coatings and adhesives also benefit from IPCs based on cellulose ethers. These complexes can form films with excellent mechanical strength and enhanced water resistance, providing durability and protection. They have applications in various industries where coatings and adhesives play a crucial role. In food packaging, IPCs based on cellulose ethers are highly relevant. These complexes can form films with effective barrier properties against oxygen and water vapor, making them ideal for packaging perishable foods. They help extend to shelf life of food products by minimizing moisture and oxygen transfer. Various methods, such as solvent casting, coacervation, and electrostatic complexation, are employed to synthesize IPCs based on cellulose ethers.
Collapse
Affiliation(s)
- Raushan Keldibekova
- Faculty of Natural Sciences, Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (R.K.)
| | - Symbat Suleimenova
- Faculty of Natural Sciences, Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (R.K.)
| | - Gulden Nurgozhina
- Faculty of Natural Sciences, Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (R.K.)
| | - Eldar Kopishev
- Faculty of Natural Sciences, Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (R.K.)
- Faculty of Natural Sciences, Department of General and Inorganic Chemistry, Bukhara State University, Bukhara 705018, Uzbekistan
| |
Collapse
|
4
|
Murtaja Y, Lapčík L, Lapčíková B, Gautam S, Vašina M, Spanhel L, Vlček J. Intelligent high-tech coating of natural biopolymer layers. Adv Colloid Interface Sci 2022; 304:102681. [PMID: 35483124 DOI: 10.1016/j.cis.2022.102681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 11/01/2022]
Abstract
Polymeric materials play a vital role in our daily life, but the growing concern for the environment demands economical and natural biopolymers that can be cross-linked to create technologically innovative lightweight materials. Their cellular matrix with extreme flexibility makes them highly acceptable for application prospects in material science, engineering, and biomedical applications. Furthermore, their biocompatibility, mechanical properties, and structural diversity provide a gateway to research them to form technologically important materials. In the light of the same, the review covers cellulose derivatives. The first section of the study covers the general properties and applications of cellulose and its derivatives. Then, the biopolymers are characterised based on their dielectric properties, crystallinity, rheology, and mechanical properties. An in-depth analysis of the diffuse process of swelling and dissolution followed by a brief discussion on diffusion and diffusion of crosslinking has been done. The review also covers a section on swelling and swelling kinetics of carboxymethyl cellulose (CMC) and hydroxyethyl cellulose (HEC). The examination of all the aforementioned parameters gives an insight into the future aspects of the biopolymers. Lastly, the study briefly covers some preferred choices of cross-linking agents and their effect on the biopolymers.
Collapse
|
5
|
Viscoelastic Behavior of Crude Oil-Gum Emulsions in Enhanced Oil Recovery. Polymers (Basel) 2022; 14:polym14051004. [PMID: 35267827 PMCID: PMC8912667 DOI: 10.3390/polym14051004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 01/26/2023] Open
Abstract
The experimental study of the Creep-recovery examination is necessary to understand the viscoelastic behavior of crude oil-Xanthan gum emulsions. The experimental measurements and analysis of these tests were completed using RheoStress RS100 under controlled stress CS-mode. Rheometers with CS-mode allow for a useful and direct technique for the experimental measurements of creep and recovery stages. This investigation covers a wide range of crude oil concentration of 0–75% by volume, Xanthan concentration range of 0–104 ppm, and two types of Xanthan gums are used and investigated. The creep-recovery measurements of crude oil-Xanthan gums emulsions were extensively investigated. It was important to find the linear viscoelastic range for the examined crude oil-Xanthan gum emulsions. The experimental measurements and analysis of the creep-recovery examinations showed that the linear viscoelastic range was up to 1 Pa. The experimental investigation showed that the higher the concentration of the used gum and crude oil, the lower the compliance of the emulsions. For the Xanthan concentrations of less than 103 ppm, the crude oil-gum emulsion exhibited viscous behavior. However, for the Xanthan concentration of higher than 103, the examined emulsions displayed viscoelastic behavior.
Collapse
|
6
|
Zhu K, Pamies R, Al‐Manasir N, Ginés Hernández Cifre J, García de la Torre J, Nyström B, Kjøniksen A. The Effect of Number of Arms on the Aggregation Behavior of Thermoresponsive Poly(N-isopropylacrylamide) Star Polymers. Chemphyschem 2020; 21:1258-1271. [PMID: 32352214 PMCID: PMC7317447 DOI: 10.1002/cphc.202000273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Indexed: 12/02/2022]
Abstract
The thermoresponsive nature of aqueous solutions of poly(N-isopropylacrylamide) (PNIPAAM) star polymers containing 2, 3, 4, and 6 arms has been investigated by turbidity, dynamic light scattering, rheology, and rheo-SALS. Simulations of the thermosensitive nature of the single star polymers have also been conducted. Some of the samples form aggregates even at temperatures significantly below the lower critical solution temperature (LCST) of PNIPAAM. Increasing concentration and number of arms promotes associations at low temperatures. When the temperature is raised, there is a competition between size increase due to enhanced aggregation and a size reduction caused by contraction. Monte Carlo simulations show that the single stars contract with increasing temperature, and that this contraction is more pronounced when the number of arms is increased. Some samples exhibit a minimum in the turbidity data after the initial increase at the cloud point. The combined rheology and rheo-SALS data suggest that this is due to a fragmentation of the aggregates followed by re-aggregation at even higher temperatures. Although the 6-arm star polymer aggregates more than the other stars at low temperatures, the more compact structure renders it less prone to aggregation at temperatures above the cloud point.
Collapse
Affiliation(s)
- Kaizheng Zhu
- Faculty of EngineeringØstfold University CollegeP.O. Box 7001757HaldenNorway
| | - Ramón Pamies
- Department of Material Engineering and ManufacturingTechnical University of Cartagena CartagenaMurcia30202Spain
| | | | | | | | - Bo Nyström
- Department of ChemistryUniversity of OsloP.O. Box 1033, Blindern0315OsloNorway
| | - Anna‐Lena Kjøniksen
- Faculty of EngineeringØstfold University CollegeP.O. Box 7001757HaldenNorway
| |
Collapse
|
7
|
Affiliation(s)
- Hongliang Kang
- Laboratory of Polymer Physics and Chemistry; Beijing National Laboratory of Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Ruigang Liu
- Laboratory of Polymer Physics and Chemistry; Beijing National Laboratory of Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Yong Huang
- Laboratory of Polymer Physics and Chemistry; Beijing National Laboratory of Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- National Research Center of Engineering Plastics; Technical Institute of Physics & Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
8
|
|
9
|
Espino-Díaz M, De Jesús Ornelas-Paz J, Martínez-Téllez MA, Santillán C, Barbosa-Cánovas GV, Zamudio-Flores PB, Olivas GI. Development and Characterization of Edible Films Based on Mucilage of Opuntia ficus-indica (L.). J Food Sci 2010; 75:E347-52. [DOI: 10.1111/j.1750-3841.2010.01661.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Beheshti N, Zhu K, Kjøniksen AL, Nyström B. Characterization of complexation and phase behavior of mixed systems of unmodified and hydrophobically modified oppositely charged polyelectrolytes. Colloid Polym Sci 2010. [DOI: 10.1007/s00396-010-2239-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Beheshti N, Kjøniksen AL, Zhu K, Knudsen KD, Nyström B. Viscosification in Polymer−Surfactant Mixtures at Low Temperatures. J Phys Chem B 2010; 114:6273-80. [DOI: 10.1021/jp100333f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Neda Beheshti
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway, Department of Pharmaceutics, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, Norway, and Department of Physics, Institute for Energy Technology, P.O. Box 40, N-2027 Kjeller, Norway
| | - Anna-Lena Kjøniksen
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway, Department of Pharmaceutics, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, Norway, and Department of Physics, Institute for Energy Technology, P.O. Box 40, N-2027 Kjeller, Norway
| | - Kaizheng Zhu
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway, Department of Pharmaceutics, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, Norway, and Department of Physics, Institute for Energy Technology, P.O. Box 40, N-2027 Kjeller, Norway
| | - Kenneth D. Knudsen
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway, Department of Pharmaceutics, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, Norway, and Department of Physics, Institute for Energy Technology, P.O. Box 40, N-2027 Kjeller, Norway
| | - Bo Nyström
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway, Department of Pharmaceutics, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, Norway, and Department of Physics, Institute for Energy Technology, P.O. Box 40, N-2027 Kjeller, Norway
| |
Collapse
|
12
|
de Bruyn JR, Oppong FK. Microrheology and dynamics of an associative polymer. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2010; 31:25-35. [PMID: 20175286 DOI: 10.1140/epje/i2010-10545-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We study the microscopic viscoelastic properties and relaxation dynamics of solutions of a side-chain associative polymer, hydrophobically modified hydroxyethyl cellulose (hmHEC). Dynamic light scattering from small tracer particles suspended in the polymer solutions is used to determine their viscous and elastic moduli on the scale of the particles. Bulk-scale viscoelastic properties are measured by shear rheometry. The motion of the tracer particles in hmHEC is diffusive at short times and subdiffusive at intermediate and long times. The long-time subdiffusive motion was not observed in parallel experiments on unmodified HEC solutions, and is explained in terms of hindered reptation of the hydrophobically modified polymer chains in the associative network. Dynamic light scattering from the polymer molecules themselves shows that chain relaxation in hmHEC is dominated by slow concentration-dependent processes due to the large-scale associative network structure, while that in HEC is dominated by fast concentration independent Rouse-like dynamics.
Collapse
Affiliation(s)
- J R de Bruyn
- Department of Physics and Astronomy, University of Western Ontario, London, Canada
| | | |
Collapse
|
13
|
Ghannam MT, Esmail N. Storage and Loss Moduli of Alcoflood Polymers Used in Enhanced Oil Recovery Processes. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2010. [DOI: 10.1252/jcej.09we083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mamdouh T. Ghannam
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University
| | - Nabil Esmail
- Department of Mechanical Engineering, Concordia University
| |
Collapse
|
14
|
Preparation and characterization of cross-linked polymeric nanoparticles for enhanced oil recovery applications. J Appl Polym Sci 2009. [DOI: 10.1002/app.30176] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Beheshti N, Zhu K, Kjøniksen AL, Nyström B. Interaction behaviors in aqueous solutions of negatively and positively charged hydrophobically modified hydroxyethylcellulose in the presence of an anionic surfactant. Colloids Surf A Physicochem Eng Asp 2008. [DOI: 10.1016/j.colsurfa.2008.06.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Formation of colloidal dispersion gels from aqueous polyacrylamide solutions. Colloids Surf A Physicochem Eng Asp 2008. [DOI: 10.1016/j.colsurfa.2007.11.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Liu Z, Maleki A, Zhu K, Kjøniksen AL, Nyström B. Intramolecular and Intermolecular Association during Chemical Cross-Linking of Dilute Solutions of Different Polysaccharides under the Influence of Shear Flow. J Phys Chem B 2008; 112:1082-9. [DOI: 10.1021/jp076497h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhengjun Liu
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315, Oslo, Norway
| | - Atoosa Maleki
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315, Oslo, Norway
| | - Kaizheng Zhu
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315, Oslo, Norway
| | - Anna-Lena Kjøniksen
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315, Oslo, Norway
| | - Bo Nyström
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315, Oslo, Norway
| |
Collapse
|
18
|
Radu JÉF, Novak L, Hartmann JF, Beheshti N, Kjøniksen AL, Nyström B, Borbély J. Structural and dynamical characterization of poly-gamma-glutamic acid-based cross-linked nanoparticles. Colloid Polym Sci 2007. [DOI: 10.1007/s00396-007-1776-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Zhu K, Jin H, Kjøniksen AL, Nyström B. Anomalous Transition in Aqueous Solutions of a Thermoresponsive Amphiphilic Diblock Copolymer. J Phys Chem B 2007; 111:10862-70. [PMID: 17718473 DOI: 10.1021/jp074163m] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The influence of shear flow on aggregation and disaggregation in aqueous solutions of the thermoresponsive methoxy-poly(ethylene glycol)-block-poly(N-isopropylacrylamide) (MPEG53-b-PNIPAAM113) copolymer that exhibits a lower critical solution temperature was investigated with the aid of turbidity, shear viscosity, and rheo small angle light scattering (rheo-SALS) methods. The turbidity results at quiescent conditions revealed a novel transition peak in the turbidity curve at intermediate temperatures, which reflects the delicate interplay between temperature-induced aggregation and shrinking of the species. A similar anomalous transition peak (located at the same temperature) was observed in the steady shear viscosity measurements at intermediate temperatures, and the amplitude of the peak was reduced with increasing shear rate as a consequence of breakup of interaggregate chains. At low temperatures (low sticking probability), enhanced shear rate generated interpolymer aggregates; whereas in the high-temperature domain (high sticking probability) association structures were broken up as the shear rate was increased. The rheo-SALS experiments disclosed growth of aggregates at low temperatures and destruction of association complexes at high temperatures. An increase of the cloud point temperature with rising shear rate is reported, which is interpreted as being a disruption of clusters under the influence of shear stresses.
Collapse
Affiliation(s)
- Kaizheng Zhu
- Department of Chemistry, University of Oslo, Norway
| | | | | | | |
Collapse
|
20
|
Structure and dynamics of aqueous mixtures of an anionic cellulose derivative and anionic or cationic surfactants. Colloids Surf A Physicochem Eng Asp 2006. [DOI: 10.1016/j.colsurfa.2005.12.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Maleki A, Kjøniksen AL, Knudsen KD, Nyström B. Dynamical and structural behavior of hydroxyethylcellulose hydrogels obtained by chemical gelation. POLYM INT 2006. [DOI: 10.1002/pi.1978] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|