1
|
The Impact of Electron Correlation on Describing QM/MM Interactions in the Attendant Molecular Dynamics Simulations of CO in Myoglobin. Sci Rep 2020; 10:8539. [PMID: 32444817 PMCID: PMC7244521 DOI: 10.1038/s41598-020-65475-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/05/2020] [Indexed: 01/10/2023] Open
Abstract
The impact of the dispersion and electron correlation effects on describing quantum mechanics/molecular mechanics (QM/MM) interactions in QM/MM molecular dynamics (MD) simulations was explored by performing a series of up to 2 ns QM/MM MD simulations on the B states of the myoglobin-carbon monoxide (MbCO) system. The results indicate that both dispersion and electron correlations play significant roles in the simulation of the ratios of two B states (B1/B2), which suggests that the inclusion of the electron correlation effects is essential for accurately modeling the interactions between QM and MM subsystems. We found that the QM/MM interaction energies between the CO and the surroundings statistically present a linear correlation with the electric fields along the CO bond. This indicates that QM/MM interactions can be described by a simple physical model of a dipole with constant moment under the action of the electric fields. The treatment provides us with an accurate and effective approach to account for the electron correlation effects in QM/MM MD simulations.
Collapse
|
2
|
Watanabe M, Kanai Y, Nakamura S, Nishimura R, Shibata T, Momotake A, Yanagisawa S, Ogura T, Matsuo T, Hirota S, Neya S, Suzuki A, Yamamoto Y. Synergistic Effect of Distal Polar Interactions in Myoglobin and Their Structural Consequences. Inorg Chem 2018; 57:14269-14279. [DOI: 10.1021/acs.inorgchem.8b02302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | - Sachiko Yanagisawa
- Department of Life Science, Graduate School of Life Science, University of Hyogo,
Sayo-cho, Sayo-gun, Hyogo 678-1297, Japan
| | - Takashi Ogura
- Department of Life Science, Graduate School of Life Science, University of Hyogo,
Sayo-cho, Sayo-gun, Hyogo 678-1297, Japan
| | - Takashi Matsuo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Saburo Neya
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chuoh-Inohana, Chiba 260-8675, Japan
| | - Akihiro Suzuki
- Department of Materials Engineering, National Institute of Technology, Nagaoka College, Nagaoka 940-8532, Japan
| | - Yasuhiko Yamamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
3
|
El Hage K, Mondal P, Meuwly M. Free energy simulations for protein ligand binding and stability. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2017.1416115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Krystel El Hage
- Department of Chemistry, University of Basel , Basel, Switzerland
| | - Padmabati Mondal
- Department of Chemistry, University of Basel , Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel , Basel, Switzerland
| |
Collapse
|
4
|
Wang XW, Zhang JZH, He X. Ab initio Quantum Mechanics/Molecular Mechanics Molecular Dynamics Simulation of CO in the Heme Distal Pocket of Myoglobin. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1709169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xian-wei Wang
- College of Science, Zhejiang University of Technology, Hangzhou 310023, China
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Zhejiang Provincial Collaborative Innovation Center of High-end Laser Manufacturing Equipment, Hangzhou 310014, China
| | - John Z. H. Zhang
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York 10003, USA
| | - Xiao He
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
5
|
Structural Plasticity in Globins: Role of Protein Dynamics in Defining Ligand Migration Pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 105:59-80. [PMID: 27567484 DOI: 10.1016/bs.apcsb.2016.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Globins are a family of proteins characterized by the presence of the heme prosthetic group and involved in variety of biological functions in the cell. Due to their biological relevance and widespread distribution in all kingdoms of life, intense research efforts have been devoted to disclosing the relationships between structural features, protein dynamics, and function. Particular attention has been paid to the impact of differences in amino acid sequence on the topological features of docking sites and cavities and to the influence of conformational flexibility in facilitating the migration of small ligands through these cavities. Often, tunnels are carved in the interior of globins, and ligand exchange is regulated by gating residues. Understanding the subtle intricacies that relate the differences in sequence with the structural and dynamical features of globins with the ultimate aim of rationalizing the thermodynamics and kinetics of ligand binding continues to be a major challenge in the field. Due to the evolution of computational techniques, significant advances into our understanding of these questions have been made. In this review we focus our attention on the analysis of the ligand migration pathways as well as the function of the structural cavities and tunnels in a series of representative globins, emphasizing the synergy between experimental and theoretical approaches to gain a comprehensive knowledge into the molecular mechanisms of this diverse family of proteins.
Collapse
|
6
|
Soloviov M, Meuwly M. Reproducing kernel potential energy surfaces in biomolecular simulations: Nitric oxide binding to myoglobin. J Chem Phys 2016; 143:105103. [PMID: 26374062 DOI: 10.1063/1.4929527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multidimensional potential energy surfaces based on reproducing kernel-interpolation are employed to explore the energetics and dynamics of free and bound nitric oxide in myoglobin (Mb). Combining a force field description for the majority of degrees of freedom and the higher-accuracy representation for the NO ligand and the Fe out-of-plane motion allows for a simulation approach akin to a mixed quantum mechanics/molecular mechanics treatment. However, the kernel-representation can be evaluated at conventional force-field speed. With the explicit inclusion of the Fe-out-of-plane (Fe-oop) coordinate, the dynamics and structural equilibrium after photodissociation of the ligand are correctly described compared to experiment. Experimentally, the Fe-oop coordinate plays an important role for the ligand dynamics. This is also found here where the isomerization dynamics between the Fe-ON and Fe-NO state is significantly affected whether or not this co-ordinate is explicitly included. Although the Fe-ON conformation is metastable when considering only the bound (2)A state, it may disappear once the (4)A state is included. This explains the absence of the Fe-ON state in previous experimental investigations of MbNO.
Collapse
Affiliation(s)
- Maksym Soloviov
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
7
|
Cazade PA, Zheng W, Prada-Gracia D, Berezovska G, Rao F, Clementi C, Meuwly M. A comparative analysis of clustering algorithms: O2 migration in truncated hemoglobin I from transition networks. J Chem Phys 2015; 142:025103. [PMID: 25591387 DOI: 10.1063/1.4904431] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The ligand migration network for O2-diffusion in truncated Hemoglobin N is analyzed based on three different clustering schemes. For coordinate-based clustering, the conventional k-means and the kinetics-based Markov Clustering (MCL) methods are employed, whereas the locally scaled diffusion map (LSDMap) method is a collective-variable-based approach. It is found that all three methods agree well in their geometrical definition of the most important docking site, and all experimentally known docking sites are recovered by all three methods. Also, for most of the states, their population coincides quite favourably, whereas the kinetics of and between the states differs. One of the major differences between k-means and MCL clustering on the one hand and LSDMap on the other is that the latter finds one large primary cluster containing the Xe1a, IS1, and ENT states. This is related to the fact that the motion within the state occurs on similar time scales, whereas structurally the state is found to be quite diverse. In agreement with previous explicit atomistic simulations, the Xe3 pocket is found to be a highly dynamical site which points to its potential role as a hub in the network. This is also highlighted in the fact that LSDMap cannot identify this state. First passage time distributions from MCL clusterings using a one- (ligand-position) and two-dimensional (ligand-position and protein-structure) descriptor suggest that ligand- and protein-motions are coupled. The benefits and drawbacks of the three methods are discussed in a comparative fashion and highlight that depending on the questions at hand the best-performing method for a particular data set may differ.
Collapse
Affiliation(s)
- Pierre-André Cazade
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Wenwei Zheng
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas 77005, USA
| | - Diego Prada-Gracia
- School of Soft Matter Research, Freiburg Institute for Advanced Studies, Albertstrasse 19, 79104 Freiburg im Breisgau, Germany
| | - Ganna Berezovska
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Francesco Rao
- School of Soft Matter Research, Freiburg Institute for Advanced Studies, Albertstrasse 19, 79104 Freiburg im Breisgau, Germany
| | - Cecilia Clementi
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas 77005, USA
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
8
|
Khoshtariya DE, Dolidze TD, Shushanyan M, van Eldik R. Long-range electron transfer with myoglobin immobilized at Au/mixed-SAM junctions: mechanistic impact of the strong protein confinement. J Phys Chem B 2014; 118:692-706. [PMID: 24369906 DOI: 10.1021/jp4101569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Horse muscle myoglobin (Mb) was tightly immobilized at Au-deposited ~15-Å-thick mixed-type (1:1) alkanethiol SAMs, HS-(CH₂)₁₁-COOH/HS-(CH₂)₁₁-OH, and placed in contact with buffered H₂O or D₂O solutions. Fast-scan cyclic voltammetry (CV) and a Marcus-equation-based analysis were applied to determine unimolecular standard rate constants and reorganization free energies for electron transfer (ET), under variable-temperature (15-55 °C) and -pressure (0.01-150 MPa) conditions. The CV signal was surprisingly stable and reproducible even after multiple temperature and pressure cycles. The data analysis revealed the following values: standard rate constant, 33 s⁻¹ (25 °C, 0.01 MPa, H₂O); reorganization free energy, 0.5 ± 0.1 eV (throughout); activation enthalpy, 12 ± 3 kJ mol⁻¹; activation volume, -3.1 ± 0.2 cm³ mol⁻¹; and pH-dependent solvent kinetic isotope effect (k(H)⁰/k(D)⁰), 0.7-1.4. Furthermore, the values for the rate constant and reorganization free energy are very similar to those previously found for cytochrome c electrostatically immobilized at the monocomponent Au/HS-(CH₂)₁₁-COOH junction. In vivo, Mb apparently forms a natural electrostatic complex with cytochrome b₅ (cyt-b₅) through the "dynamic" (loose) docking pattern, allowing for a slow ET that is intrinsically coupled to the water's removal from the "defective" heme iron (altogether shaping the biological repair mechanism for Mb's "met" form). In contrary, our experiments rather mimic the case of a "simple" (tight) docking of the redesigned (mutant) Mb with cyt-b₅ (Nocek et al. J. Am. Chem. Soc. 2010, 132, 6165-6175). According to our analysis, in this configuration, Mb's distal pocket (linked to the "ligand channel") seems to be arrested within the restricted configuration, allowing the rate-determining reversible ET process to be coupled only to the inner-sphere reorganization (minimal elongation/shortening of an Fe-OH₂ bond) rather than the pronounced detachment (rebinding) of water and, hence, to be much faster.
Collapse
Affiliation(s)
- Dimitri E Khoshtariya
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg , 91058 Erlangen, Germany
| | | | | | | |
Collapse
|
9
|
Abstract
![]()
Myoglobin
(Mb) binds diatomic ligands, like O2, CO,
and NO, in a cavity that is only transiently accessible. Crystallography
and molecular simulations show that the ligands can migrate through
an extensive network of transiently connected cavities but disagree
on the locations and occupancy of internal hydration sites. Here,
we use water 2H and 17O magnetic relaxation
dispersion (MRD) to characterize the internal water molecules in Mb
under physiological conditions. We find that equine carbonmonoxy Mb
contains 4.5 ± 1.0 ordered internal water molecules with a mean
survival time of 5.6 ± 0.5 μs at 25 °C. The likely
locations of these water molecules are the four polar hydration sites,
including one of the xenon-binding cavities, that are fully occupied
in all high-resolution crystal structures of equine Mb. The finding
that water escapes from these sites, located 17–31 Å apart
in the protein, on the same μs time scale suggests a global
exchange mechanism. We propose that this mechanism involves transient
penetration of the protein by H-bonded water chains. Such a mechanism
could play a functional role by eliminating trapped ligands. In addition,
the MRD results indicate that 2 or 3 of the 11 histidine residues
of equine Mb undergo intramolecular hydrogen exchange on a μs
time scale.
Collapse
Affiliation(s)
- Shuji Kaieda
- Department of Biophysical Chemistry, Lund University , P.O. Box 124, SE-22100 Lund, Sweden
| | | |
Collapse
|
10
|
Boechi L, de Oliveira CAF, Da Fonseca I, Kizjakina K, Sobrado P, Tanner JJ, McCammon JA. Substrate-dependent dynamics of UDP-galactopyranose mutase: Implications for drug design. Protein Sci 2013; 22:1490-501. [PMID: 23934860 DOI: 10.1002/pro.2332] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 02/04/2023]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, a neglected tropical disease that represents one of the major health challenges of the Latin American countries. Successful efforts were made during the last few decades to control the transmission of this disease, but there is still no treatment for the 10 million adults in the chronic phase of the disease. In T. cruzi, as well as in other pathogens, the flavoenzyme UDP-galactopyranose mutase (UGM) catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, a precursor of the cell surface β-galactofuranose that is involved in the virulence of the pathogen. The fact that UGM is not present in humans makes inhibition of this enzyme a good approach in the design of new Chagas therapeutics. By performing a series of computer simulations of T. cruzi UGM in the presence or absence of an active site ligand, we address the molecular details of the mechanism that controls the uptake and retention of the substrate. The simulations suggest a modular mechanism in which each moiety of the substrate controls the flexibility of a different protein loop. Furthermore, the calculations indicate that interactions with the substrate diphosphate moiety are especially important for stabilizing the closed active site. This hypothesis is supported with kinetics measurements of site-directed mutants of T. cruzi UGM. Our results extend our knowledge of UGM dynamics and offer new alternatives for the prospective design of drugs.
Collapse
Affiliation(s)
- Leonardo Boechi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | | | | | | | | | | | | |
Collapse
|
11
|
Zhang P, Ahn SW, Straub JE. “Strange Kinetics” in the Temperature Dependence of Methionine Ligand Rebinding Dynamics in Cytochrome c. J Phys Chem B 2013; 117:7190-202. [DOI: 10.1021/jp400481m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ping Zhang
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Steven Wooseok Ahn
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - John E. Straub
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
12
|
Small ligand-globin interactions: reviewing lessons derived from computer simulation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1722-38. [PMID: 23470499 DOI: 10.1016/j.bbapap.2013.02.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 11/24/2022]
Abstract
In this work we review the application of classical and quantum-mechanical atomistic computer simulation tools to the investigation of small ligand interaction with globins. In the first part, studies of ligand migration, with its connection to kinetic association rate constants (kon), are presented. In the second part, we review studies for a variety of ligands such as O2, NO, CO, HS(-), F(-), and NO2(-) showing how the heme structure, proximal effects, and the interactions with the distal amino acids can modulate protein ligand binding. The review presents mainly results derived from our previous works on the subject, in the context of other theoretical and experimental studies performed by others. The variety and extent of the presented data yield a clear example of how computer simulation tools have, in the last decade, contributed to our deeper understanding of small ligand interactions with globins. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
|
13
|
Cazade PA, Meuwly M. Oxygen migration pathways in NO-bound truncated hemoglobin. Chemphyschem 2012; 13:4276-86. [PMID: 23161831 DOI: 10.1002/cphc.201200608] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/28/2012] [Indexed: 11/10/2022]
Abstract
Atomistic simulations of dioxygen (O(2)) dynamics and migration in nitric oxide-bound truncated Hemoglobin N (trHbN) of Mycobacterium tuberculosis are reported. From more than 100 ns of simulations the connectivity network involving the metastable states for localization of the O(2) ligand is built and analyzed. It is found that channel I is the primary entrance point for O(2) whereas channel II is predominantly an exit path although access to the protein active site is also possible. For O(2) a new site compared to nitric oxide, from which reaction with the heme group can occur, was found. As this site is close to the heme iron, it could play an important role in the dioxygenation mechanism as O(2) can remain there for hundreds of picoseconds after which it can eventually leave the protein, while NO is localized in Xe2. The present study supports recent experimental work which proposed that O(2) docks in alternative pockets than Xe close to the reactive site. Similar to other proteins, a phenylalanine residue (Phe62) plays the role of a gate along the access route in channel I. The most highly connected site is the Xe3 pocket which is a "hub" and free energy barriers between the different metastable states are ≈1.5 kcal mol(-1) which allows facile O(2) migration within the protein.
Collapse
Affiliation(s)
- Pierre-André Cazade
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056, Basel, Switzerland
| | | |
Collapse
|
14
|
Tsuduki T, Tomita A, Koshihara SY, Adachi SI, Yamato T. Ligand migration in myoglobin: a combined study of computer simulation and x-ray crystallography. J Chem Phys 2012; 136:165101. [PMID: 22559505 DOI: 10.1063/1.4704586] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A ligand-migration mechanism of myoglobin was studied by a multidisciplinary approach that used x-ray crystallography and molecular dynamics simulation. The former revealed the structural changes of the protein along with the ligand migration, and the latter provided the statistical ensemble of protein conformations around the thermal average. We developed a novel computational method, homogeneous ensemble displacement, and generated the conformational ensemble of ligand-detached species from that of ligand-bound species. The thermally averaged ligand-protein interaction was illustrated in terms of the potential of mean force. Although the structural changes were small, the presence of the ligand molecule in the protein matrix significantly affected the 3D scalar field of the potential of mean force, in accordance with the self-opening model proposed in the previous x-ray study.
Collapse
Affiliation(s)
- Takayuki Tsuduki
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
15
|
Plattner N, Meuwly M. Quantifying the importance of protein conformation on ligand migration in myoglobin. Biophys J 2012; 102:333-41. [PMID: 22339870 DOI: 10.1016/j.bpj.2011.10.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 10/24/2011] [Accepted: 10/26/2011] [Indexed: 10/14/2022] Open
Abstract
Myoglobin (Mb) is a model system for ligand binding and migration. The energy barriers (ΔG) for ligand migration in Mb have been studied in the past by experiment and theory and significant differences between different approaches were found. From experiment, it is known that Mb can assume a large number of conformational substates. In this work, these substates are investigated as a possible source of the differences in migration barriers. We show that the initial structure significantly affects the calculated ΔG for a particular transition and that fluctuations in barrier heights δΔG are of similar magnitude as the free energy barriers themselves. The sensitivity of ΔG to the initial structure is compared to other sources of errors. Different protein structures can affect the calculated ΔG by up to 4 kcal/mol, whereas differences between simple point charge models and more elaborate multipolar charge models for the CO-ligand are smaller by a factor of two. Analysis of the structural changes underlying the large effect of the conformational substate reveals the importance of coupling between protein and ligand motion for migration.
Collapse
Affiliation(s)
- Nuria Plattner
- Chemistry Department, Brown University, Providence, Rhode Island, USA
| | | |
Collapse
|
16
|
Zhang P, Małolepsza E, Straub JE. Dynamics of Methionine Ligand Rebinding in Cytochrome c. J Phys Chem B 2012; 116:6980-90. [DOI: 10.1021/jp300783j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ping Zhang
- Department
of Chemistry, Boston University, Boston,
Massachusetts 02215, United States
| | - Edyta Małolepsza
- Department
of Chemistry, Boston University, Boston,
Massachusetts 02215, United States
| | - John E. Straub
- Department
of Chemistry, Boston University, Boston,
Massachusetts 02215, United States
| |
Collapse
|
17
|
Cazade PA, Huang J, Yosa J, Szymczak JJ, Meuwly M. Atomistic simulations of reactive processes in the gas- and condensed-phase. INT REV PHYS CHEM 2012. [DOI: 10.1080/0144235x.2012.694694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Lee MW, Meuwly M. Molecular Dynamics Simulation of Nitric Oxide in Myoglobin. J Phys Chem B 2012; 116:4154-62. [DOI: 10.1021/jp212112f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Myung Won Lee
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
19
|
Lutz S, Tubert-Brohman I, Yang Y, Meuwly M. Water-assisted proton transfer in ferredoxin I. J Biol Chem 2011; 286:23679-87. [PMID: 21531725 DOI: 10.1074/jbc.m111.230003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of water molecules in assisting proton transfer (PT) is investigated for the proton-pumping protein ferredoxin I (FdI) from Azotobacter vinelandii. It was shown previously that individual water molecules can stabilize between Asp(15) and the buried [3Fe-4S](0) cluster and thus can potentially act as a proton relay in transferring H(+) from the protein to the μ(2) sulfur atom. Here, we generalize molecular mechanics with proton transfer to studying proton transfer reactions in the condensed phase. Both umbrella sampling simulations and electronic structure calculations suggest that the PT Asp(15)-COOH + H(2)O + [3Fe-4S](0) → Asp(15)-COO(-) + H(2)O + [3Fe-4S](0) H(+) is concerted, and no stable intermediate hydronium ion (H(3)O(+)) is expected. The free energy difference of 11.7 kcal/mol for the forward reaction is in good agreement with the experimental value (13.3 kcal/mol). For the reverse reaction (Asp(15)-COO(-) + H(2)O + [3Fe-4S](0)H(+) → Asp(15)-COOH + H(2)O + [3Fe-4S](0)), a larger barrier than for the forward reaction is correctly predicted, but it is quantitatively overestimated (23.1 kcal/mol from simulations versus 14.1 from experiment). Possible reasons for this discrepancy are discussed. Compared with the water-assisted process (ΔE ≈ 10 kcal/mol), water-unassisted proton transfer yields a considerably higher barrier of ΔE ≈ 35 kcal/mol.
Collapse
Affiliation(s)
- Stephan Lutz
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | | | | | | |
Collapse
|
20
|
Mishra S, Meuwly M. Quantitative analysis of ligand migration from transition networks. Biophys J 2011; 99:3969-78. [PMID: 21156139 DOI: 10.1016/j.bpj.2010.09.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 09/22/2010] [Accepted: 09/29/2010] [Indexed: 11/24/2022] Open
Abstract
In this work we use transition network analysis for the first time to investigate ligand migration in truncated hemoglobin (trHbN) and obtain kinetic information about the docking-site dynamics in the protein. A comparison with explicit water molecular dynamics simulations (100 ns in total) shows that the rate constants derived from the network analysis are realistic. The transition network analysis provides 1) The time-resolved connectivity network in the protein; 2) The half-lives of the docking sites; 3) The transition timescales between two given docking sites; and 4) The extent of population transfer among different docking sites of the protein as a function of lag time. We investigate the role of the Tyr33 and Gln58 residues in ligand migration by studying ligand migration in four mutants of trHbN. The mutation study suggests that residues Tyr33 and Gln58 stabilize the NO ligand in the Xe2 docking site of trHbN, thus facilitating the efficiency of the NO detoxification reaction.
Collapse
|
21
|
Anselmi M, Di Nola A, Amadei A. The effects of the L29F mutation on the ligand migration kinetics in crystallized myoglobin as revealed by molecular dynamics simulations. Proteins 2010; 79:867-79. [DOI: 10.1002/prot.22924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 10/13/2010] [Indexed: 11/09/2022]
|
22
|
|
23
|
Arroyo-Mañez P, Bikiel DE, Boechi L, Capece L, Di Lella S, Estrin DA, Martí MA, Moreno DM, Nadra AD, Petruk AA. Protein dynamics and ligand migration interplay as studied by computer simulation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:1054-64. [PMID: 20797453 DOI: 10.1016/j.bbapap.2010.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
Abstract
Since proteins are dynamic systems in living organisms, the employment of methodologies contemplating this crucial characteristic results fundamental to allow revealing several aspects of their function. In this work, we present results obtained using classical mechanical atomistic simulation tools applied to understand the connection between protein dynamics and ligand migration. Firstly, we will present a review of the different sampling schemes used in the last years to obtain both ligand migration pathways and the thermodynamic information associated with the process. Secondly, we will focus on representative examples in which the schemes previously presented are employed, concerning the following: i) ligand migration, tunnels, and cavities in myoglobin and neuroglobin; ii) ligand migration in truncated hemoglobin members; iii) NO escape and conformational changes in nitrophorins; iv) ligand selectivity in catalase and hydrogenase; and v) larger ligand migration: the P450 and haloalkane dehalogenase cases. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Pau Arroyo-Mañez
- Departamento de Química Inorgánica, Analítica y Química-Física (INQUIMAE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nishihara Y, Kato S, Hayashi S. Protein collective motions coupled to ligand migration in myoglobin. Biophys J 2010; 98:1649-57. [PMID: 20409486 DOI: 10.1016/j.bpj.2009.12.4318] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 12/06/2009] [Accepted: 12/18/2009] [Indexed: 11/19/2022] Open
Abstract
Ligand migration processes inside myoglobin and protein dynamics coupled to the migration were theoretically investigated with molecular dynamics simulations. Based on a linear response theory, we identified protein motions coupled to the transient migration of ligand, carbon monoxide (CO), through channels. The result indicates that the coupled protein motions involve collective motions extended over the entire protein correlated with local gating motions at the channels. Protein motions, coupled to opening of a channel from the distal pocket to a neighboring xenon site, were found to share the collective motion with experimentally observed protein motions coupled to a doming motion of the heme Fe atom upon photodissociation of the ligand. Analysis based on generalized Langevin dynamics elucidated slow and diffusive features of the protein response motions. Remarkably small transmission coefficients for rates of the CO migrations through myoglobin were found, suggesting that the CO migration dynamics are characterized as motions governed by the protein dynamics involving the collective motions, rather than as thermally activated transitions across energy barriers of well-structured channels.
Collapse
Affiliation(s)
- Yasutaka Nishihara
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto Japan
| | | | | |
Collapse
|
25
|
Mishra S, Meuwly M. Atomistic Simulation of NO Dioxygenation in Group I Truncated Hemoglobin. J Am Chem Soc 2010; 132:2968-82. [DOI: 10.1021/ja9078144] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Basel, Switzerland
| |
Collapse
|
26
|
Maragliano L, Cottone G, Ciccotti G, Vanden-Eijnden E. Mapping the Network of Pathways of CO Diffusion in Myoglobin. J Am Chem Soc 2009; 132:1010-7. [DOI: 10.1021/ja905671x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luca Maragliano
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, Department of Physical and Astronomical Sciences and CNISM, University of Palermo, Palermo, Italy, Physics Department and CNISM Unit of Rome 1, University of Rome “La Sapienza”, Rome, Italy, and Courant Institute of Mathematical Sciences, New York University, New York, New York 10012
| | - Grazia Cottone
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, Department of Physical and Astronomical Sciences and CNISM, University of Palermo, Palermo, Italy, Physics Department and CNISM Unit of Rome 1, University of Rome “La Sapienza”, Rome, Italy, and Courant Institute of Mathematical Sciences, New York University, New York, New York 10012
| | - Giovanni Ciccotti
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, Department of Physical and Astronomical Sciences and CNISM, University of Palermo, Palermo, Italy, Physics Department and CNISM Unit of Rome 1, University of Rome “La Sapienza”, Rome, Italy, and Courant Institute of Mathematical Sciences, New York University, New York, New York 10012
| | - Eric Vanden-Eijnden
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, Department of Physical and Astronomical Sciences and CNISM, University of Palermo, Palermo, Italy, Physics Department and CNISM Unit of Rome 1, University of Rome “La Sapienza”, Rome, Italy, and Courant Institute of Mathematical Sciences, New York University, New York, New York 10012
| |
Collapse
|
27
|
D’Abramo M, Di Nola A, Amadei A. Kinetics of Carbon Monoxide Migration and Binding in Solvated Myoglobin as Revealed by Molecular Dynamics Simulations and Quantum Mechanical Calculations. J Phys Chem B 2009; 113:16346-53. [DOI: 10.1021/jp903165p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marco D’Abramo
- Institut de Recerca Biomèdica, Parc Cientific de Barcelona Josep Samitier 1-5, Barcelona 08028 and Barcelona Supercomputing Center Jordi Girona 29, Barcelona 08034, Spain, Departament de Bioquimica, Facultat de Biologia, Universitat de Barcelona, Avgda Diagonal 647 Barcelona 08028, Spain, Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro 5 00185 Rome, Italy, and Departimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, via della Ricerca Scientifica 00133 Rome,
| | - Alfredo Di Nola
- Institut de Recerca Biomèdica, Parc Cientific de Barcelona Josep Samitier 1-5, Barcelona 08028 and Barcelona Supercomputing Center Jordi Girona 29, Barcelona 08034, Spain, Departament de Bioquimica, Facultat de Biologia, Universitat de Barcelona, Avgda Diagonal 647 Barcelona 08028, Spain, Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro 5 00185 Rome, Italy, and Departimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, via della Ricerca Scientifica 00133 Rome,
| | - Andrea Amadei
- Institut de Recerca Biomèdica, Parc Cientific de Barcelona Josep Samitier 1-5, Barcelona 08028 and Barcelona Supercomputing Center Jordi Girona 29, Barcelona 08034, Spain, Departament de Bioquimica, Facultat de Biologia, Universitat de Barcelona, Avgda Diagonal 647 Barcelona 08028, Spain, Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro 5 00185 Rome, Italy, and Departimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, via della Ricerca Scientifica 00133 Rome,
| |
Collapse
|
28
|
Lutz S, Nienhaus K, Nienhaus GU, Meuwly M. Ligand Migration between Internal Docking Sites in Photodissociated Carbonmonoxy Neuroglobin. J Phys Chem B 2009; 113:15334-43. [DOI: 10.1021/jp905673p] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stephan Lutz
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland; Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany; and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| | - Karin Nienhaus
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland; Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany; and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| | - G. Ulrich Nienhaus
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland; Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany; and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland; Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany; and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| |
Collapse
|
29
|
Daskalakis V, Varotsis C. Binding and docking interactions of NO, CO and O₂in heme proteins as probed by density functional theory. Int J Mol Sci 2009; 10:4137-4156. [PMID: 19865536 PMCID: PMC2769150 DOI: 10.3390/ijms10094137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 08/30/2009] [Accepted: 09/15/2009] [Indexed: 11/28/2022] Open
Abstract
Dynamics and reactivity in heme proteins include direct and indirect interactions of the ligands/substrates like CO, NO and O(2) with the environment. Direct electrostatic interactions result from amino acid side chains in the inner cavities and/or metal coordination in the active site, whereas indirect interactions result by ligands in the same coordination sphere. Interactions play a crucial role in stabilizing transition states in catalysis or altering ligation chemistry. We have probed, by Density Functional Theory (DFT), the perturbation degree in the stretching vibrational frequencies of CO, NO and O(2) molecules in the presence of electrostatic interactions or hydrogen bonds, under conditions simulating the inner cavities. Moreover, we have studied the vibrational characteristics of the heme bound form of the CO and NO ligands by altering the chemistry of the proximal to the heme ligand. CO, NO and O(2) molecules are highly polarizable exerting vibrational shifts up to 80, 200 and 120 cm(-1), respectively, compared to the non-interacting ligand. The importance of Density Functional Theory (DFT) methodology in the investigation of the heme-ligand-protein interactions is also addressed.
Collapse
Affiliation(s)
- Vangelis Daskalakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, P.O. Box 1527,GR-711 10 Heraklion, Greece; E-Mail: (V.D.)
| | - Constantinos Varotsis
- Department of Chemistry, University of Crete, P.O. Box 2208, 71003, Voutes – Heraklion, Greece
| |
Collapse
|
30
|
Li J, Ai YJ, Xie ZZ, Fang WH. How CO Binds to Hexacoordinated Heme in Neuroglobin Protein. J Phys Chem B 2008; 112:8715-23. [DOI: 10.1021/jp711919f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juan Li
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yue-Jie Ai
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zhi-Zhong Xie
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
31
|
Use of the Conjugate Peak Refinement Algorithm for Identification of Ligand‐Binding Pathways in Globins. Methods Enzymol 2008; 437:417-37. [DOI: 10.1016/s0076-6879(07)37021-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Banushkina P, Meuwly M. Diffusive dynamics on multidimensional rough free energy surfaces. J Chem Phys 2007; 127:135101. [DOI: 10.1063/1.2775444] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Amadei A, D’Abramo M, Daidone I, D’Alessandro M, Nola AD, Aschi M. Statistical mechanical modelling of chemical reactions in complex systems: the kinetics of the Haem carbon monoxide binding–unbinding reaction in Myoglobin. Theor Chem Acc 2007. [DOI: 10.1007/s00214-006-0197-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Danielsson J, Banushkina P, Nutt DR, Meuwly M. Computer simulations of structures, energetics and dynamics of myoglobin ··· ligand complexes. INT REV PHYS CHEM 2006. [DOI: 10.1080/01442350600798253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
35
|
Cohen J, Arkhipov A, Braun R, Schulten K. Imaging the migration pathways for O2, CO, NO, and Xe inside myoglobin. Biophys J 2006; 91:1844-57. [PMID: 16751246 PMCID: PMC1544290 DOI: 10.1529/biophysj.106.085746] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myoglobin (Mb) is perhaps the most studied protein, experimentally and theoretically. Despite the wealth of known details regarding the gas migration processes inside Mb, there exists no fully conclusive picture of these pathways. We address this deficiency by presenting a complete map of all the gas migration pathways inside Mb for small gas ligands (O2, NO, CO, and Xe). To accomplish this, we introduce a computational approach for studying gas migration, which we call implicit ligand sampling. Rather than simulating actual gas migration events, we infer the location of gas migration pathways based on a free-energy perturbation approach applied to simulations of Mb's dynamical fluctuations at equilibrium in the absence of ligand. The method provides complete three-dimensional maps of the potential of mean force of gas ligand placement anywhere inside a protein-solvent system. From such free-energy maps we identify each gas docking site, the pathways between these sites, to the heme and to the external solution. Our maps match previously known features of these pathways in Mb, but also point to the existence of additional exits from the protein matrix in regions that are not easily probed by experiment. We also compare the pathway maps of Mb for different gas ligands and for different animal species.
Collapse
Affiliation(s)
- Jordi Cohen
- Department of Physics and Beckman Institute, University of Illinois, Urbana, Illinois, USA
| | | | | | | |
Collapse
|
36
|
Bikiel DE, Boechi L, Capece L, Crespo A, De Biase PM, Di Lella S, González Lebrero MC, Martí MA, Nadra AD, Perissinotti LL, Scherlis DA, Estrin DA. Modeling heme proteins using atomistic simulations. Phys Chem Chem Phys 2006; 8:5611-28. [PMID: 17149482 DOI: 10.1039/b611741b] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heme proteins are found in all living organisms, and perform a wide variety of tasks ranging from electron transport, to the oxidation of organic compounds, to the sensing and transport of small molecules. In this work we review the application of classical and quantum-mechanical atomistic simulation tools to the investigation of several relevant issues in heme proteins chemistry: (i) conformational analysis, ligand migration, and solvation effects studied using classical molecular dynamics simulations; (ii) electronic structure and spin state energetics of the active sites explored using quantum-mechanics (QM) methods; (iii) the interaction of heme proteins with small ligands studied through hybrid quantum mechanics-molecular mechanics (QM-MM) techniques; (iv) and finally chemical reactivity and catalysis tackled by a combination of quantum and classical tools.
Collapse
Affiliation(s)
- Damián E Bikiel
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nutt DR, Meuwly M. Studying reactive processes with classical dynamics: rebinding dynamics in MbNO. Biophys J 2005; 90:1191-201. [PMID: 16326913 PMCID: PMC1367270 DOI: 10.1529/biophysj.105.071522] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new surface-crossing algorithm suitable for describing bond-breaking and bond-forming processes in molecular dynamics simulations is presented. The method is formulated for two intersecting potential energy manifolds which dissociate to different adiabatic states. During simulations, crossings are detected by monitoring an energy criterion. If fulfilled, the two manifolds are mixed over a finite number of time steps, after which the system is propagated on the second adiabat and the crossing is carried out with probability one. The algorithm is extensively tested (almost 0.5 mus of total simulation time) for the rebinding of NO to myoglobin. The unbound surface (Fe...NO) is represented using a standard force field, whereas the bound surface (Fe-NO) is described by an ab initio potential energy surface. The rebinding is found to be nonexponential in time, in agreement with experimental studies, and can be described using two time constants. Depending on the asymptotic energy separation between the manifolds, the short rebinding timescale is between 1 and 9 ps, whereas the longer timescale is about an order of magnitude larger. NO molecules which do not rebind within 1 ns are typically found in the Xenon-4 pocket, indicating the high affinity of NO to this region in the protein.
Collapse
Affiliation(s)
- David R Nutt
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | | |
Collapse
|