1
|
Patel DS, Blasco P, Widmalm G, Im W. Escherichia coli O176 LPS structure and dynamics: A NMR spectroscopy and MD simulation study. Curr Res Struct Biol 2020; 2:79-88. [PMID: 34235471 PMCID: PMC8244359 DOI: 10.1016/j.crstbi.2020.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Accepted: 04/08/2020] [Indexed: 01/30/2023] Open
Abstract
A lipopolysaccharide (LPS) molecule is a key component of the bacterial outer membrane used to protect the bacterium and to interact with the environment. To gain insight into its function, the study of the LPS conformation and dynamics at the molecular and cellular levels is necessary, but these highly diverse and dynamic membrane-LPS systems are difficult to study. In this work, by using NMR spectroscopy and molecular dynamics (MD) simulations, we determined the conformational preferences of an E. coli O176 O-antigen polysaccharide at the atomic level. Moreover, we analyzed the use of non-uniform sampling (NUS) for the acquisition of high dynamic range spectra, like 1H,1H-NOESY NMR experiments. A comparison of the effective transglycosidic distances derived from conventional uniformly sampled and NUS 1H,1H-NOESY data showed high similarity under equal measuring time conditions. Furthermore, the experimentally derived internuclear distances of the O-antigen polysaccharide with ten repeating units (RUs) showed very good agreement to those calculated from the MD simulations of the same O-antigen polysaccharide in solution. Analysis of the LPS bilayer simulations with five and with ten RUs revealed that, although similar with respect to populated states in solution, the O-antigen in LPS bilayers had more extended chains as a result of spatial limitations due to close packing. Additional MD simulations of O-antigen polysaccharides from E. coli O6 (branched repeating unit) and O91 (negatively charged linear repeating unit) in solution and LPS bilayers were performed and compared to those of O176 (linear polymer). For all three O-antigens, the ensemble of structures present for the polysaccharides in solution were consistent with the results from their 1H,1H-NOESY experiments. In addition, the similarities between the O-antigen on its own and as a constituent of the full LPS in bilayer environment makes it possible to realistically describe the LPS conformation and dynamics from the MD simulations. Uniform and non-uniform sampled NOESY NMR data yield similar internuclear distances. O-antigen internuclear distances from NMR and MD show excellent agreement. O-antigen ensemble structures from MD are consistent with NMR observations. O-antigen structures are more extended in LPS bilayers than in solution. MD simulations can describe realistic LPS conformation and dynamics.
Collapse
Affiliation(s)
- Dhilon S Patel
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Pilar Blasco
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
| |
Collapse
|
2
|
Canales A, Jiménez-Barbero J, Martín-Pastor M. Review: Use of residual dipolar couplings to determine the structure of carbohydrates. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2012; 50 Suppl 1:S80-S85. [PMID: 23280664 DOI: 10.1002/mrc.3888] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 09/08/2012] [Accepted: 09/20/2012] [Indexed: 05/28/2023]
Abstract
Solution nuclear magnetic resonance spectroscopy is especially useful in the carbohydrate field. The measurement of residual dipolar couplings provides long-range structural information, a valuable complement for the structural study of carbohydrates either in its free form or in the bound state to proteins. They permit to deduce the geometry and the flexibility of the glycosidic linkages, which have a major influence on the conformation of carbohydrates and their overall shape. This article reviews the current application of the residual dipolar couplings methodology to carbohydrates.
Collapse
Affiliation(s)
- A Canales
- Department Organic Chemistry, Universidad Complutense de Madrid, Madrid, Spain
| | | | | |
Collapse
|
3
|
Säwén E, Hinterholzinger F, Landersjö C, Widmalm G. Conformational flexibility of the pentasaccharide LNF-2 deduced from NMR spectroscopy and molecular dynamics simulations. Org Biomol Chem 2012; 10:4577-85. [PMID: 22572908 DOI: 10.1039/c2ob25189b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human milk oligosaccharides (HMOs) are important as prebiotics since they stimulate the growth of beneficial bacteria in the intestine and act as receptor analogues that can inhibit the binding of pathogens. The conformation and dynamics of the HMO Lacto-N-fucopentaose 2 (LNF-2), α-L-Fucp-(1 → 4)[β-D-Galp-(1 → 3)]-β-D-GlcpNAc-(1 → 3)-β-D-Galp-(1 → 4)-D-Glcp, having a Lewis A epitope, has been investigated employing NMR spectroscopy and molecular dynamics (MD) computer simulations. 1D (1)H,(1)H-NOESY experiments were used to obtain proton-proton cross-relaxation rates from which effective distances were deduced and 2D J-HMBC and 1D long-range experiments were utilized to measure trans-glycosidic (3)J(CH) coupling constants. The MD simulations using the PARM22/SU01 force field for carbohydrates were carried out for 600 ns with explicit water as solvent which resulted in excellent sampling for flexible glycosidic torsion angles. In addition, in vacuo MD simulations were performed using an MM3-2000 force field, but the agreement was less satisfactory based on an analysis of heteronuclear trans-glycosidic coupling constants. LNF-2 has a conformationally well-defined region consisting of the terminal branched part of the pentasaccharide, i.e., the Lewis A epitope, and a flexible β-D-GlcpNAc-(1 → 3)-β-D-Galp-linkage towards the lactose unit, which is situated at the reducing end. For this β-(1 → 3)-linkage a negative ψ torsion angle is favored, when experimental NMR data is combined with the MD simulation in the analysis. In addition, flexibility on a similar time scale, i.e., on the order of the global overall molecular reorientation, may also be present for the ϕ torsion angle of the β-D-Galp-(1 → 4)-D-Glcp-linkage as suggested by the simulation. It was further observed from a temperature variation study that some (1)H NMR chemical shifts of LNF-2 were highly sensitive and this study indicates that Δδ/ΔT may be an additional tool for revealing conformational dynamics of oligosaccharides.
Collapse
Affiliation(s)
- Elin Säwén
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
4
|
Xia J, Case DA. Sucrose in aqueous solution revisited, Part 1: molecular dynamics simulations and direct and indirect dipolar coupling analysis. Biopolymers 2012; 97:276-88. [PMID: 22189655 PMCID: PMC3290335 DOI: 10.1002/bip.22017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 11/10/2022]
Abstract
Although the crystal structure of the disaccharide sucrose was solved more than 30 years ago, its conformational distribution in aqueous solution is still a matter of debate. We report here a variety of molecular dynamics simulations (mostly of 100 ns) using the GLYCAM06 force field and various water models, paying particular attention to comparisons to NMR measurements of residual dipolar couplings and electron-mediated spin-spin couplings. We focus on the glycosidic linkage conformation, the puckering phase angle of the fructose ring, and intramolecular hydrogen bonds between the two sugars. Our results show that sucrose is indeed a dynamic molecule, but the crystal conformation is qualitatively the dominant one in dilute solution. A second conformational basin, populated in many force fields, is probably overstabilized in the calculations.
Collapse
Affiliation(s)
- Junchao Xia
- Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers University, 610 Taylor Rd., Piscataway, NJ 08854, USA
| | | |
Collapse
|
5
|
Juaristi E, Bandala Y. Anomeric Effect in Saturated Heterocyclic Ring Systems. ADVANCES IN HETEROCYCLIC CHEMISTRY 2012. [DOI: 10.1016/b978-0-12-396530-1.00002-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Xia J, Margulis CJ, Case DA. Searching and optimizing structure ensembles for complex flexible sugars. J Am Chem Soc 2011; 133:15252-5. [PMID: 21863822 DOI: 10.1021/ja205251j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NMR restrictions are suitable to specify the geometry of a molecule when a single well-defined global free energy minimum exists that is significantly lower than other local minima. Carbohydrates are quite flexible, and therefore, NMR observables do not always correlate with a single conformer but instead with an ensemble of low free energy conformers that can be accessed by thermal fluctuations. In this communication, we describe a novel procedure to identify and weight the contribution to the ensemble of local minima conformers based on comparison to residual dipolar couplings (RDCs) or other NMR observables, such as scalar couplings. A genetic algorithm is implemented to globally minimize the R factor comparing calculated RDCs to experiment. This is done by optimizing the weights of different conformers derived from the exhaustive local minima conformational search program, fast sugar structure prediction software (FSPS). We apply this framework to six human milk sugars, LND-1, LNF-1, LNF-2, LNF-3, LNnT, and LNT, and are able to determine corresponding population weights for the ensemble of conformers. Interestingly, our results indicate that in all cases the RDCs can be well represented by only a few most important conformers. This confirms that several, but not all of the glycosidic linkages in histo-blood group "epitopes" are quite rigid.
Collapse
Affiliation(s)
- Junchao Xia
- BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States.
| | | | | |
Collapse
|
7
|
Ganguly S, Xia J, Margulis C, Stanwyck L, Bush CA. Measuring the magnitude of internal motion in a complex hexasaccharide. Biopolymers 2010; 95:39-50. [DOI: 10.1002/bip.21532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Kövér KE, Szilágyi L, Batta G, Uhrín D, Jiménez-Barbero J. Biomolecular Recognition by Oligosaccharides and Glycopeptides: The NMR Point of View. COMPREHENSIVE NATURAL PRODUCTS II 2010:197-246. [DOI: 10.1016/b978-008045382-8.00193-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
9
|
Borsacchi S, Catalano D, Veracini CA. Structure and orientation of small molecules dissolved in the liquid crystalline phases of CsPFO/water system by multinuclear NMR. Phys Chem Chem Phys 2009; 11:3996-4006. [PMID: 19440629 DOI: 10.1039/b901895f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pyridine, L-alanine and L-phenylalanine dissolved in the liquid crystalline phases of the lyotropic system CsPFO/water are studied by means of (2)H, (13)C and (1)H NMR. The orientational order parameters of the solutes are determined in a wide temperature range, together with some relevant geometrical parameters. In particular, a prevailing conformation for L-phenylalanine interacting with the micelle is suggested and, for all solutes, convincing representations of their specific interactions with the micelle surface are inferred. From (19)F and (13)C NMR spectra in the nematic phase, the orientational order parameters for the perfluorooctanoate chain inside the micelles are estimated.
Collapse
Affiliation(s)
- Silvia Borsacchi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Risorgimento 35, 56126, Pisa, Italy
| | | | | |
Collapse
|
10
|
Xia J, Margulis C. A tool for the prediction of structures of complex sugars. JOURNAL OF BIOMOLECULAR NMR 2008; 42:241-256. [PMID: 18953494 DOI: 10.1007/s10858-008-9279-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 09/11/2008] [Indexed: 05/27/2023]
Abstract
In two recent back to back articles(Xia et al., J Chem Theory Comput 3:1620-1628 and 1629-1643, 2007a, b) we have started to address the problem of complex oligosaccharide conformation and folding. The scheme previously presented was based on exhaustive searches in configuration space in conjunction with Nuclear Overhauser Effect (NOE) calculations and the use of a complex rotameric library that takes branching into account. NOEs are extremely useful for structural determination but only provide information about short range interactions and ordering. Instead, the measurement of residual dipolar couplings (RDC), yields information about molecular ordering or folding that is long range in nature. In this article we show the results obtained by incorporation RDC calculations into our prediction scheme. Using this new approach we are able to accurately predict the structure of six human milk sugars: LNF-1, LND-1, LNF-2, LNF-3, LNnT and LNT. Our exhaustive search in dihedral configuration space combined with RDC and NOE calculations allows for highly accurate structural predictions that, because of the non-ergodic nature of these molecules on a time scale compatible with molecular dynamics simulations, are extremely hard to obtain otherwise (Almond et al., Biochemistry 43:5853-5863, 2004). Molecular dynamics simulations in explicit solvent using as initial configurations the structures predicted by our algorithm show that the histo-blood group epitopes in these sugars are relatively rigid and that the whole family of oligosaccharides derives its conformational variability almost exclusively from their common linkage (beta-D: -GlcNAc-(1-->3)-beta-D: -Gal) which can exist in two distinct conformational states. A population analysis based on the conformational variability of this flexible glycosidic link indicates that the relative population of the two distinct states varies for different human milk oligosaccharides.
Collapse
Affiliation(s)
- Junchao Xia
- Department of Chemistry, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
11
|
Abstract
Oligo- and polysaccharides are infamous for being extremely flexible molecules, populating a series of well-defined rotational isomeric states under physiological conditions. Characterization of this heterogeneous conformational ensemble has been a major obstacle impeding high-resolution structure determination of carbohydrates and acting as a bottleneck in the effort to understand the relationship between the carbohydrate structure and function. This challenge has compelled the field to develop and apply theoretical and experimental methods that can explore conformational ensembles by both capturing and deconvoluting the structural and dynamic properties of carbohydrates. This review focuses on computational approaches that have been successfully used in combination with experiment to detail the three-dimensional structure of carbohydrates in a solution and in a complex with proteins. In addition, emerging experimental techniques for three-dimensional structural characterization of carbohydrate-protein complexes and future challenges in the field of structural glycobiology are discussed. The review is divided into five sections: (1) The complexity and plasticity of carbohydrates, (2) Predicting carbohydrate-protein interactions, (3) Calculating relative and absolute binding free energies for carbohydrate-protein complexes, (4) Emerging and evolving techniques for experimental characterization of carbohydrate-protein structures, and (5) Current challenges in structural glycoscience.
Collapse
Affiliation(s)
- Mari L DeMarco
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602-4712, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602-4712, USA
| |
Collapse
|
12
|
Thaning J, Högberg CJ, Stevensson B, Lyubartsev AP, Maliniak A. Molecular Conformations in a Phospholipid Bilayer Extracted from Dipolar Couplings: A Computer Simulation Study. J Phys Chem B 2007; 111:13638-44. [DOI: 10.1021/jp075278t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Johan Thaning
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Carl-Johan Högberg
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Baltzar Stevensson
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Alexander P. Lyubartsev
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Arnold Maliniak
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|