1
|
Yang ZS, Gao S, Zhang JL. Magnetic manipulation of the reactivity of singlet oxygen: from test tubes to living cells. Natl Sci Rev 2024; 11:nwae069. [PMID: 39144743 PMCID: PMC11321247 DOI: 10.1093/nsr/nwae069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/14/2024] [Accepted: 02/17/2024] [Indexed: 08/16/2024] Open
Abstract
Although magnetism undoubtedly influences life on Earth, the science behind biological magnetic sensing is largely a mystery, and it has proved challenging, especially in the life sciences, to harness the interactions of magnetic fields (MFs) with matter to achieve specific ends. Using the well-established radical pair (RP) mechanism, we here demonstrate a bottom-up strategy for the exploitation of MF effects in living cells by translating knowledge from studies of RP reactions performed in vitro. We found an unprecedented MF dependence of the reactivity of singlet oxygen (1O2) towards electron-rich substrates (S) such as anthracene, lipids and iodide, in which [S ˙+ O2 ˙-] RPs are formed as a basis for MFs influencing molecular redox events in biological systems. The close similarity of the observed MF effects on the biologically relevant process of lipid peroxidation in solution, in membrane mimics and in living cells, shows that MFs can reliably be used to manipulate 1O2-induced cytotoxicity and cell-apoptosis-related protein expression. These findings led to a 'proof-of-concept' study on MF-assisted photodynamic therapy in vivo, highlighting the potential of MFs as a non-invasive tool for controlling cellular events.
Collapse
Affiliation(s)
- Zi-Shu Yang
- Institute of Inorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Song Gao
- Institute of Inorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Spin-X Institute and Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510641, China
- Institute of Inorganic and Material Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Jun-Long Zhang
- Institute of Inorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
2
|
Doktorov AB, Lukzen NN. Magnetic Field Effect in Bimolecular Rate Constant of Radical Recombination. Int J Mol Sci 2023; 24:ijms24087555. [PMID: 37108719 PMCID: PMC10139179 DOI: 10.3390/ijms24087555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The influence of magnetic fields on chemical reactions, including biological ones, has been and still is a topical subject in the field of scientific research. Experimentally discovered and theoretically substantiated magnetic and spin effects in chemical radical reactions form the basis of research in the field of spin chemistry. In the present work, the effect of a magnetic field on the rate constant of the bimolecular spin-selective recombination of radicals in the bulk of a solution is considered theoretically for the first time, taking into account the hyperfine interaction of radical spins with their magnetic nuclei. In addition, the paramagnetic relaxation of unpaired spins of the radicals and the non-equality of their g-factors that also influence the recombination process are taken into account. It is found that the reaction rate constant can vary in magnetic field from a few to half a dozen percent, depending on the relative diffusion coefficient of radicals, which is determined by the solution viscosity. It is shown that the consideration of hyperfine interactions gives rise to the presence of resonances in the dependence of the rate constant on the magnetic field. The magnitudes of the magnetic fields of these resonances are determined by the hyperfine coupling constants and difference in the g-factors of the recombining radicals. Analytical expressions for the reaction rate constant of the bulk recombination for magnetic fields larger than hfi (hyperfine interaction) constants are obtained. In general, it is shown for the first time that accounting for hyperfine interactions of radical spins with magnetic nuclei significantly affects the dependence of the reaction rate constant of the bulk radical recombination on the magnetic field.
Collapse
Affiliation(s)
- Alexander B Doktorov
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 630090 Novosibirsk, Russia
| | - Nikita N Lukzen
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
- Physics Faculty, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Low magnetic field effects on a photoinduced electron transfer reaction in an ionic liquid. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Riese S, Brand JS, Mims D, Holzapfel M, Lukzen NN, Steiner UE, Lambert C. Giant magnetic field effects in donor–acceptor triads: On the charge separation and recombination dynamics in triarylamine–naphthalenediimide triads with bis-diyprrinato-palladium(II), porphodimethenato-palladium(II), and palladium(II)–porphyrin photosensitizers. J Chem Phys 2020; 153:054306. [DOI: 10.1063/5.0013941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Stefan Riese
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jessica S. Brand
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - David Mims
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marco Holzapfel
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nikita N. Lukzen
- International Tomography Center, Institutskaya 3a, Novosibirsk 630090, Russia and Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ulrich E. Steiner
- Department of Chemistry, University of Konstanz, Universitätsstraße 14, 78457 Konstanz, Germany
| | - Christoph Lambert
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
5
|
Lukzen NN, Ivanov KL, Sadovsky VM, Sagdeev RZ. Magnetic field effect on recombination of radicals diffusing on a two-dimensional plane. J Chem Phys 2020; 152:034103. [PMID: 31968965 DOI: 10.1063/1.5131583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Magnetic Field Effects (MFEs) on the recombination of radicals, which diffuse on an infinite plane, are studied theoretically. The case of spin-selective diffusion-controlled recombination of Radical Pairs (RPs) starting from a random spin state is considered assuming uniform initial distribution of the radicals. In this situation, reaction kinetics is described by a time-dependent rate coefficient K(t), which tends to zero at long times. Strong MFEs on K(t) are predicted that originate from the Δg and hyperfine driven singlet-triplet mixing in the RP. The effects of spin relaxation on the magnetic field are studied, as well as the influence of the dipole-dipole interaction between the electron spins of the RP. In the two-dimensional case, this interaction is not averaged out by diffusion and it strongly affects the MFE. The results of this work are of importance for interpreting MFEs on lipid peroxidation, a magnetosensitive process occurring on two-dimensional surfaces of cell membranes.
Collapse
Affiliation(s)
- Nikita N Lukzen
- International Tomography Center, Siberian Branch, Russian Academy of Sciences, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch, Russian Academy of Sciences, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Vladimir M Sadovsky
- Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/44, Krasnoyarsk 660036, Russia
| | - Renad Z Sagdeev
- International Tomography Center, Siberian Branch, Russian Academy of Sciences, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Maeda K, Naito Y. Dynamics of flavin containing radical pairs in SDS micellar media probed by static and pulse magnetic field effect and pulse ADMR. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1580779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Kiminori Maeda
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Yusuke Naito
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
7
|
Miura T. Studies on coherent and incoherent spin dynamics that control the magnetic field effect on photogenerated radical pairs. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1643510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Tomoaki Miura
- Department of Science, Niigata University, Niigata, Japan
| |
Collapse
|
8
|
Miura T, Maeda K, Oka Y, Ikoma T. Gigantic Magnetic Field Effect on the Long-Lived Intermolecular Charge-Separated State Created at the Nonionic Bilayer Membrane. J Phys Chem B 2018; 122:12173-12183. [PMID: 30444615 DOI: 10.1021/acs.jpcb.8b08389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For realization of low-cost organic photon-energy conversion, the supramolecular approach has been a focus of attention as a counter approach to precise synthesis of covalently linked donor (D)-acceptor (A) molecules. Here we report photogeneration of a long-lived (∼3 μs) intermolecular charge-separated (CS) state of metal porphyrins (D) and an alkyl viologen (A) at an interface of a vesicle membrane formed by self-assembly of nonionic surfactant and cholesterol molecules. The yield of escaped free radicals is negligibly low as in the case of CS states in covalently linked D-A systems. Furthermore, the transient concentration of the CS state dramatically increases by ∼100% upon application of a magnetic field of 250 mT at room temperature. The simulation of the spin dynamics of the CS state indicates that fast (∼107 s-1) spin-selective recombination and slow (105-106 s-1) dissociation-re-encounter dynamics are the key processes for the long CS-state lifetime and the gigantic magnetic field effect. It has turned out that such dynamics are sharply dependent on temperature and alkyl chain length of the viologen. The present results would lead to the development of future materials for light energy conversion, drug delivery, and microscopic bioprobes.
Collapse
Affiliation(s)
- Tomoaki Miura
- Department of Chemistry , Niigata University , 2-8050 Ikarashi, Nishi-ku , Niigata 950-2181 , Japan
| | - Kiminori Maeda
- Department of Chemistry, Graduate School of Science and Engineering , Saitama University , 255 Shimo-okubo, Sakura-ku , Saitama 338-8570 , Japan
| | - Yoshimi Oka
- Frontier Research Core for Life Sciences , University of Toyama , 2630 Sugitani , Toyama 930-0194 , Japan
| | - Tadaaki Ikoma
- Department of Chemistry , Niigata University , 2-8050 Ikarashi, Nishi-ku , Niigata 950-2181 , Japan.,Center for Coordination of Research Facilities , Niigata University , 2-8050 Ikarashi, Nishi-ku , Niigata 950-2181 , Japan
| |
Collapse
|
9
|
Keens RH, Bedkihal S, Kattnig DR. Magnetosensitivity in Dipolarly Coupled Three-Spin Systems. PHYSICAL REVIEW LETTERS 2018; 121:096001. [PMID: 30230901 DOI: 10.1103/physrevlett.121.096001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Indexed: 06/08/2023]
Abstract
The radical pair mechanism is a canonical model for the magnetosensitivity of chemical reaction processes. The key ingredient of this model is the hyperfine interaction that induces a coherent mixing of singlet and triplet electron spin states in pairs of radicals, thereby facilitating magnetic field effects (MFEs) on reaction yields through spin-selective reaction channels. We show that the hyperfine interaction is not a categorical requirement to realize the sensitivity of radical reactions to weak magnetic fields. We propose that, in systems comprising three instead of two radicals, dipolar interactions provide an alternative pathway for MFEs. By considering the role of symmetries and energy level crossings, we present a model that demonstrates a directional sensitivity to fields weaker than the geomagnetic field and remarkable spikes in the reaction yield as a function of the magnetic field intensity; these effects can moreover be tuned by the exchange interaction. Our results further the current understanding of the effects of weak magnetic fields on chemical reactions, could pave the way to a clearer understanding of the mysteries of magnetoreception and other biological MFEs and motivate the design of quantum sensors. Further still, this phenomenon will affect spin systems used in quantum information processing in the solid state and may also be applicable to spintronics.
Collapse
Affiliation(s)
- Robert H Keens
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom
| | - Salil Bedkihal
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom
| | - Daniel R Kattnig
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom
| |
Collapse
|
10
|
Evans EW, Kattnig DR, Henbest KB, Hore PJ, Mackenzie SR, Timmel CR. Sub-millitesla magnetic field effects on the recombination reaction of flavin and ascorbic acid radicals. J Chem Phys 2016; 145:085101. [DOI: 10.1063/1.4961266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Emrys W. Evans
- Department of Chemistry, Centre for Advanced Electron Spin Resonance, University of Oxford, Oxford, United Kingdom
| | - Daniel R. Kattnig
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Kevin B. Henbest
- Department of Chemistry, Centre for Advanced Electron Spin Resonance, University of Oxford, Oxford, United Kingdom
| | - P. J. Hore
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Stuart R. Mackenzie
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Christiane R. Timmel
- Department of Chemistry, Centre for Advanced Electron Spin Resonance, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Miura T, Murai H. Effect of molecular diffusion on the spin dynamics of a micellized radical pair in low magnetic fields studied by Monte Carlo simulation. J Phys Chem A 2015; 119:5534-44. [PMID: 25942039 DOI: 10.1021/acs.jpca.5b02183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnetic field effect is a powerful tool to study dynamics and kinetics of radical pairs (RPs), which are one of the most important intermediates for organic photon-energy conversion reactions. However, quantitative discussion regarding the relationship between the modulation of interelectron interactions and spin dynamics at low magnetic fields (<10 mT) is still an open question. We have studied the spin dynamics of a long-lived RP in a micelle by newly developed Monte Carlo simulation, in which fluctuations of the exchange and magnetic dipolar interactions by in-cage diffusion are directly introduced to the time-domain spin dynamics calculation. State-dependent relaxation/dephasing times of a few to a few tens of nanoseconds are obtained by simulations without hyperfine interactions (HFIs) as a function of the mutual diffusion constant (∼10(-6) cm(2)/s). Simulations with the HFIs exhibit incoherent singlet-triplet (S-T) mixings resulting from interplay between the HFIs and the fluctuating spin-spin interactions. The experimentally observed incoherent S-T mixing of ∼20 ns at 3 mT for a singlet-born RP in a sodium dodecyl sulfate micelle is reproduced by the simulation with reasonable diffusion coefficients. The computational method developed here contributes to quantitative detection of molecular motion that governs the recombination efficiency of RPs.
Collapse
Affiliation(s)
- Tomoaki Miura
- †Department of Chemistry, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Hisao Murai
- ‡Department of Chemistry, Shizuoka University, 836 Oya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
12
|
Miura T, Maeda K, Murai H, Ikoma T. Long-Distance Sequential Charge Separation at Micellar Interface Mediated by Dynamic Charge Transporter: A Magnetic Field Effect Study. J Phys Chem Lett 2015; 6:267-271. [PMID: 26263461 DOI: 10.1021/jz502495u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Construction of photogenerated long-lived charge-separated states is crucial for light-energy conversion using organic molecules. For realization of cheap and easy-to-make long-distance electron transfer (ET) systems, we have developed a supramolecular donor(D)-chromophore(C)-acceptor(A) triad utilizing a micellar interface. Alkyl viologen (A(2+)) is adsorbed on the hydrophilic interface of Triton X-100 micelle, which bears D units in the hydrophobic core. Excited triplet state of a hydrophobic flavin C entrapped in the supercage gives rise to primary ET from D, which is followed by the secondary ET from C(-•) to A(2+) to give the long-lived (>10 μs) charge-separated state with negligible yield of escaped C(-•). Analysis of magnetic field effect reveals that diffusion of C(-•) from the core to the hydrophilic interface leads to long-distance ET with a low charge recombination yield of ∼20%. This novel concept of "dynamic charge transporter" has important implications for development of photon-energy conversion systems in solution phase.
Collapse
Affiliation(s)
- Tomoaki Miura
- †Department of Chemistry, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| | - Kiminori Maeda
- ‡Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Hisao Murai
- §Department of Chemistry, Shizuoka University, 836 Oya, Suruga-ku, Shizuoka 422-8017, Japan
| | - Tadaaki Ikoma
- †Department of Chemistry, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
- ∥Center for Instrumental Analysis, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
- ⊥Core Research for Evolutionary Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| |
Collapse
|
13
|
Jones J, Maeda K, Hore P. Reaction operators for spin-selective chemical reactions of radical pairs. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.03.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Miura T, Maeda K, Arai T. The spin mixing process of a radical pair in low magnetic field observed by transient absorption detected nanosecond pulsed magnetic field effect. J Phys Chem A 2007; 110:4151-6. [PMID: 16553365 DOI: 10.1021/jp056488d] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spin mixing process of the radical pair in the sodium dodecyl sulfate (SDS) micelle is studied by using a novel technique nanosecond pulsed magnetic field effect on transient absorption. We have developed the equipment for a nanosecond pulsed magnetic field and observed its effect on the radical pair reaction. A decrease of the free radical yield by a reversely directed pulsed magnetic field that cancels static field is observed, and the dependence on its magnitude, which is called pulsed MARY (magnetic field effect on reaction yield) spectra, is studied. The observed spectra reflect the spin mixing in 50-200 ns and show clear time evolution. Theoretical simulation of pulsed MARY spectra based on a single site modified Liouville equation indicates that the fast spin dephasing processes induced by the modulation of electron-electron spin interaction by molecular reencounter affect to the coherent spin mixing by a hyperfine interaction in a low magnetic field.
Collapse
Affiliation(s)
- Tomoaki Miura
- Department of Chemistry, Faculty of Science, Shizuoka University, Ohya 836, Shizuoka City 422-8529, Japan
| | | | | |
Collapse
|
15
|
Salaoru TA, Woodward JR. Rapid rise time pulsed magnetic field circuit for pump-probe field effect studies. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2007; 78:036104. [PMID: 17411229 DOI: 10.1063/1.2713434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Here we describe an electronic circuit capable of producing rapidly switched dc magnetic fields of up to 20 mT with a rise time of 10 ns and a pulse length variable from 50 ns to more than 10 micros, suitable for use in the study of magnetic field effects on radical pair (RP) reactions. This corresponds to switching the field on a time scale short relative to the lifetime of typical RPs and maintaining it well beyond their lifetimes. Previous experiments have involved discharging a capacitor through a low inductance coil for a limited time using a switching circuit. These suffer from decaying field strength over the duration of the pulse given primarily by the ratio of the pulse width to the RC constant of the circuit. We describe here a simple yet elegant solution that completely eliminates this difficulty by employing a feedback loop. This allows a constant field to be maintained over the entire length of the pulse.
Collapse
Affiliation(s)
- T A Salaoru
- Department of Chemistry, University of Leicester, Leicester, United Kingdom
| | | |
Collapse
|
16
|
Maeda K, Miura T, Arai T. A practical simulation and a novel insight to the magnetic field effect on a radical pair in a micelle. Mol Phys 2006. [DOI: 10.1080/14767050600588106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|