1
|
Rajbongshi BK, Abdullah S, Lama B, Bhattacharyya HP, Sarma M. Regioselective and solvent-dependent photoisomerization induced internal conversion in red fluorescent protein chromophore analogues. RSC Adv 2024; 14:18373-18384. [PMID: 38860252 PMCID: PMC11163268 DOI: 10.1039/d4ra00988f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
Photophysical properties of three red fluorescent protein (RFP) chromophore analogues are reported here. The three RFP chromophore analogues differ in the additional conjugation present in the RFP chromophore. The three chromophores do not exhibit any solvent effect in both absorption and fluorescence spectra. The photoirradiation experiments and recording of 1H NMR before and after irradiation on one of the three RFP model chromophores show isomerization of the (Z,E) diastereomer to the (E,E) diastereomer. Calculation of S0 and S1 potential energy curves shows the preference for isomerization through the exocyclic C[double bond, length as m-dash]C bond with Z-stereochemistry, thus corroborating the experimental results. The computational studies also suggest that torsional motion along the exocyclic C[double bond, length as m-dash]C bond pushes the molecules to a conical intersection, thus paving the pathway for radiationless deactivation.
Collapse
Affiliation(s)
| | - Sheikh Abdullah
- Department of Chemistry, Cotton University Panbazar Guwahati Assam 781001 India
| | - Bittu Lama
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India
| | | | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India
| |
Collapse
|
2
|
Chen C, Henderson JN, Ruchkin DA, Kirsh JM, Baranov MS, Bogdanov AM, Mills JH, Boxer SG, Fang C. Structural Characterization of Fluorescent Proteins Using Tunable Femtosecond Stimulated Raman Spectroscopy. Int J Mol Sci 2023; 24:11991. [PMID: 37569365 PMCID: PMC10418586 DOI: 10.3390/ijms241511991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The versatile functions of fluorescent proteins (FPs) as fluorescence biomarkers depend on their intrinsic chromophores interacting with the protein environment. Besides X-ray crystallography, vibrational spectroscopy represents a highly valuable tool for characterizing the chromophore structure and revealing the roles of chromophore-environment interactions. In this work, we aim to benchmark the ground-state vibrational signatures of a series of FPs with emission colors spanning from green, yellow, orange, to red, as well as the solvated model chromophores for some of these FPs, using wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in conjunction with quantum calculations. We systematically analyzed and discussed four factors underlying the vibrational properties of FP chromophores: sidechain structure, conjugation structure, chromophore conformation, and the protein environment. A prominent bond-stretching mode characteristic of the quinoidal resonance structure is found to be conserved in most FPs and model chromophores investigated, which can be used as a vibrational marker to interpret chromophore-environment interactions and structural effects on the electronic properties of the chromophore. The fundamental insights gained for these light-sensing units (e.g., protein active sites) substantiate the unique and powerful capability of wavelength-tunable FSRS in delineating FP chromophore properties with high sensitivity and resolution in solution and protein matrices. The comprehensive characterization for various FPs across a colorful palette could also serve as a solid foundation for future spectroscopic studies and the rational engineering of FPs with diverse and improved functions.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA;
| | - J. Nathan Henderson
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.N.H.); (J.H.M.)
| | - Dmitry A. Ruchkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
| | - Jacob M. Kirsh
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (J.M.K.); (S.G.B.)
| | - Mikhail S. Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Alexey M. Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
| | - Jeremy H. Mills
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.N.H.); (J.H.M.)
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (J.M.K.); (S.G.B.)
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA;
| |
Collapse
|
3
|
Ke HW, Sung K. 7-membered-ring effect on fluorescence quantum yield: does metal-complexation-induced twisting-inhibition of an amino GFP chromophore derivative enhance fluorescence? Phys Chem Chem Phys 2023; 25:14627-14634. [PMID: 37194347 DOI: 10.1039/d3cp00467h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To investigate two aspects, namely, (1) the 7-membered-ring effect on fluorescence quantum yield and (2) whether metal-complexation-induced twisting-inhibition of an amino green fluorescent protein (GFP) chromophore derivative is bound to enhance fluorescence, a novel GFP-chromophore-based triamine ligand, (Z)-o-PABDI, is designed and synthesized. Before complexation with metal ions, the S1 excited state of (Z)-o-PABDI undergoes τ-torsion relaxation (Z/E photoisomerization) with a Z/E photoisomerization quantum yield of 0.28, forming both ground-state (Z)- and (E)-o-PABDI isomers. Since (E)-o-PABDI is less stable than (Z)-o-PABDI, it is thermo-isomerized back to (Z)-o-PABDI at room temperature in acetonitrile with a first-order rate constant of (1.366 ± 0.082) × 10-6 s-1. After complexation with a Zn2+ ion, (Z)-o-PABDI as a tridentate ligand forms a 1 : 1 complex with the Zn2+ ion in acetonitrile and in the solid state, resulting in complete inhibition of the φ-torsion and τ-torsion relaxations, which does not enhance fluorescence but causes fluorescence quenching. (Z)-o-PABDI also forms complexes with other first-row transition metal ions Mn2+, Fe3+, Co2+, Ni2+ and Cu2+, generating almost the same fluorescence quenching effect. By comparison with the 2/Zn2+ complex, in which a 6-membered ring of Zn2+-complexation enhances fluorescence significantly (a positive 6-membered-ring effect on fluorescence quantum yield), we find that the flexible 7-membered rings of the (Z)-o-PABDI/Mn+ complexes trigger their S1 excited states to relax through internal conversion at a rate much faster than fluorescence (a negative 7-membered-ring effect on fluorescence quantum yield), leading to fluorescence quenching regardless of the type of transition metal that complexes with (Z)-o-PABDI.
Collapse
Affiliation(s)
- Hao-Wei Ke
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
| | - Kuangsen Sung
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
4
|
Baxter J, Hutchison CD, Maghlaoui K, Cordon-Preciado V, Morgan RML, Aller P, Butryn A, Axford D, Horrell S, Owen RL, Storm SLS, Devenish NE, van Thor JJ. Observation of Cation Chromophore Photoisomerization of a Fluorescent Protein Using Millisecond Synchrotron Serial Crystallography and Infrared Vibrational and Visible Spectroscopy. J Phys Chem B 2022; 126:9288-9296. [PMID: 36326150 PMCID: PMC9677427 DOI: 10.1021/acs.jpcb.2c06780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The chromophores of reversibly switchable fluorescent proteins (rsFPs) undergo photoisomerization of both the trans and cis forms. Concurrent with cis/trans photoisomerisation, rsFPs typically become protonated on the phenolic oxygen resulting in a blue shift of the absorption. A synthetic rsFP referred to as rsEospa, derived from EosFP family, displays the same spectroscopic behavior as the GFP-like rsFP Dronpa at pH 8.4 and involves the photoconversion between nonfluorescent neutral and fluorescent anionic chromophore states. Millisecond time-resolved synchrotron serial crystallography of rsEospa at pH 8.4 shows that photoisomerization is accompanied by rearrangements of the same three residues as seen in Dronpa. However, at pH 5.5 we observe that the OFF state is identified as the cationic chromophore with additional protonation of the imidazolinone nitrogen which is concurrent with a newly formed hydrogen bond with the Glu212 carboxylate side chain. FTIR spectroscopy resolves the characteristic up-shifted carbonyl stretching frequency at 1713 cm-1 for the cationic species. Electronic spectroscopy furthermore distinguishes the cationic absorption band at 397 nm from the neutral species at pH 8.4 seen at 387 nm. The observation of photoisomerization of the cationic chromophore state demonstrates the conical intersection for the electronic configuration, where previously fluorescence was proposed to be the main decay route for states containing imidazolinone nitrogen protonation. We present the full time-resolved room-temperature X-ray crystallographic, FTIR, and UV/vis assignment and photoconversion modeling of rsEospa.
Collapse
Affiliation(s)
- James
M. Baxter
- Department
of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | | | - Karim Maghlaoui
- Department
of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | | | - R. Marc L. Morgan
- Department
of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Pierre Aller
- Research
Complex at Harwell, Rutherford Appleton
Laboratory, DidcotOX11 0FAUnited Kingdom,Diamond
Light Source, Harwell Science and Innovation
Campus, DidcotOX11 0DE, United Kingdom
| | - Agata Butryn
- Research
Complex at Harwell, Rutherford Appleton
Laboratory, DidcotOX11 0FAUnited Kingdom,Diamond
Light Source, Harwell Science and Innovation
Campus, DidcotOX11 0DE, United Kingdom
| | - Danny Axford
- Diamond
Light Source, Harwell Science and Innovation
Campus, DidcotOX11 0DE, United Kingdom
| | - Sam Horrell
- Diamond
Light Source, Harwell Science and Innovation
Campus, DidcotOX11 0DE, United Kingdom
| | - Robin L. Owen
- Diamond
Light Source, Harwell Science and Innovation
Campus, DidcotOX11 0DE, United Kingdom
| | - Selina L. S. Storm
- Diamond
Light Source, Harwell Science and Innovation
Campus, DidcotOX11 0DE, United Kingdom
| | - Nicholas E. Devenish
- Diamond
Light Source, Harwell Science and Innovation
Campus, DidcotOX11 0DE, United Kingdom
| | - Jasper J. van Thor
- Department
of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom,
| |
Collapse
|
5
|
Rajbongshi BK, Rafiq S, Bhowmik S, Sen P. Ultrafast Excited State Relaxation of a Model Green Fluorescent Protein Chromophore: Femtosecond Fluorescence and Transient Absorption Study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Boulanger SA, Chen C, Myasnyanko IN, Baranov MS, Fang C. Fluorescence Modulation of ortho-Green Fluorescent Protein Chromophores Following Ultrafast Proton Transfer in Solution. J Phys Chem B 2022; 126:5081-5093. [PMID: 35786966 DOI: 10.1021/acs.jpcb.2c03812] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photophysical and photochemical properties of the green fluorescent protein (GFP) chromophore and derivatives underlie their bioimaging applications. To date, ultrafast spectroscopic tools represent the key for unraveling fluorescence mechanisms toward rational design of this powerful biomimetic framework. To correlate the excited-state intramolecular proton transfer (ESIPT) with chromophore emission properties, we implement experimental and computational tool sets to elucidate real-time electronic and structural dynamics of two archetypal ortho-GFP chromophores (o-HBDI and o-LHBDI) possessing an intramolecular hydrogen bond to undergo efficient ESIPT, only differing in a bridge-bond constraint. Using excited-state femtosecond stimulated Raman spectroscopy (FSRS), a low-frequency phenolic (P)-ring-deformation mode (∼562 cm-1) was uncovered to accompany ESIPT. The tautomerized chromophore undergoes either rapid P-ring isomerization to reach the ground state with essentially no fluorescence for o-HBDI or enhanced (up to an impressive 180-fold in acetonitrile) and solvent-polarity-dependent fluorescence by P-ring locking in o-LHBDI. The significant dependence of the fluorescence enhancement ratio on solvent viscosity confirms P-ring isomerization as the dominant nonradiative decay pathway for o-HBDI. This work provides crucial insights into the dynamic solute-solvent electrostatic and steric interactions, enabling the application-specific improvement of ESIPT-capable molecules as versatile fluorescence-based sensors and imaging agents from large Stokes shift emission to brighter probes in physiological environments.
Collapse
Affiliation(s)
- Sean A Boulanger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia.,Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia.,Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| |
Collapse
|
7
|
Tang L, Fang C. Fluorescence Modulation by Ultrafast Chromophore Twisting Events: Developing a Powerful Toolset for Fluorescent-Protein-Based Imaging. J Phys Chem B 2021; 125:13610-13623. [PMID: 34883016 DOI: 10.1021/acs.jpcb.1c08570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The advancement of modern life sciences has benefited tremendously from the discovery and development of fluorescent proteins (FPs), widely expressed in live cells to track a myriad of cellular events. The chromophores of various FPs can undergo many ultrafast photophysical and/or photochemical processes in the electronic excited state and emit fluorescence with different colors. However, the chromophore becomes essentially nonfluorescent in solution environment due to its intrinsic twisting capability upon photoexcitation. To study "microscopic" torsional events and their effects on "macroscopic" fluorescence, we have developed an integrated ultrafast characterization platform involving femtosecond transient absorption (fs-TA) and wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS). A wide range of naturally occurring, circularly permuted, non-canonical amino-acid-decorated FPs and FP-based optical highlighters with photochromicity, photoconversion, and/or photoswitching capabilities have been recently investigated in great detail. Twisting conformational motions were elucidated to exist in all of these systems but to various extents. The associated different ultrafast pathways can be monitored via frequency changes of characteristic Raman bands during primary events and functional processes. The mapped electronic and structural dynamics information is crucial and has shown great potential and initial success for the rational design of proteins and other photoreceptors with novel functions and fluorescence properties.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, United States
| |
Collapse
|
8
|
Boulanger SA, Chen C, Myasnyanko IN, Sokolov AI, Baranov MS, Fang C. Excited-State Dynamics of a meta-Dimethylamino Locked GFP Chromophore as a Fluorescence Turn-on Water Sensor †. Photochem Photobiol 2021; 98:311-324. [PMID: 34714942 DOI: 10.1111/php.13552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
Strategic incorporation of a meta-dimethylamino (-NMe2 ) group on the conformationally locked green fluorescent protein (GFP) model chromophore (m-NMe2 -LpHBDI) has drastically altered molecular electronic properties, counterintuitively enhancing fluorescence of only the neutral and cationic chromophores in aqueous solution. A ˜200-fold decrease in fluorescence quantum yield of m-NMe2 -LpHBDI in alcohols (e.g., MeOH, EtOH and 2-PrOH) supports this GFP-derived compound as a fluorescence turn-on water sensor, with large fluorescence intensity differences between H2 O and ROH emissions in various H2 O/ROH binary mixtures. A combination of steady-state electronic spectroscopy, femtosecond transient absorption, ground-state femtosecond stimulated Raman spectroscopy (FSRS) and quantum calculations elucidates an intermolecular hydrogen-bonding chain between a solvent -OH group and the chromophore phenolic ring -NMe2 and -OH functional groups, wherein fluorescence differences arise from an extended hydrogen-bonding network beyond the first solvation shell, as opposed to fluorescence quenching via a dark twisted intramolecular charge-transfer state. The absence of a meta-NMe2 group twisting coordinate upon electronic excitation was corroborated by experiments on control samples without the meta-NMe2 group or with both meta-NMe2 and para-OH groups locked in a six-membered ring. These deep mechanistic insights stemming from GFP chromophore scaffold will enable rational design of organic, compact and environmentally friendly water sensors.
Collapse
Affiliation(s)
| | - Cheng Chen
- Department of Chemistry, Oregon State University, Corvallis, OR
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anatolii I Sokolov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR
| |
Collapse
|
9
|
Woodhouse JL, Henley A, Lewin R, Ward JM, Hailes HC, Bochenkova AV, Fielding HH. A photoelectron imaging study of the deprotonated GFP chromophore anion and RNA fluorescent tags. Phys Chem Chem Phys 2021; 23:19911-19922. [PMID: 34474467 DOI: 10.1039/d1cp01901e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Green fluorescent protein (GFP), together with its family of variants, is the most widely used fluorescent protein for in vivo imaging. Numerous spectroscopic studies of the isolated GFP chromophore have been aimed at understanding the electronic properties of GFP. Here, we build on earlier work [A. V. Bochenkova, C. Mooney, M. A. Parkes, J. Woodhouse, L. Zhang, R. Lewin, J. M. Ward, H. Hailes, L. H. Andersen and H. H. Fielding, Chem. Sci., 2017, 8, 3154] investigating the impact of fluorine and methoxy substituents that have been employed to tune the electronic structure of the GFP chromophore for use as fluorescent RNA tags. We present photoelectron spectra following photoexcitation over a broad range of wavelengths (364-230 nm) together with photoelectron angular distributions following photoexcitation at 364 nm, which are interpreted with the aid of quantum chemistry calculations. The results support the earlier high-level quantum chemistry calculations that predicted how fluorine and methoxy substituents tune the electronic structure and we find evidence to suggest that the methoxy substituents enhance internal conversion, most likely from the 2ππ* state which has predominantly Feshbach resonance character, to the 1ππ* state.
Collapse
Affiliation(s)
- Joanne L Woodhouse
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Alice Henley
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Ross Lewin
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - John M Ward
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | | | - Helen H Fielding
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
10
|
Boulanger SA, Chen C, Tang L, Zhu L, Baleeva NS, Myasnyanko IN, Baranov MS, Fang C. Shedding light on ultrafast ring-twisting pathways of halogenated GFP chromophores from the excited to ground state. Phys Chem Chem Phys 2021; 23:14636-14648. [PMID: 34212170 DOI: 10.1039/d1cp02140k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since green fluorescent protein (GFP) has revolutionized molecular and cellular biology for about three decades, there has been a keen interest in understanding, designing, and controlling the fluorescence properties of GFP chromophore (i.e., HBDI) derivatives from the protein matrix to solution. Amongst these cross-disciplinary efforts, the elucidation of excited-state dynamics of HBDI derivatives holds the key to correlating the light-induced processes and fluorescence quantum yield (FQY). Herein, we implement steady-state electronic spectroscopy, femtosecond transient absorption (fs-TA), femtosecond stimulated Raman spectroscopy (FSRS), and quantum calculations to study a series of mono- and dihalogenated HBDI derivatives (X = F, Cl, Br, 2F, 2Cl, and 2Br) in basic aqueous solution, gaining new insights into the photophysical reaction coordinates. In the excited state, the halogenated "floppy" chromophores exhibit an anti-heavy atom effect, reflected by strong correlations between FQY vs. Franck-Condon energy (EFC) or Stokes shift, and knrvs. EFC, as well as a swift bifurcation into the I-ring (major) and P-ring (minor) twisting motions. In the ground state, both ring-twisting motions become more susceptible to sterics and exhibit spectral signatures from the halogen-dependent hot ground-state absorption band decay in TA data. We envision this type of systematic analysis of the halogenated HBDI derivatives to provide guiding principles for the site-specific modification of GFP chromophores, and expand design space for brighter and potentially photoswitchable organic chemical probes in aqueous solution with discernible spectral signatures throughout the photocycle.
Collapse
Affiliation(s)
- Sean A Boulanger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| | - Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia and Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia and Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia and Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| |
Collapse
|
11
|
An Engineered Biliverdin-Compatible Cyanobacteriochrome Enables a Unique Ultrafast Reversible Photoswitching Pathway. Int J Mol Sci 2021; 22:ijms22105252. [PMID: 34065754 PMCID: PMC8156171 DOI: 10.3390/ijms22105252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) are promising optogenetic tools for their diverse absorption properties with a single compact cofactor-binding domain. We previously uncovered the ultrafast reversible photoswitching dynamics of a red/green photoreceptor AnPixJg2, which binds phycocyanobilin (PCB) that is unavailable in mammalian cells. Biliverdin (BV) is a mammalian cofactor with a similar structure to PCB but exhibits redder absorption. To improve the AnPixJg2 feasibility in mammalian applications, AnPixJg2_BV4 with only four mutations has been engineered to incorporate BV. Herein, we implemented femtosecond transient absorption (fs-TA) and ground state femtosecond stimulated Raman spectroscopy (GS-FSRS) to uncover transient electronic dynamics on molecular time scales and key structural motions responsible for the photoconversion of AnPixJg2_BV4 with PCB (Bpcb) and BV (Bbv) cofactors in comparison with the parent AnPixJg2 (Apcb). Bpcb adopts the same photoconversion scheme as Apcb, while BV4 mutations create a less bulky environment around the cofactor D ring that promotes a faster twist. The engineered Bbv employs a reversible clockwise/counterclockwise photoswitching that requires a two-step twist on ~5 and 35 picosecond (ps) time scales. The primary forward Pfr → Po transition displays equal amplitude weights between the two processes before reaching a conical intersection. In contrast, the primary reverse Po → Pfr transition shows a 2:1 weight ratio of the ~35 ps over 5 ps component, implying notable changes to the D-ring-twisting pathway. Moreover, we performed pre-resonance GS-FSRS and quantum calculations to identify the Bbv vibrational marker bands at ~659,797, and 1225 cm-1. These modes reveal a stronger H-bonding network around the BV cofactor A ring with BV4 mutations, corroborating the D-ring-dominant reversible photoswitching pathway in the excited state. Implementation of BV4 mutations in other PCB-binding GAF domains like AnPixJg4, AM1_1870g3, and NpF2164g5 could promote similar efficient reversible photoswitching for more directional bioimaging and optogenetic applications, and inspire other bioengineering advances.
Collapse
|
12
|
Cao CN, Liu CF, Zhao L, Rao GW. New insight into the photoinduced wavelength dependent decay mechanisms of the ferulic acid system on the excited states. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118565. [PMID: 32554260 DOI: 10.1016/j.saa.2020.118565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
The ferulic acid (FA) is a kind of phenolic acid widely exists in nature plants. Apart from its medicinal values, the FA is also widely applied in cosmetic industry. Recently, it was found to have potential applications in commercial sunscreens for its strong photostability and photoprotection property from harmful UV rays. Such excellent property lies in the ultrafast decay process of the FA system when exposure to the UV light, but the underlying detailed relaxation pathway is still less clear-cut. In the current work, high-level ab initio electronic structure calculations and on-the-fly surface hopping dynamics simulations were employed to explore the photoinduced decay mechanism of the FA system both on the S1 and S3 states in the gas phase. The results provide a reasonable explanation for the wavelength dependent decay patterns of FA system. The S1 state decay pathway is driven by a re-emission process to dissipate excess energy. While for the S3 state deactivation process, the pathway is dominated by a non-adiabatic process driven by the internal conversion process through the conical intersection regions. A S3-S1-S0 two step decay pattern is proposed, and the pathways are mainly driven by a puckering distortion motion of the aromatic ring and a twisting motion around the bridging double bond. The calculation results contribute to a better understanding of detailed dynamics behavior of the FA deactivation process, and provide theoretical guidance for further design of efficient and environmentally friendly sunscreens.
Collapse
Affiliation(s)
- Cong-Neng Cao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Cheng-Fu Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Li Zhao
- School of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, PR China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
13
|
Steinmetzger C, Bessi I, Lenz AK, Höbartner C. Structure-fluorescence activation relationships of a large Stokes shift fluorogenic RNA aptamer. Nucleic Acids Res 2020; 47:11538-11550. [PMID: 31740962 PMCID: PMC7145527 DOI: 10.1093/nar/gkz1084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/13/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022] Open
Abstract
The Chili RNA aptamer is a 52 nt long fluorogen-activating RNA aptamer (FLAP) that confers fluorescence to structurally diverse derivatives of fluorescent protein chromophores. A key feature of Chili is the formation of highly stable complexes with different ligands, which exhibit bright, highly Stokes-shifted fluorescence emission. In this work, we have analyzed the interactions between the Chili RNA and a family of conditionally fluorescent ligands using a variety of spectroscopic, calorimetric and biochemical techniques to reveal key structure–fluorescence activation relationships (SFARs). The ligands under investigation form two categories with emission maxima of ∼540 or ∼590 nm, respectively, and bind with affinities in the nanomolar to low-micromolar range. Isothermal titration calorimetry was used to elucidate the enthalpic and entropic contributions to binding affinity for a cationic ligand that is unique to the Chili aptamer. In addition to fluorescence activation, ligand binding was also observed by NMR spectroscopy, revealing characteristic signals for the formation of a G-quadruplex only upon ligand binding. These data shed light on the molecular features required and responsible for the large Stokes shift and the strong fluorescence enhancement of red and green emitting RNA–chromophore complexes.
Collapse
Affiliation(s)
- Christian Steinmetzger
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Irene Bessi
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ann-Kathrin Lenz
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Claudia Höbartner
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
14
|
Chatterjee S, Ahire K, Karuso P. Room-Temperature Dual Fluorescence of a Locked Green Fluorescent Protein Chromophore Analogue. J Am Chem Soc 2019; 142:738-749. [PMID: 31846319 DOI: 10.1021/jacs.9b05096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A structurally locked green fluorescent protein (GFP) chromophore with a phenyl group at C(2) of the imidazolone has been synthesized. Rotation around the exocyclic double bond is hindered, resulting in room-temperature fluorescence. The quantum yield in water is 500 times greater than that of unlocked analogues. Unlike the methyl-substituted analogue, the phenyl analogue exhibits a dual emission (cyan and red) that can be used for ultrasensitive ratiometric measurements and fluorescence microscopy. To explain this dual emission, DFT calculations were carried out along with fluorescence upconversion experiments. The Z-isomer was found to be emissive, while the origin of the dual emission was dependent on the phenyl group in the Z-isomer, which stabilizes the Franck-Condon state, resulting in a cyan fluorescence, while the zwitterionic tautomer fluoresces red. These results bring important new insights into the photophysics of the GFP chromophore and provide a new scaffold capable of dual emission with utility in biotechnology.
Collapse
Affiliation(s)
- Soumit Chatterjee
- Department of Molecular Sciences , Macquarie University , Sydney , NSW 2109 , Australia
| | - Ketan Ahire
- Department of Molecular Sciences , Macquarie University , Sydney , NSW 2109 , Australia
| | - Peter Karuso
- Department of Molecular Sciences , Macquarie University , Sydney , NSW 2109 , Australia
| |
Collapse
|
15
|
Fang C, Tang L, Chen C. Unveiling coupled electronic and vibrational motions of chromophores in condensed phases. J Chem Phys 2019; 151:200901. [PMID: 31779327 DOI: 10.1063/1.5128388] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The quest for capturing molecular movies of functional systems has motivated scientists and engineers for decades. A fundamental understanding of electronic and nuclear motions, two principal components of the molecular Schrödinger equation, has the potential to enable the de novo rational design for targeted functionalities of molecular machines. We discuss the development and application of a relatively new structural dynamics technique, femtosecond stimulated Raman spectroscopy with broadly tunable laser pulses from the UV to near-IR region, in tracking the coupled electronic and vibrational motions of organic chromophores in solution and protein environments. Such light-sensitive moieties hold broad interest and significance in gaining fundamental knowledge about the intramolecular and intermolecular Hamiltonian and developing effective strategies to control macroscopic properties. Inspired by recent experimental and theoretical advances, we focus on the in situ characterization and spectroscopy-guided tuning of photoacidity, excited state proton transfer pathways, emission color, and internal conversion via a conical intersection.
Collapse
Affiliation(s)
- Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Cheng Chen
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
16
|
Taylor MA, Zhu L, Rozanov ND, Stout KT, Chen C, Fang C. Delayed vibrational modulation of the solvated GFP chromophore into a conical intersection. Phys Chem Chem Phys 2019; 21:9728-9739. [PMID: 31032505 DOI: 10.1039/c9cp01077g] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Green fluorescent protein (GFP) has revolutionized bioimaging and life sciences. Its successes have inspired modification of the chromophore structure and environment to tune emission properties, but outside the protein cage, the chromophore is essentially non-fluorescent. In this study, we employ the tunable femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption (TA) to map the energy dissipation pathways of GFP model chromophore (HBDI) in basic aqueous solution. Strategic tuning of the Raman pump to 550 nm exploits the stimulated emission band to enhance excited state vibrational motions as HBDI navigates the non-equilibrium potential energy landscape to pass through a conical intersection. The time-resolved FSRS uncovers prominent anharmonic couplings between a global out-of-plane bending mode of ∼227 cm-1 and two modes at ∼866 and 1572 cm-1 before HBDI reaches the twisted intramolecular charge transfer (TICT) state on the ∼3 ps time scale. Remarkably, the wavelet transform analysis reveals a ∼500 fs delayed onset of the coupling peaks, in correlation with the emergence of an intermediate charge-separated state en route to the TICT state. This mechanism is corroborated by the altered coupling matrix for the HBDI Raman modes in the 50% (v/v) water-glycerol mixture, and a notable lengthening of the picosecond time constant. The real-time molecular "movie" of the general rotor-like HBDI isomerization reaction following photoexcitation represents a significant advance in comprehending the photochemical reaction pathways of the solvated GFP chromophore, therefore providing a crucial foundation to enable rational design of diverse nanomachines from efficient molecular rotors to bright fluorescent probes.
Collapse
Affiliation(s)
- Miles A Taylor
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Gao A, Wang M, Ding J. Ultrafasttrans-cisphotoisomerization of the neutral chromophore in green fluorescent proteins: Surface-hopping dynamics simulation. J Chem Phys 2018; 149:074304. [DOI: 10.1063/1.5043246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Aihua Gao
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Meishan Wang
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Junxia Ding
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
18
|
Piserchia A, Banerjee S, Barone V. General Approach to Coupled Reactive Smoluchowski Equations: Integration and Application of Discrete Variable Representation and Generalized Coordinate Methods to Diffusive Problems. J Chem Theory Comput 2017; 13:5900-5910. [PMID: 29091430 DOI: 10.1021/acs.jctc.7b00685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new and more general approach to diffusion problems with the inclusion of reactivity among different coupled diffusional states is rationalized and presented. The integration of our previous developments in such a field [Phys. Chem. Chem. Phys., 2015, 17, 17362-17374; J. Chem. Theory Comput., 2016, 12, 3482-3490] are implemented in a software package tool allowing the generic user to set up and run diffusional calculations with very low efforts. We show the applicability of the whole framework to a generic diffusional case of chemical interest that is the study case of (N,N-dimethylamino)benzonitrile (DMABN) fluorescence, whose excited state undergoes twisted intramolecular charge transfer (TICT) relaxation. The population dynamics of the excited state coupled to the ground state is followed, and a fluorescence decay spectrum is calculated. The theoretical and numerical background here presented is robust and general enough to complement a wide number of diffusional problems of current interest.
Collapse
Affiliation(s)
- Andrea Piserchia
- Scuola Normale Superiore , piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | | | - Vincenzo Barone
- Scuola Normale Superiore , piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
19
|
Mechanically switching single-molecule fluorescence of GFP by unfolding and refolding. Proc Natl Acad Sci U S A 2017; 114:11052-11056. [PMID: 29073015 DOI: 10.1073/pnas.1704937114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Green fluorescent protein (GFP) variants are widely used as genetically encoded fluorescent fusion tags, and there is an increasing interest in engineering their structure to develop in vivo optical sensors, such as for optogenetics and force transduction. Ensemble experiments have shown that the fluorescence of GFP is quenched upon denaturation. Here we study the dependence of fluorescence on protein structure by driving single molecules of GFP into different conformational states with optical tweezers and simultaneously probing the chromophore with fluorescence. Our results show that fluorescence is lost during the earliest events in unfolding, 3.5 ms before secondary structure is disrupted. No fluorescence is observed from the unfolding intermediates or the ensemble of compact and extended states populated during refolding. We further demonstrate that GFP can be mechanically switched between emissive and dark states. These data definitively establish that complete structural integrity is necessary to observe single-molecule fluorescence of GFP.
Collapse
|
20
|
Petrone A, Cimino P, Donati G, Hratchian HP, Frisch MJ, Rega N. On the Driving Force of the Excited-State Proton Shuttle in the Green Fluorescent Protein: A Time-Dependent Density Functional Theory (TD-DFT) Study of the Intrinsic Reaction Path. J Chem Theory Comput 2016; 12:4925-4933. [DOI: 10.1021/acs.jctc.6b00402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alessio Petrone
- Dipartimento
di Scienze Chimiche, Università di Napoli “Federico II”, Complesso Universitario di M. S. Angelo, via Cintia, I-80126 Napoli, Italy
| | - Paola Cimino
- Dipartimento
di Scienze Farmaceutiche, Università di Salerno, via Ponte
don Melillo, I-84084 Fisciano, SA Italy
| | - Greta Donati
- Dipartimento
di Scienze Chimiche, Università di Napoli “Federico II”, Complesso Universitario di M. S. Angelo, via Cintia, I-80126 Napoli, Italy
| | - Hrant P. Hratchian
- School
of Natural Sciences, University of California, Merced, Merced, California 95343, United States
| | | | - Nadia Rega
- Dipartimento
di Scienze Chimiche, Università di Napoli “Federico II”, Complesso Universitario di M. S. Angelo, via Cintia, I-80126 Napoli, Italy
- Italian Institute
of Technology, IIT@CRIB Center for Advanced Biomaterials for Healthcare, Largo Barsanti e Matteucci, I-80125 Napoli, Italy
| |
Collapse
|
21
|
Mukherjee P, Rafiq S, Sen P. Dual relaxation channel in thioflavin-T: An ultrafast spectroscopic study. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Piserchia A, Barone V. Toward a General Yet Effective Computational Approach for Diffusive Problems: Variable Diffusion Tensor and DVR Solution of the Smoluchowski Equation along a General One-Dimensional Coordinate. J Chem Theory Comput 2016; 12:3482-90. [PMID: 27403666 DOI: 10.1021/acs.jctc.6b00388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A generalization to arbitrary large amplitude motions of a recent approach to the evaluation of diffusion tensors [ J. Comput. Chem. , 2009 , 30 , 2 - 13 ] is presented and implemented in a widely available package for electronic structure computations. A fully black-box tool is obtained, which, starting from the generation of geometric structures along different kinds of paths, proceeds toward the evaluation of an effective diffusion tensor and to the solution of one-dimensional Smoluchowski equations by a robust numerical approach rooted in the discrete variable representation (DVR). Application to a number of case studies shows that the results issuing from our approach are identical to those delivered by previous software (in particular DiTe) for rigid scans along a dihedral angle, but can be improved by employing relaxed scans (i.e., constrained geometry optimizations) or even more general large amplitude paths. The theoretical and numerical background is robust and general enough to allow quite straightforward extensions in several directions (e.g., inclusion of reactive paths, solution of Fokker-Planck or stochastic Liouville equations, multidimensional problems, free-energy rather than electronic-energy driven processes).
Collapse
Affiliation(s)
- Andrea Piserchia
- Scuola Normale Superiore, piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
23
|
Vegh RB, Bloch DA, Bommarius AS, Verkhovsky M, Pletnev S, Iwaï H, Bochenkova AV, Solntsev KM. Hidden photoinduced reactivity of the blue fluorescent protein mKalama1. Phys Chem Chem Phys 2015; 17:12472-85. [DOI: 10.1039/c5cp00887e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report a complete photocycle of the blue fluorescent protein exhibiting two delayed branches coupled to hidden proton transfer events.
Collapse
Affiliation(s)
- Russell B. Vegh
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
- Petit Institute of Bioengineering and Bioscience
| | - Dmitry A. Bloch
- Research Program in Structural Biology and Biophysics
- Institute of Biotechnology
- University of Helsinki
- Helsinki 00014
- Finland
| | - Andreas S. Bommarius
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
- Petit Institute of Bioengineering and Bioscience
| | - Michael Verkhovsky
- Research Program in Structural Biology and Biophysics
- Institute of Biotechnology
- University of Helsinki
- Helsinki 00014
- Finland
| | - Sergei Pletnev
- Synchrotron Radiation Research Section
- Macromolecular Crystallography Laboratory
- National Cancer Institute
- Argonne
- USA
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics
- Institute of Biotechnology
- University of Helsinki
- Helsinki 00014
- Finland
| | | | - Kyril M. Solntsev
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
24
|
Zhao L, Zhou PW, Li B, Gao AH, Han KL. Non-adiabatic dynamics of isolated green fluorescent protein chromophore anion. J Chem Phys 2014; 141:235101. [DOI: 10.1063/1.4903241] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Li Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Pan-Wang Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bin Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ai-Hua Gao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ke-Li Han
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
25
|
SINGH ASHISH, RAJBONGSHI BASANTAKUMAR, RAMANATHAN GURUNATH. Tuning of intermolecular interactions results in packing diversity in imidazolin-5-ones. J CHEM SCI 2014. [DOI: 10.1007/s12039-014-0689-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Hsu YH, Chen YA, Tseng HW, Zhang Z, Shen JY, Chuang WT, Lin TC, Lee CS, Hung WY, Hong BC, Liu SH, Chou PT. Locked ortho- and para-core chromophores of green fluorescent protein; dramatic emission enhancement via structural constraint. J Am Chem Soc 2014; 136:11805-12. [PMID: 25075971 DOI: 10.1021/ja5062856] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the design strategy and synthesis of a structurally locked GFP core chromophore p-LHBDI, its ortho-derivative, o-LHBDI, and H2BDI possessing both para- and ortho-hydroxyl groups such that the inherent rotational motion of the titled compounds has been partially restricted. o-LHBDI possesses a doubly locked configuration, i.e., the seven-membered ring hydrogen bond and five-membered ring C(4-5-10-13-14) cyclization, from which the excited-state intramolecular proton transfer takes place, rendering a record high tautomer emission yield (0.18 in toluene) and the generation of amplified spontaneous emission. Compared with their unlocked counterparts, a substantial increase in the emission yield is also observed for p-LHBDI and H2BDI in anionic forms in water, and accordingly the structure versus luminescence relationship is fully discussed based on their chemistry and spectroscopy aspect. In solid, o-LHBDI exhibits an H-aggregate-like molecular packing, offers narrow-bandwidth emission, and has been successfully applied to fabricate a yellow organic light emitting diodes (λmax = 568 nm, ηext = 1.9%) with an emission full width at half-maximum as narrow as 70 nm.
Collapse
Affiliation(s)
- Yen-Hao Hsu
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University , Taipei 10617, Taiwan, R.O.C
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ai YJ, Liao RZ, Fang WH, Luo Y. Theoretical studies on the isomerization mechanism of the ortho-green fluorescent protein chromophore. Phys Chem Chem Phys 2013; 14:13409-14. [PMID: 22941238 DOI: 10.1039/c2cp41959a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a systematic theoretical investigation on the overall ground state and excited-state isomerization reaction mechanism of ortho-green fluorescent protein chromophore (o-HBDI) using the density functional theory and the multireference methods. The calculated results and subsequent analysis suggest the possible isomerization mechanism for o-HBDI. By comparison with experimental observation and detailed analysis, it is concluded that as initiated by the excited-state intramolecular proton transfer reaction, the conical intersection between the ground state and the excited state along the C4-C5 single-bond rotational coordinate is responsible for the rapid deactivation of o-HBDI.
Collapse
Affiliation(s)
- Yue-Jie Ai
- Division of Theoretical Chemistry & Biology, School of Biotechnology, Royal Institute of Technology, S-106 91, Stockholm, Sweden
| | | | | | | |
Collapse
|
28
|
Baranov MS, Solntsev KM, Lukyanov KA, Yampolsky IV. A synthetic approach to GFP chromophore analogs from 3-azidocinnamates. Role of methyl rotors in chromophore photophysics. Chem Commun (Camb) 2013; 49:5778-80. [DOI: 10.1039/c3cc41948g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Photo-initiated Dynamics and Spectroscopy of the Deprotonated Green Fluorescent Protein Chromophore. PHOTOPHYSICS OF IONIC BIOCHROMOPHORES 2013. [DOI: 10.1007/978-3-642-40190-9_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
30
|
Mooney CRS, Horke DA, Chatterley AS, Simperler A, Fielding HH, Verlet JRR. Taking the green fluorescence out of the protein: dynamics of the isolated GFP chromophore anion. Chem Sci 2013. [DOI: 10.1039/c2sc21737f] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
31
|
Bochenkova AV, Andersen LH. Ultrafast dual photoresponse of isolated biological chromophores: link to the photoinduced mode-specific non-adiabatic dynamics in proteins. Faraday Discuss 2013; 163:297-319; discussion 393-432. [DOI: 10.1039/c3fd20150c] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
A theoretical investigation of the mechanism of formation of a simplified analog of the green fluorescent protein (GFP) from a peptide model. Struct Chem 2012. [DOI: 10.1007/s11224-012-0134-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Amdursky N, Erez Y, Huppert D. Molecular rotors: what lies behind the high sensitivity of the thioflavin-T fluorescent marker. Acc Chem Res 2012; 45:1548-57. [PMID: 22738376 DOI: 10.1021/ar300053p] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thioflavin-T (ThT) can bind to amyloid fibrils and is frequently used as a fluorescent marker for in vitro biomedical assays of the potency of inhibitors for amyloid-related diseases, such as Alzheimer's disease, Parkinson's disease, and amyloidosis. Upon binding to amyloid fibrils, the steady-state (time-integrated) emission intensity of ThT increases by orders of magnitude. The simplicity of this type of measurement has made ThT a common fluorescent marker in biomedical research over the last 50 years. As a result of the remarkable development in ultrafast spectroscopy measurements, researchers have made substantial progress in understanding the photophysical nature of ThT. Both ab initio quantum-mechanical calculations and experimental evidence have shown that the electronically excited-state surface potential of ThT is composed of two regimes: a locally excited (LE) state and a charge-transfer (CT) state. The electronic wave function of the excited state changes from the initial LE state to the CT state as a result of the rotation around a single C-C bond in the middle of the molecule, which connects the benzothiazole moiety to the dimethylanilino ring. This twisted-internal-CT (TICT) is responsible for the molecular rotor behavior of ThT. This Account discusses several factors that can influence the LE-TICT dynamics of the excited state. Solvent, temperature, and hydrostatic pressure play roles in this process. In the context of biomedical assays, the binding to amyloid fibrils inhibits the internal rotation of the molecular segments and as a result, the electron cannot cross into the nonradiative "dark" CT state. The LE state has high oscillator strength that enables radiative excited-state relaxation to the ground state. This process makes the ThT molecule light up in the presence of amyloid fibrils. In the literature, researchers have suggested several models to explain nonradiative processes. We discuss the advantages and disadvantages of the various nonradiative models while focusing on the model that was initially proposed by Glasbeek and co-workers for auramine-O to be the best suited for ThT. We further discuss the computational fitting of the model for the nonradiative process of ThT.
Collapse
Affiliation(s)
- Nadav Amdursky
- Department of Materials and
Interfaces, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yuval Erez
- Raymond and Beverly Sackler
Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Huppert
- Raymond and Beverly Sackler
Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
34
|
Huang G, Zhang G, Wu Y, Liao Q, Fu H, Zhang D. Modification of the Green Fluorescent Protein Chromophore with Large Aromatic Moieties: Photophysical Study and Solid-State Emission. ASIAN J ORG CHEM 2012. [DOI: 10.1002/ajoc.201200086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Addison K, Conyard J, Dixon T, Bulman Page PC, Solntsev KM, Meech SR. Ultrafast Studies of the Photophysics of Cis and Trans States of the Green Fluorescent Protein Chromophore. J Phys Chem Lett 2012; 3:2298-2302. [PMID: 26295786 DOI: 10.1021/jz3008408] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cis-trans photoisomerization is proposed as a key process in the photoswitching of some photoactivatable fluorescent proteins. Here we present ultrafast fluorescence measurements of the model GFP chromophore (HBDI) in the cis state and in a mixture of the cis and trans states. Our results demonstrate that the mean lifetimes of the cis and trans states are remarkably similar. Therefore, the specific isomer of the chromophore cannot be solely responsible for the different photophysics of the bright and dark states of photoactive proteins, which must therefore be due to differential interactions between the different isomers of the chromophore and the protein.
Collapse
Affiliation(s)
- Kiri Addison
- †School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Jamie Conyard
- †School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Tara Dixon
- †School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Philip C Bulman Page
- †School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Kyril M Solntsev
- ‡School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0400, United States
| | - Stephen R Meech
- †School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| |
Collapse
|
36
|
Tolbert LM, Baldridge A, Kowalik J, Solntsev KM. Collapse and recovery of green fluorescent protein chromophore emission through topological effects. Acc Chem Res 2012; 45:171-81. [PMID: 21861536 DOI: 10.1021/ar2000925] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Housed within the 11-stranded β-barrel of the green fluorescent protein (GFP) is the arylideneimidazolidinone (AMI) chromophore, the component responsible for fluorescence. This class of small-molecule chromophore has drawn significant attention for its remarkable photophysical and photochemical properties, both within the intact protein and after its denaturation. All of the proteins so far isolated that have visible light fluorescence have been found to contain an AMI chromophore. These proteins comprise an extensive rainbow, ranging from GFP, which contains the simplest chromophore, p-hydroxybenzylideneimidazolidinone (p-HOBDI), to proteins having molecules with longer conjugation lengths and a variety of intraprotein interactions. The fluorescence invariably almost vanishes upon removal of the protective β-barrel. The role of the barrel in hindering internal conversion has been the subject of numerous studies, especially in our laboratories and those of our collaborators. A better understanding of these chromophores has been facilitated by the development of numerous synthetic protocols. These syntheses, which commonly use the Erlenmeyer azlactone method, have evolved in recent years with the development of a [2 + 3] cycloaddition exploited in our laboratory. The synthetic AMI chromophores have allowed delineation of the complex photophysics of GFP and its derivatives. Upon denaturation, AMI chromophores are marked by 4 orders of magnitude of diminution in emission quantum yield (EQY). This result is attributed to internal conversion resulting from conformational freedom in the released chromophore, which is not allowed within the restrictive β-barrel. To date, the photophysical properties of the AMI chromophore remain elusive and have been attributed to a variety of mechanisms, including cis-trans isomerization, triplet formation, hula twisting, and proton transfer. Advanced studies involving gas-phase behavior, solvent effects, and protonation states have significantly increased our understanding of the chromophore photophysics, but a comprehensive picture is only slowly emerging. Most importantly, mechanisms in structurally defined chromophores may provide clues as to the origin of the "blinking" behavior of the fluorescent proteins themselves. One approach to examining the effect of conformational freedom on rapid internal conversion of the chromophores is to restrict the molecules, both through structural modifications and through adjustments of the supramolecular systems. We thus include here a discussion of studies involving the crystalline state, inclusion within natural protein-binding pockets, complexation with metal ions, and sequestration within synthetic cavities; all of this research affirms the role of restricting conformational freedom in partially restoring the EQY. Additionally, new photochemistry is observed within these restricted systems. Many of the studies carried out in our laboratories show promise for these molecules to be adapted as molecular probes, wherein inclusion turns on the fluorescence and provides a signaling mechanism. In this Account, we present an overview of the AMI chromophores, including synthesis, overall photophysics, and supramolecular behavior. A significant amount of work remains for researchers to fully understand the properties of these chromophores, but important progress achieved thus far in photophysics and photochemistry is underscored here.
Collapse
Affiliation(s)
- Laren M. Tolbert
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0400, United States
| | - Anthony Baldridge
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0400, United States
| | - Janusz Kowalik
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0400, United States
| | - Kyril M. Solntsev
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
37
|
Rather SR, Rajbongshi BK, Nair NN, Sen P, Ramanathan G. Excited state relaxation dynamics of model green fluorescent protein chromophore analogs: evidence for cis-trans isomerism. J Phys Chem A 2011; 115:13733-42. [PMID: 21995735 DOI: 10.1021/jp206815t] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two green fluorescent protein (GFP) chromophore analogs (4Z)-4-(N,N-dimethylaminobenzylidene)-1-methyl-2-phenyl-1,4-dihydro-5H-imidazolin-5-one (DMPI) and (4Z)-4-(N,N-diphenylaminobenzylidene)-1-methyl-2-phenyl-1,4-dihydro-5H-imidazolin-5-one (DPMPI) were investigated using femtosecond fluorescence up-conversion spectroscopy and quantum chemical calculations with the results being substantiated by HPLC and NMR measurements. The femtosecond fluorescence transients are found to be biexponential in nature and the time constants exhibit a significant dependence on solvent viscosity and polarity. A multicoordinate relaxation mechanism is proposed for the excited state relaxation behavior of the model GFP analogs. The first time component (τ(1)) was assigned to the formation of twisted intramolecular charge transfer (TICT) state along the rotational coordinate of N-substituted amine group. Time resolved intensity normalized and area normalized emission spectra (TRES and TRANES) were constructed to authenticate the occurrence of TICT state in subpicosecond time scale. Another picosecond time component (τ(2)) was attributed to internal conversion via large amplitude motion along the exomethylenic double bond which has been enunciated by quantum chemical calculations. Quantum chemical calculation also forbids the involvement of hula-twist because of high activation barrier of twisting. HPLC profiles and proton-NMR measurements of the irradiated analogs confirm the presence of Z and E isomers, whose possibility of formation can be accomplished only by the rotation along the exomethylenic double bond. The present observations can be extended to p-HBDI in order to understand the role of protein scaffold in reducing the nonradiative pathways, leading to highly luminescent nature of GFP.
Collapse
Affiliation(s)
- Shahnawaz R Rather
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208 016, UP, India
| | | | | | | | | |
Collapse
|
38
|
Chuang WT, Hsieh CC, Lai CH, Lai CH, Shih CW, Chen KY, Hung WY, Hsu YH, Chou PT. Excited-state intramolecular proton transfer molecules bearing o-hydroxy analogues of green fluorescent protein chromophore. J Org Chem 2011; 76:8189-202. [PMID: 21942211 DOI: 10.1021/jo2012384] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
o-Hydroxy analogues, 1a-g, of the green fluorescent protein chromophore have been synthesized. Their structures and electronic properties were investigated by X-ray single-crystal analyses, electrochemistry, and luminescence properties. In solid and nonpolar solvents 1a-g exist mainly as Z conformers that possess a seven-membered-ring hydrogen bond and undergo excited-state intramolecular proton transfer (ESIPT) reactions, resulting in a proton-transfer tautomer emission. Fluorescence upconversion dynamics have revealed a coherent type of ESIPT, followed by a fast vibrational/solvent relaxation (<1 ps) to a twisted (regarding exo-C(5)-C(4)-C(3) bonds) conformation, from which a fast population decay of a few to several tens of picoseconds was resolved in cyclohexane. Accordingly, the proton-transfer tautomer emission intensity is moderate (0.08 in 1e) to weak (∼10(-4) in 1a) in cyclohexane. The stronger intramolecular hydrogen bonding in 1g suppresses the rotation of the aryl-alkene bond, resulting in a high yield of tautomer emission (Φ(f) ≈ 0.2). In the solid state, due to the inhibition of exo-C(5)-C(4)-C(3) rotation, intense tautomer emission with a quantum yield of 0.1-0.9 was obtained for 1a-g. Depending on the electronic donor or acceptor strength of the substituent in either the HOMO or LUMO site, a broad tuning range of the emission from 560 (1g) to 670 nm (1a) has been achieved.
Collapse
Affiliation(s)
- Wei-Ti Chuang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Remington SJ. Green fluorescent protein: a perspective. Protein Sci 2011; 20:1509-19. [PMID: 21714025 PMCID: PMC3190146 DOI: 10.1002/pro.684] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 11/07/2022]
Abstract
A brief personal perspective is provided for green fluorescent protein (GFP), covering the period 1994-2011. The topics discussed are primarily those in which my research group has made a contribution and include structure and function of the GFP polypeptide, the mechanism of fluorescence emission, excited state protein transfer, the design of ratiometric fluorescent protein biosensors and an overview of the fluorescent proteins derived from coral reef animals. Structure-function relationships in photoswitchable fluorescent proteins and nonfluorescent chromoproteins are also briefly covered.
Collapse
Affiliation(s)
- S James Remington
- Institute of Molecular Biology and Department of Physics, University of Oregon, Eugene, Oregon 97403-1229, USA.
| |
Collapse
|
40
|
Erez Y, Liu YH, Amdursky N, Huppert D. Modeling the Nonradiative Decay Rate of Electronically Excited Thioflavin T. J Phys Chem A 2011; 115:8479-87. [DOI: 10.1021/jp204520r] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Amdursky N, Gepshtein R, Erez Y, Huppert D. Temperature Dependence of the Fluorescence Properties of Thioflavin-T in Propanol, a Glass-Forming Liquid. J Phys Chem A 2011; 115:2540-8. [DOI: 10.1021/jp1121195] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nadav Amdursky
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, ‡Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rinat Gepshtein
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, ‡Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yuval Erez
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, ‡Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Huppert
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, ‡Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
42
|
Hsieh CC, Chou PT, Shih CW, Chuang WT, Chung MW, Lee J, Joo T. Comprehensive Studies on an Overall Proton Transfer Cycle of the ortho-Green Fluorescent Protein Chromophore. J Am Chem Soc 2011; 133:2932-43. [DOI: 10.1021/ja107945m] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cheng-Chih Hsieh
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan, R.O.C
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan, R.O.C
| | - Chun-Wei Shih
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan, R.O.C
| | - Wei-Ti Chuang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan, R.O.C
| | - Min-Wen Chung
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan, R.O.C
| | - Junghwa Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| | - Taiha Joo
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| |
Collapse
|
43
|
Conyard J, Kondo M, Heisler IA, Jones G, Baldridge A, Tolbert LM, Solntsev KM, Meech SR. Chemically modulating the photophysics of the GFP chromophore. J Phys Chem B 2011; 115:1571-7. [PMID: 21268624 DOI: 10.1021/jp111593x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
There is growing interest in engineering the properties of fluorescent proteins through modifications to the chromophore structure utilizing mutagenesis with either natural or unnatural amino acids. This entails an understanding of the photophysical and photochemical properties of the modified chromophore. In this work, a range of GFP chromophores with different alkyl substituents are synthesized and their electronic spectra, pH dependence, and ultrafast fluorescence decay kinetics are investigated. The weakly electron donating character of the alkyl substituents leads to dramatic red shifts in the electronic spectra of the anions, which are accompanied by increased fluorescence decay times. This high sensitivity of electronic structure to substitution is also characteristic of some fluorescent proteins. The solvent viscosity dependence of the decay kinetics are investigated, and found to be consistent with a bimodal radiationless relaxation coordinate. Some substituents are shown to distort the planar structure of the chromophore, which results in a blue shift in the electronic spectra and a strong enhancement of the radiationless decay. The significance of these data for the rational design of novel fluorescent proteins is discussed.
Collapse
Affiliation(s)
- Jamie Conyard
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Manokaran S, Banerjee J, Mallik S, Srivastava DK. Stabilization of anionic and neutral forms of a fluorophoric ligand at the active site of human carbonic anhydrase I. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1965-1973. [PMID: 20620244 PMCID: PMC2930141 DOI: 10.1016/j.bbapap.2010.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 06/23/2010] [Accepted: 06/25/2010] [Indexed: 05/29/2023]
Abstract
We synthesized a fluorogenic dansylamide derivative (JB2-48), which fills the entire (15 A deep) active site pocket of human carbonic anhydrase I, and investigated the contributions of sulfonamide and hydrophobic regions of the ligand structure on the spectral, kinetic, and thermodynamic properties of the enzyme-ligand complex. The steady-state and fluorescence lifetime data revealed that the deprotonation of the sulfonamide moiety of the enzyme bound ligand increases the fluorescence emission intensity as well as the lifetime of the fluorophores. This is manifested via the electrostatic interaction between the active site resident Zn²+ cofactor and the negatively charged sulfonamide group of the ligand, and such interaction contributes to about 2.2 kcal/mol (ΔΔG°) and 0.89 kcal/mol (ΔΔG(#)) energy in stabilizing the ground and the putative transition states, respectively. We provide evidence that the anionic and neutral forms of JB2-48 are stabilized by the complementary microscopic/conformational states of the enzyme. The implication of the mechanistic studies presented herein in rationale design of carbonic anhydrase inhibitors is discussed.
Collapse
Affiliation(s)
- Sumathra Manokaran
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58105
| | - Jayati Banerjee
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105
| | - D. K. Srivastava
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58105
| |
Collapse
|
45
|
Photophysics and Spectroscopy of Fluorophores in the Green Fluorescent Protein Family. SPRINGER SERIES ON FLUORESCENCE 2010. [DOI: 10.1007/978-3-642-04702-2_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
46
|
Organic Dyes with Excited-State Transformations (Electron, Charge, and Proton Transfers). SPRINGER SERIES ON FLUORESCENCE 2010. [DOI: 10.1007/978-3-642-04702-2_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Petkova I, Dobrikov G, Banerji N, Duvanel G, Perez R, Dimitrov V, Nikolov P, Vauthey E. Tuning the Excited-State Dynamics of GFP-Inspired Imidazolone Derivatives. J Phys Chem A 2009; 114:10-20. [DOI: 10.1021/jp903900b] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Irina Petkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Akad. G. Bontchev str. Bl. 9, Sofia 1113, Bulgaria, and Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Georgi Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Akad. G. Bontchev str. Bl. 9, Sofia 1113, Bulgaria, and Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Natalie Banerji
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Akad. G. Bontchev str. Bl. 9, Sofia 1113, Bulgaria, and Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Guillaume Duvanel
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Akad. G. Bontchev str. Bl. 9, Sofia 1113, Bulgaria, and Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Robert Perez
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Akad. G. Bontchev str. Bl. 9, Sofia 1113, Bulgaria, and Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Vladimir Dimitrov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Akad. G. Bontchev str. Bl. 9, Sofia 1113, Bulgaria, and Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Peter Nikolov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Akad. G. Bontchev str. Bl. 9, Sofia 1113, Bulgaria, and Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Eric Vauthey
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Akad. G. Bontchev str. Bl. 9, Sofia 1113, Bulgaria, and Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
48
|
|
49
|
Kaneko S, Yotoriyama S, Koda H, Tobita S. Excited-state proton transfer to solvent from phenol and cyanophenols in water. J Phys Chem A 2009; 113:3021-8. [PMID: 19265389 DOI: 10.1021/jp8086489] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The excited-state proton transfer (ESPT) to solvent from phenol (PhOH) and cyanophenols (CNOHs) in water was studied by means of time-resolved fluorescence and photoacoustic spectroscopy. A characteristic property of PhOH and CNOHs is that the fluorescence quantum yields of the deprotonated forms are remarkably small (< or = 10(-3)) and the lifetimes are extremely short (< or = 30 ps). Time-resolved fluorescence measurements for PhOH, CNOHs, and their methoxy analogues at 298 K indicate that o- and m-cyanophenols (o- and m-CNOH) undergo rapid ESPT to the solvent water with rate constants of 6.6 x 10(10) and 2.6 x 10(10) s(-1), respectively, whereas the fluorescence properties of PhOH and p-CNOH does not exhibit clear evidence of the ESPT reaction. Photoacoustic measurements show that photoexcitation of o- and m-CNOH in water results in negative volume changes, supporting the occurrence of ESPT to produce a geminate ion pair. In contrast, the volume contractions for the PhOH and p-CNOH solutions are negligibly small, which indicates that, in these compounds, the yields of solvent-separated ion pairs resulting from the ESPT are very small. The volume change per absorbed Einstein (DeltaV(r)) for o-CNOH is obtained to be -5.0 mL Einstein(-1), which is much smaller than the estimated volume contraction per photoconverted mole (DeltaV(R)). This suggests that the geminate recombination between the ejected proton and the cyanophenolate anion occurs after rapid deactivation of the excited ion pair. In the temperature range between 275 and 323 K, the proton dissociation rates of o- and m-CNOH in H(2)O and D(2)O are slower than the solvent relaxation rates evaluated from the Debye dielectric relaxation time, indicating that the overall rate constant is determined mainly by the proton motion along the reaction coordinate.
Collapse
Affiliation(s)
- Shigeo Kaneko
- Department of Chemistry and Chemical Biology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | | | | | | |
Collapse
|
50
|
Vallverdu G, Demachy I, Ridard J, Lévy B. Using biased molecular dynamics and Brownian dynamics in the study of fluorescent proteins. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2008.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|