1
|
Kisgeropoulos EC, Artz JH, Blahut M, Peters JW, King PW, Mulder DW. Properties of the iron-sulfur cluster electron transfer relay in an [FeFe]-hydrogenase that is tuned for H 2 oxidation catalysis. J Biol Chem 2024; 300:107292. [PMID: 38636659 PMCID: PMC11126806 DOI: 10.1016/j.jbc.2024.107292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
[FeFe]-hydrogenases catalyze the reversible oxidation of H2 from electrons and protons at an organometallic active site cofactor named the H-cluster. In addition to the H-cluster, most [FeFe]-hydrogenases possess accessory FeS cluster (F-cluster) relays that function in mediating electron transfer with catalysis. There is significant variation in the structural properties of F-cluster relays among the [FeFe]-hydrogenases; however, it is unknown how this variation relates to the electronic and thermodynamic properties, and thus the electron transfer properties, of enzymes. Clostridium pasteurianum [FeFe]-hydrogenase II (CpII) exhibits a large catalytic bias for H2 oxidation (compared to H2 production), making it a notable system for examining if F-cluster properties contribute to the overall function and efficiency of the enzyme. By applying a combination of multifrequency and potentiometric electron paramagnetic resonance, we resolved two electron paramagnetic resonance signals with distinct power- and temperature-dependent properties at g = 2.058 1.931 1.891 (F2.058) and g = 2.061 1.920 1.887 (F2.061), with assigned midpoint potentials of -140 ± 18 mV and -406 ± 12 mV versus normal hydrogen electrode, respectively. Spectral analysis revealed features consistent with spin-spin coupling between the two [4Fe-4S] F-clusters, and possible functional models are discussed that account for the contribution of coupling to the electron transfer landscape. The results signify the interplay of electronic coupling and free energy properties and parameters of the FeS clusters to the electron transfer mechanism through the relay and provide new insight as to how relays functionally complement the catalytic directionality of active sites to achieve highly efficient catalysis.
Collapse
Affiliation(s)
| | - Jacob H Artz
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Matthew Blahut
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - John W Peters
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma, USA
| | - Paul W King
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA; Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado Boulder, Boulder, Colorado, USA
| | - David W Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA.
| |
Collapse
|
2
|
McCleese C, Yu Z, Esemoto NN, Kolodziej C, Maiti B, Bhandari S, Dunietz BD, Burda C, Ptaszek M. Excitonic Interactions in Bacteriochlorin Homo-Dyads Enable Charge Transfer: A New Approach to the Artificial Photosynthetic Special Pair. J Phys Chem B 2018. [PMID: 29526105 DOI: 10.1021/acs.jpcb.8b02123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excitonically coupled bacteriochlorin (BC) dimers constitute a primary electron donor (special pair) in bacterial photosynthesis and absorbing units in light-harvesting antenna. However, the exact nature of the excited state of these dyads is still not fully understood. Here, we report a detailed spectroscopic and computational investigation of a series of symmetrical bacteriochlorin dimers, where the bacteriochlorins are connected either directly or by a phenylene bridge of variable length. The excited state of these dyads is quenched in high-dielectric solvents, which we attribute to photoinduced charge transfer. The mixing of charge transfer with the excitonic state causes accelerated (within 41 ps) decay of the excited state for the directly linked dyad, which is reduced by orders of magnitude with each additional phenyl ring separating the bacteriochlorins. These results highlight the origins of the excited-state dynamics in symmetric BC dyads and provide a new model for studying the primary processes in photosynthesis and for the development of artificial, biomimetic systems for solar energy conversion.
Collapse
Affiliation(s)
- Christopher McCleese
- Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Zhanqian Yu
- Department of Chemistry and Biochemistry , University of Maryland , Baltimore County, Baltimore , Maryland 21250 , United States
| | - Nopondo N Esemoto
- Department of Chemistry and Biochemistry , University of Maryland , Baltimore County, Baltimore , Maryland 21250 , United States
| | - Charles Kolodziej
- Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Buddhadev Maiti
- Department of Chemistry and Biochemistry , Kent State University , Kent , Ohio 44242 , United States
| | - Srijana Bhandari
- Department of Chemistry and Biochemistry , Kent State University , Kent , Ohio 44242 , United States
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry , Kent State University , Kent , Ohio 44242 , United States
| | - Clemens Burda
- Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry , University of Maryland , Baltimore County, Baltimore , Maryland 21250 , United States
| |
Collapse
|
3
|
Harris MA, Luehr CA, Faries KM, Wander M, Kressel L, Holten D, Hanson DK, Laible PD, Kirmaier C. Protein Influence on Charge-Asymmetry of the Primary Donor in Photosynthetic Bacterial Reaction Centers Containing a Heterodimer: Effects on Photophysical Properties and Electron Transfer. J Phys Chem B 2013; 117:4028-41. [DOI: 10.1021/jp401138h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michelle A. Harris
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United
States
| | - Craig A. Luehr
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439,
United States
| | - Kaitlyn M. Faries
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United
States
| | - Marc Wander
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439,
United States
| | - Lucas Kressel
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439,
United States
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United
States
| | - Deborah K. Hanson
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439,
United States
| | - Philip D. Laible
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439,
United States
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United
States
| |
Collapse
|
4
|
Carter B, Boxer SG, Holten D, Kirmaier C. Photochemistry of a Bacterial Photosynthetic Reaction Center Missing the Initial Bacteriochlorophyll Electron Acceptor. J Phys Chem B 2012; 116:9971-82. [DOI: 10.1021/jp305276m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brett Carter
- Department of Chemistry, Stanford University, Stanford, California
94305-5080, United States
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California
94305-5080, United States
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri
63130-4899, United States
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri
63130-4899, United States
| |
Collapse
|
5
|
Cofactor-specific photochemical function resolved by ultrafast spectroscopy in photosynthetic reaction center crystals. Proc Natl Acad Sci U S A 2012; 109:4851-6. [PMID: 22411820 DOI: 10.1073/pnas.1116862109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High-resolution mapping of cofactor-specific photochemistry in photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides was achieved by polarization selective ultrafast spectroscopy in single crystals at cryogenic temperature. By exploiting the fixed orientation of cofactors within crystals, we isolated a single transition within the multicofactor manifold, and elucidated the site-specific photochemical functions of the cofactors associated with the symmetry-related active A and inactive B branches. Transient spectra associated with the initial excited states were found to involve a set of cofactors that differ depending upon whether the monomeric bacteriochlorophylls, BChl(A), BChl(B), or the special pair bacteriochlorophyll dimer, P, was chosen for excitation. Proceeding from these initial excited states, characteristic photochemical functions were resolved. Specifically, our measurements provide direct evidence for an alternative charge separation pathway initiated by excitation of BChl(A) that does not involve P*. Conversely, the initial excited state produced by excitation of BChl(B) was found to decay by energy transfer to P. A clear sequential kinetic resolution of BChl(A) and the A-side bacteriopheophytin, BPh(A), in the electron transfer proceeding from P* was achieved. These experiments demonstrate the opportunity to resolve photochemical function of individual cofactors within the multicofactor RC complexes using single crystal spectroscopy.
Collapse
|
6
|
Faries KM, Kressel LL, Wander MJ, Holten D, Laible PD, Kirmaier C, Hanson DK. High throughput engineering to revitalize a vestigial electron transfer pathway in bacterial photosynthetic reaction centers. J Biol Chem 2012; 287:8507-14. [PMID: 22247556 DOI: 10.1074/jbc.m111.326447] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosynthetic reaction centers convert light energy into chemical energy in a series of transmembrane electron transfer reactions, each with near 100% yield. The structures of reaction centers reveal two symmetry-related branches of cofactors (denoted A and B) that are functionally asymmetric; purple bacterial reaction centers use the A pathway exclusively. Previously, site-specific mutagenesis has yielded reaction centers capable of transmembrane charge separation solely via the B branch cofactors, but the best overall electron transfer yields are still low. In an attempt to better realize the architectural and energetic factors that underlie the directionality and yields of electron transfer, sites within the protein-cofactor complex were targeted in a directed molecular evolution strategy that implements streamlined mutagenesis and high throughput spectroscopic screening. The polycistronic approach enables efficient construction and expression of a large number of variants of a heteroligomeric complex that has two intimately regulated subunits with high sequence similarity, common features of many prokaryotic and eukaryotic transmembrane protein assemblies. The strategy has succeeded in the discovery of several mutant reaction centers with increased efficiency of the B pathway; they carry multiple substitutions that have not been explored or linked using traditional approaches. This work expands our understanding of the structure-function relationships that dictate the efficiency of biological energy-conversion reactions, concepts that will aid the design of bio-inspired assemblies capable of both efficient charge separation and charge stabilization.
Collapse
Affiliation(s)
- Kaitlyn M Faries
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Leonova MM, Fufina TY, Vasilieva LG, Shuvalov VA. Structure-function investigations of bacterial photosynthetic reaction centers. BIOCHEMISTRY (MOSCOW) 2012; 76:1465-83. [DOI: 10.1134/s0006297911130074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Khatypov RA, Khmelnitskiy AY, Khristin AM, Fufina TY, Vasilieva LG, Shuvalov VA. Primary charge separation within P870* in wild type and heterodimer mutants in femtosecond time domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:1392-8. [PMID: 22209778 DOI: 10.1016/j.bbabio.2011.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/09/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
Abstract
Primary charge separation dynamics in the reaction center (RC) of purple bacterium Rhodobacter sphaeroides and its P870 heterodimer mutants have been studied using femtosecond time-resolved spectroscopy with 20 and 40fs excitation at 870nm at 293K. Absorbance increase in the 1060-1130nm region that is presumably attributed to P(A)(δ+) cation radical molecule as a part of mixed state with a charge transfer character P*(P(A)(δ+)P(B)(δ-)) was found. This state appears at 120-180fs time delay in the wild type RC and even faster in H(L173)L and H(M202)L heterodimer mutants and precedes electron transfer (ET) to B(A) bacteriochlorophyll with absorption band at 1020nm in WT. The formation of the P(A)(δ+)B(A)(δ-) state is a result of the electron transfer from P*(P(A)(δ+)P(B)(δ-)) to the primary electron acceptor B(A) (still mixed with P*) with the apparent time delay of ~1.1ps. Next step of ET is accompanied by the 3-ps appearance of bacteriopheophytin a(-) (H(A)(-)) band at 960nm. The study of the wave packet formation upon 20-fs illumination has shown that the vibration energy of the wave packet promotes reversible overcoming of an energy barrier between two potential energy surfaces P* and P*(P(A)(δ+)B(A)(δ-)) at ~500fs. For longer excitation pulses (40fs) this promotion is absent and tunneling through an energy barrier takes about 3ps. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- R A Khatypov
- Russian Academy of Sciences, Moscow, Russian Federation
| | | | | | | | | | | |
Collapse
|
9
|
Electronic structure of the primary electron donor of Blastochloris viridis heterodimer mutants: High-field EPR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1617-26. [DOI: 10.1016/j.bbabio.2010.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 05/18/2010] [Accepted: 06/04/2010] [Indexed: 11/22/2022]
|
10
|
Yakovlev AG, Shkuropatova TA, Shkuropatova VA, Shuvalov VA. Femtosecond stage of electron transfer in reaction centers of the triple mutant SL178K/GM203D/LM214H of Rhodobacter sphaeroides. BIOCHEMISTRY. BIOKHIMIIA 2010; 75:412-422. [PMID: 20618129 DOI: 10.1134/s0006297910040036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Coherent processes in an initial phase of charge transfer in reaction centers (RCs) of the triple mutant S(L178)K/G(M203)D/L(M214)H of Rhodobacter sphaeroides were investigated by difference (light - dark) absorption spectroscopy with 18 fsec time resolution. Electron transfer in the B cofactor branch is activated in this mutant, while the A-branch electron transfer is slowed in comparison with native RCs of Rba. sphaeroides. A bulk of absorption difference spectra was analyzed in the 940-1060 nm range (stimulated emission of excited bacteriochlorophyll dimer P* and absorption of bacteriochlorophyll anions B(A)(-) and beta(-), where beta is a bacteriochlorophyll substituting the native bacteriopheophytin H(A)) and in the 735-775 nm range (bleaching of the absorption band of the bacteriopheophytin H(B) in the B-branch) in the -0.1 to 4 psec range of delays with respect to the moment of photoexcitation of P at 870 nm. Spectra were measured at 293 and 90 K. The kinetics of P* stimulated emission at 940 nm shows its decay with a time constant of approximately 14 psec at 90 K and approximately 18 psec at 293 K, which is accompanied by oscillations with a frequency of approximately 150 cm(-1). A weak absorption band is found at 1018 nm that is formed approximately 100 fsec after excitation of P and reflects the electron transfer from P* to beta and/or B(A) with accumulation of the P(+)beta(-) and/or P(+)B(A)(-) states. The kinetics of DeltaA at 1018 nm contains the oscillations at approximately 150 cm(-1) and distinct low-frequency oscillations at 20-100 cm(-1); also, the amplitude of the oscillations at 150 cm(-1) is much smaller at 293 than at 90 K. The oscillations in the kinetics of the 1018 nm band do not contain a 32 cm(-1) mode that is characteristic for native Rba. sphaeroides RCs having water molecule HOH55 in their structure. The DeltaA kinetics at 751 nm reflects the electron transfer to H(B) with formation of the P(+)H(B)(-) state. The oscillatory part of this kinetics has the form of a single peak with a maximum at ~50 fsec completely decaying at ~200 fsec, which might reflect a reversible electron transfer to the B-branch. The results are analyzed in terms of coherent nuclear wave packet motion induced in the P* excited state by femtosecond light pulses, of an influence of the incorporated mutations on the mutual position of the energy levels of charge separated states, and of the role of water HOH55 in the dynamics of the initial electron transfer.
Collapse
Affiliation(s)
- A G Yakovlev
- Department of Photobiophysics, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | |
Collapse
|
11
|
Weissman S, Peskin U. Coherent site-directed transport in complex molecular networks: an effective Hamiltonian approach. J Chem Phys 2010; 132:114116. [PMID: 20331290 DOI: 10.1063/1.3355550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Defining the conditions for coherent site-directed transport from an electron donor to a specific acceptor through tunneling barriers in a network of multiple donor/acceptors sites is an important step toward controlling electronic processes in molecular networks. The required analysis is most challenging since the entire network in essentially involved in coherent transport. In this work we introduce an efficient approach for formulating an effective donor/acceptor coupling in terms of the entire network parameters. The approach is based on implementation of Feshbach projection operators to map the entire network Hamiltonian onto a subspace defined by two specific donor and acceptor sites. This nonperturbative approach enables to define regimes of network parameters in which the effective donor-acceptor coupling is optimal. This is demonstrated numerically for simple models of molecular networks.
Collapse
Affiliation(s)
- Shira Weissman
- Schulich Faculty of Chemistry and The Lise Meitner Center for Computational Quantum Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
12
|
Kors CA, Wallace E, Davies DR, Li L, Laible PD, Nollert P. Effects of impurities on membrane-protein crystallization in different systems. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:1062-73. [PMID: 19770503 PMCID: PMC2748966 DOI: 10.1107/s0907444909029163] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 07/22/2009] [Indexed: 11/18/2022]
Abstract
When starting a protein-crystallization project, scientists are faced with several unknowns. Amongst them are these questions: (i) is the purity of the starting material sufficient? and (ii) which type of crystallization experiment is the most promising to conduct? The difficulty in purifying active membrane-protein samples for crystallization trials and the high costs associated with producing such samples require an extremely pragmatic approach. Additionally, practical guidelines are needed to increase the efficiency of membrane-protein crystallization. In order to address these conundrums, the effects of commonly encountered impurities on various membrane-protein crystallization regimes have been investigated and it was found that the lipidic cubic phase (LCP) based crystallization methodology is more robust than crystallization in detergent environments using vapor diffusion or microbatch approaches in its ability to tolerate contamination in the forms of protein, lipid or other general membrane components. LCP-based crystallizations produced crystals of the photosynthetic reaction center (RC) of Rhodobacter sphaeroides from samples with substantial levels of residual impurities. Crystals were obtained with protein contamination levels of up to 50% and the addition of lipid material and membrane fragments to pure samples of RC had little effect on the number or on the quality of crystals obtained in LCP-based crystallization screens. If generally applicable, this tolerance for impurities may avoid the need for samples of ultrahigh purity when undertaking initial crystallization screening trials to determine preliminary crystallization conditions that can be optimized for a given target protein.
Collapse
Affiliation(s)
- Christopher A. Kors
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Ellen Wallace
- deCODE biostructures, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Douglas R. Davies
- deCODE biostructures, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Liang Li
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Philip D. Laible
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Peter Nollert
- deCODE biostructures, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| |
Collapse
|
13
|
Ponomarenko NS, Li L, Marino AR, Tereshko V, Ostafin A, Popova JA, Bylina EJ, Ismagilov RF, Norris JR. Structural and spectropotentiometric analysis of Blastochloris viridis heterodimer mutant reaction center. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1788:1822-31. [PMID: 19539602 PMCID: PMC2752317 DOI: 10.1016/j.bbamem.2009.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/06/2009] [Accepted: 06/03/2009] [Indexed: 01/07/2023]
Abstract
Heterodimer mutant reaction centers (RCs) of Blastochloris viridis were crystallized using microfluidic technology. In this mutant, a leucine residue replaced the histidine residue which had acted as a fifth ligand to the bacteriochlorophyll (BChl) of the primary electron donor dimer M site (HisM200). With the loss of the histidine-coordinated Mg, one bacteriochlorophyll of the special pair was converted into a bacteriopheophytin (BPhe), and the primary donor became a heterodimer supermolecule. The crystals had dimensions 400 x 100 x 100 microm, belonged to space group P4(3)2(1)2, and were isomorphous to the ones reported earlier for the wild type (WT) strain. The structure was solved to a 2.5 A resolution limit. Electron-density maps confirmed the replacement of the histidine residue and the absence of Mg. Structural changes in the heterodimer mutant RC relative to the WT included the absence of the water molecule that is typically positioned between the M side of the primary donor and the accessory BChl, a slight shift in the position of amino acids surrounding the site of the mutation, and the rotation of the M194 phenylalanine. The cytochrome subunit was anchored similarly as in the WT and had no detectable changes in its overall position. The highly conserved tyrosine L162, located between the primary donor and the highest potential heme C(380), revealed only a minor deviation of its hydroxyl group. Concomitantly to modification of the BChl molecule, the redox potential of the heterodimer primary donor increased relative to that of the WT organism (772 mV vs. 517 mV). The availability of this heterodimer mutant and its crystal structure provides opportunities for investigating changes in light-induced electron transfer that reflect differences in redox cascades.
Collapse
Affiliation(s)
- Nina S. Ponomarenko
- Department of Chemistry, University of Chicago, 929 E.57th Street, GCIS, Chicago, IL 60637, USA
| | - Liang Li
- Department of Chemistry, University of Chicago, 929 E.57th Street, GCIS, Chicago, IL 60637, USA
| | - Antony R. Marino
- Department of Chemistry, University of Chicago, 929 E.57th Street, GCIS, Chicago, IL 60637, USA
| | - Valentina Tereshko
- Department of Chemistry, University of Chicago, 929 E.57th Street, GCIS, Chicago, IL 60637, USA
| | - Agnes Ostafin
- Department of Material Science, University of Utah, 316 CME, 122 S. Central Camous Drive, Salt Lake City, UT 84112, USA
| | - Julia A. Popova
- Department of Chemistry, University of Chicago, 929 E.57th Street, GCIS, Chicago, IL 60637, USA
| | - Edward J. Bylina
- Department of Chemistry, University of Chicago, 929 E.57th Street, GCIS, Chicago, IL 60637, USA
| | - Rustem F. Ismagilov
- Department of Chemistry, University of Chicago, 929 E.57th Street, GCIS, Chicago, IL 60637, USA
| | - James R. Norris
- Department of Chemistry, University of Chicago, 929 E.57th Street, GCIS, Chicago, IL 60637, USA,Corresponding author. Tel.: +1 773 702 7864. (J.R. Norris)
| |
Collapse
|
14
|
Abstract
Photoreaction centres are Nature's solar batteries. These nanometre-scale power producers are responsible for transducing the energy of sunlight into a form that can be used by biological systems, thereby powering most of the biological activity on the planet. Although to the layman the word 'photosynthesis' is usually associated with green plants, much of our understanding of the molecular basis of biological transduction of light energy has come from studies of purple photosynthetic bacteria. Their RCs (reaction centres) and attendant light-harvesting complexes have been subjected to an intensive spectroscopic scrutiny, coupled with genetic manipulation and structural studies, that has revealed many of the molecular and mechanistic details of biological energy transfer, electron transfer and coupled proton translocation. This review provides a short overview of the structure and mechanism of the purple bacterial RC, focusing in the main on the most heavily studied complex from Rhodobacter sphaeroides.
Collapse
|
15
|
Kirmaier C, Holten D. Low-Temperature Studies of Electron Transfer to the M Side of YFH Reaction Centers from Rhodobacter capsulatus. J Phys Chem B 2009; 113:1132-42. [DOI: 10.1021/jp807639e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889
| |
Collapse
|
16
|
Williams JC, Allen JP. Directed Modification of Reaction Centers from Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Jones MR. Structural Plasticity of Reaction Centers from Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Singlet oxygen generation in the reaction centers of Rhodobacter sphaeroides. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:843-50. [DOI: 10.1007/s00249-008-0287-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 01/25/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
|
19
|
Parkinson DY, Lee H, Fleming GR. Measuring Electronic Coupling in the Reaction Center of Purple Photosynthetic Bacteria by Two-Color, Three-Pulse Photon Echo Peak Shift Spectroscopy. J Phys Chem B 2007; 111:7449-56. [PMID: 17530796 DOI: 10.1021/jp070029q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One- and two-color, three-pulse photon echo peak shift spectroscopy (1C and 2C3PEPS) was used to estimate the electronic coupling between the accessory bacteriochlorophyll (B) and the bacteriopheophytin (H) in the reaction center of the purple photosynthetic bacterium Rhodobacter sphaeroides as approximately 170 +/- 30 cm-1. This is the first direct experimental determination of this parameter; it is within the range of values found in previously published calculations. The 1C3PEPS signal of the Qy band of the bacteriochlorophyll B shows that it is weakly coupled to nuclear motions of the bath, whereas the 1C3PEPS signal of the Qy band of the bacteriopheophytin, H, shows that it is more strongly coupled to the bath, but has minimal inhomogeneous broadening. Our simulations capture the major features of the data with the theoretical framework developed in our group to separately calculate the response functions and population dynamics.
Collapse
Affiliation(s)
- Dilworth Y Parkinson
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
20
|
Caspary M, Peskin U. Site-directed electronic tunneling through a vibrating molecular network. J Chem Phys 2006; 125:184703. [PMID: 17115775 DOI: 10.1063/1.2363194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The effect of electronic-nuclear coupling on electronic transport through a complex molecular network is studied. Electronic tunneling dynamics in a network of N donor/acceptor sites, connected by molecular bridges, is shown to be controlled by electronic-nuclear coupling at the bridges. Particularly, electronic coupling to an accepting nuclear mode at the contact site between the donor and the rest of the network is shown to affect the tunneling path selection to specific acceptors. In the "deep" tunneling regime, the network is mapped onto an N-level system using a recursive perturbation expansion, enabling analytical treatment of the electronic dynamics. The analytic formulation is applied for two model systems, demonstrating site-directed tunneling by electronic-nuclear coupling. Numerical simulations suggest that this phenomenon is not limited to the deep tunneling regime.
Collapse
Affiliation(s)
- Maytal Caspary
- Department of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
21
|
Lembo A, Tagliatesta P, Guldi DM. Synthesis and Photophysical Investigation of New Porphyrin Derivatives with β-Pyrrole Ethynyl Linkage and Corresponding Dyad with [60] Fullerene. J Phys Chem A 2006; 110:11424-34. [PMID: 17020252 DOI: 10.1021/jp062735h] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two new beta-substituted arylethynyl meso-tetraphenylporphyrins, 2-[(4'-formyl)phenyl]ethynyl-5,10,15,20-tetraphenylporphyrin (system A) and 2-[(4'-methyl)phenyl]ethynyl-5,10,15,20-tetraphenylporphyrin (system B) and their zinc derivatives were synthesized by palladium catalysis, using a synthetic approach that affords high yields of the target systems. Comparative ultraviolet-visible (UV-vis), NMR, and cyclic voltammetry studies of such macrocycles reveal the presence of an extensive conjugation between the tetrapyrrolic ring and the linker, through pi-pi orbital interaction. This interaction was observed in the form of a "push-pull" effect that moves the electronic charge between the porphyrin and the aldehyde group of system A. System B, bearing a methyl group instead of the formyl group, was synthesized in order to evaluate the effect of the substitution on the charge delocalization, which is necessary to corroborate the push-pull mechanism hypothesis. The new porphyrin, system A, was also used as a starting material for the synthesis of new porphyrin-fullerene dyads in which the [60]fullerene is directly linked to the tetrapyrrolic rings by ethynylenephenylene subunits. Fluorescence and transient absorption measurements of the new dyads reveal that ultrafast energy and electron transfer occur, respectively, in nonpolar and polar solvents, with high values of the rate constant. The UV-vis, NMR, and cyclic voltammetry results show that it is possible for both energy and electron transfer between porphyrin and fullerene to take place through the pi-bond interaction. Such results evidence that the coupling between the donor and acceptor moieties is strong enough for possible photovoltaic applications.
Collapse
Affiliation(s)
- Angelo Lembo
- Institute for Physical Chemistry, Friedrich-Alexander University Erlangen-Nürberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | | | | |
Collapse
|