1
|
Experiments on collisional energy transfer. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/b978-0-444-64207-3.00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
2
|
Mu B, Cui X, Shen Y, Dai K. State-resolved collisional relaxation of highly vibrationally excited CsH by CO2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 148:299-310. [PMID: 25909904 DOI: 10.1016/j.saa.2015.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 08/18/2014] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
Quenching of highly vibrationally excited CsH(X(1)Σ(+), v=15-23) by collisions with CO2 was investigated. A significant fraction of the initial population of highly vibrationally excited CsH(v=22) was relaxed to a low vibrational level (Δv=-5). The near-resonant 5-1 vibration-to-vibration (V-V) energy was efficiently exchanged. The rate constants for the rotational levels of CO2(00(0)0) [J=36-60] and CO2(00(0)1) [J=5-31] from the collisions with excited CsH were determined. The experiments revealed that the collisions resulting in CO2(00(0)0) were accompanied by substantial excitation in rotation and translation. The vibrationally excited CO2(00(0)1) state exhibited rotational and translational energy distributions near those of the initial state. The total quenching rates relative to the probed state of excited CsH were determined for both CO2 states. The corresponding data indicated that the gains in the rotational and translational energies in CO2 were sensitive to the collisional depletion of excited CsH.
Collapse
Affiliation(s)
- Baoxia Mu
- School of Science, Xi'an Jiaotong University, Xi'an 710049, China; Department of Physics, Xinjiang University, Urumqi 830046, China.
| | - Xiuhua Cui
- Department of Physics, Xinjiang University, Urumqi 830046, China
| | - Yifan Shen
- Department of Physics, Xinjiang University, Urumqi 830046, China.
| | - Kang Dai
- Department of Physics, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
3
|
Kim K, Johnson AM, Powell AL, Mitchell DG, Sevy ET. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO2: the effect of donor fluorination on strong collision energy transfer. J Chem Phys 2014; 141:234306. [PMID: 25527934 DOI: 10.1063/1.4903252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Collisional energy transfer between vibrational ground state CO2 and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm(-1)) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E' = ∼41,000 cm(-1) was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S1→S0*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO2 via collisions was measured by probing the scattered CO2 using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO2 were measured and used to determine the energy transfer probability distribution function, P(E,E'), in the large ΔE region. P(E,E') was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E') and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E') and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E'). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.
Collapse
Affiliation(s)
- Kilyoung Kim
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Alan M Johnson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Amber L Powell
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Deborah G Mitchell
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | - Eric T Sevy
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| |
Collapse
|
4
|
Echebiri GO, Smarte MD, Walters WW, Mullin AS. Performance of a high-resolution mid-IR optical-parametric-oscillator transient absorption spectrometer. OPTICS EXPRESS 2014; 22:14885-14895. [PMID: 24977583 DOI: 10.1364/oe.22.014885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report on a mid-IR optical parametric oscillator (OPO)-based high resolution transient absorption spectrometer for state-resolved collisional energy transfer. Transient Doppler-broadened line profiles at λ = 3.3 μm are reported for HCl R7 transitions following gas-phase collisions with vibrationally excited pyrazine. The instrument noise, analyzed as a function of IR wavelength across the absorption line, is as much as 10 times smaller than in diode laser-based measurements. The reduced noise is attributed to larger intensity IR light that has greater intensity stability, which in turn leads to reduced detector noise and better frequency locking for the OPO.
Collapse
|
5
|
Hsu HC, Tsai MT, Dyakov YA, Ni CK. Energy transfer of highly vibrationally excited molecules studied by crossed molecular beam/time-sliced velocity map ion imaging. INT REV PHYS CHEM 2012. [DOI: 10.1080/0144235x.2012.673282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Strekalov M. The role of state density in collisions of highly excited molecules: An exponential decay function for the transition probability. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Havey DK, Du J, Liu Q, Mullin AS. Full State-Resolved Energy Gain Profiles of CO2 (J = 2−80) from Collisions of Highly Vibrationally Excited Molecules. 1. Relaxation of Pyrazine (E = 37900 cm−1). J Phys Chem A 2009; 114:1569-80. [DOI: 10.1021/jp908934j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel K. Havey
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Juan Du
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Qingnan Liu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Amy S. Mullin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
8
|
Liu Q, Havey DK, Li Z, Mullin AS. Effects of Alkylation on Deviations from Lennard−Jones Collision Rates for Highly Excited Aromatic Molecules: Collisions of Methylated Pyridines with HOD. J Phys Chem A 2009; 113:4387-96. [DOI: 10.1021/jp811077p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qingnan Liu
- Department of Chemistry and Biochemistry, University of Maryland College Park, Maryland 20705
| | - Daniel K. Havey
- Department of Chemistry and Biochemistry, University of Maryland College Park, Maryland 20705
| | - Ziman Li
- Department of Chemistry and Biochemistry, University of Maryland College Park, Maryland 20705
| | - Amy S. Mullin
- Department of Chemistry and Biochemistry, University of Maryland College Park, Maryland 20705
| |
Collapse
|
9
|
Yuan L, Du J, Mullin AS. Energy-dependent dynamics of large-ΔE collisions: Highly vibrationally excited azulene (E=20390 and 38580cm−1) with CO2. J Chem Phys 2008; 129:014303. [DOI: 10.1063/1.2943668] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
10
|
Johnson JA, Kim K, Mayhew M, Mitchell DG, Sevy ET. Rotationally resolved IR-diode laser studies of ground-state CO2 excited by collisions with vibrationally excited pyridine. J Phys Chem A 2008; 112:2543-52. [PMID: 18321080 DOI: 10.1021/jp076543d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Relaxation of highly vibrationally excited pyridine (C5NH5) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot pyridine (E' = 40,660 cm(-1)) was prepared by 248 nm excimer laser excitation followed by rapid radiationless relaxation to the ground electronic state. Pyridine then collides with CO2, populating the high rotational CO2 states with large amounts of translational energy. The CO2 nascent rotational population distribution of the high-J (J = 58-80) tail of the 00(0)0 state was probed at short times following the excimer laser pulse to measure rate constants and probabilities for collisions populating these CO2 rotational states. Doppler spectroscopy was used to measure the CO2 recoil velocity distribution for J = 58-80 of the 00(0)0 state. The energy-transfer distribution function, P(E,E'), from E' - E approximately 1300-7000 cm(-1) was obtained by re-sorting the state-indexed energy-transfer probabilities as a function of DeltaE. P(E,E') is fit to an exponential or biexponential function to determine the average energy transferred in a single collision between pyridine and CO2. Also obtained are fit parameters that can be compared to previously studied systems (pyrazine, C6F6, methylpyrazine, and pyrimidine/CO2). Although the rotational and translational temperatures that describe pyridine/CO2 energy transfer are similar to previous systems, the energy-transfer probabilities are much smaller. P(E,E') fit parameters for pyridine/CO2 and the four previously studied systems are compared to various donor molecular properties. Finally, P(E,E') is analyzed in the context of two models, one indicating that P(E,E') shape is primarily determined by the low-frequency out-of-plane donor vibrational modes, and the other that indicates that P(E,E') shape can be determined from how the donor molecule final density of states changes with DeltaE.
Collapse
Affiliation(s)
- Jeremy A Johnson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | | | | | | | | |
Collapse
|
11
|
Johnson JA, Duffin AM, Hom BJ, Jackson KE, Sevy ET. Quenching of highly vibrationally excited pyrimidine by collisions with CO2. J Chem Phys 2008; 128:054304. [DOI: 10.1063/1.2825599] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Mitchell DG, Johnson AM, Johnson JA, Judd KA, Kim K, Mayhew M, Powell AL, Sevy ET. Collisional Relaxation of the Three Vibrationally Excited Difluorobenzene Isomers by Collisions with CO2: Effect of Donor Vibrational Mode. J Phys Chem A 2008; 112:1157-67. [DOI: 10.1021/jp0771365] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Deborah G. Mitchell
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Alan M. Johnson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Jeremy A. Johnson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Kortney A. Judd
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Kilyoung Kim
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Maurine Mayhew
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Amber L. Powell
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Eric T. Sevy
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| |
Collapse
|
13
|
Duffin AM, Johnson JA, Muyskens MA, Sevy ET. Competition between Photochemistry and Energy Transfer in UV-Excited Diazabenzenes. 4. UV Photodissociation of 2,3-, 2,5-, and 2,6-Dimethylpyrazine. J Phys Chem A 2007; 111:13330-8. [DOI: 10.1021/jp0762471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew M. Duffin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Jeremy A. Johnson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Mark A. Muyskens
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Eric T. Sevy
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| |
Collapse
|
14
|
Liu Q, Du J, Havey DK, Li Z, Miller EM, Mullin AS. Alkylation effects on strong collisions of highly vibrationally excited alkylated pyridines with CO2. J Phys Chem A 2007; 111:4073-80. [PMID: 17388383 DOI: 10.1021/jp067743c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of alkylation on the energy partitioning in strong collisions with CO2 was investigated for highly vibrationally excited 2-ethylpyridine (2EP) and 2-propylpyridine (2PP) prepared with E(vib) approximately 38,570 and 38,870 cm(-1), respectively, using lambda = 266 nm light. Nascent energy gain in CO2 (00(0)0) rotation and translation was measured with high-resolution transient absorption spectroscopy at lambda approximately 4.3 microm and the results are compared to earlier relaxation studies of pyridine (E(vib) = 37,950 cm(-1)) and 2-methylpyridine (2MP, Evib = 38,330 cm(-1)). Overall, the alkylated donors impart less rotational and translational energy to CO2 than does pyridine. 2PP consistently imparts more translational energy in collisions than does 2EP and has larger energy transfer rates. Of the alkylated donors, 2MP and 2PP have larger probabilities for strong collisional energy transfer than does 2EP. Two competing processes are discussed: donors with longer alkyl chains have lower average energy per mode and fewer strong collisions but longer alkyl chains increase donor flexibility, leading to higher state densities that enhance energy loss via strong collisions. A comparison of state density effects based on Fermi's Golden Rule shows that 2PP has more strong collisions than predicted while 2EP has fewer. The role of torsional motion in the hot donors is considered. Comparison of effective impact parameters shows that the alkylated donors undergo strong collisions with CO2 via a less repulsive part of the intermolecular potential than does pyridine.
Collapse
Affiliation(s)
- Qingnan Liu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | | | |
Collapse
|