1
|
Bashir B, Alotaibi MM, Clayborne AZ. Computational investigation of structural, electronic, and spectroscopic properties of Ni and Zn metalloporphyrins with varying anchoring groups. J Chem Phys 2024; 160:134305. [PMID: 38563304 DOI: 10.1063/5.0191858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Porphyrins are prime candidates for a host of molecular electronics applications. Understanding the electronic structure and the role of anchoring groups on porphyrins is a prerequisite for researchers to comprehend their role in molecular devices at the molecular junction interface. Here, we use the density functional theory approach to investigate the influence of anchoring groups on Ni and Zn diphenylporphyrin molecules. The changes in geometry, electronic structure, and electronic descriptors were evaluated. There are minimal changes observed in geometry when changing the metal from Ni to Zn and the anchoring group. However, we find that the distribution of electron density changes when changing the anchoring group in the highest occupied and lowest unoccupied molecular orbitals. This has a direct effect on electronic descriptors such as global hardness, softness, and electrophilicity. Additionally, the optical spectra of both Ni and Zn diphenylporphyrin molecules exhibit either blue or red shifts when changing the anchoring group. These results indicate the importance of the anchoring group on the electronic structure and optical properties of porphyrin molecules.
Collapse
Affiliation(s)
- Beenish Bashir
- Department of Chemistry and Biochemistry, George Mason University, 4400 University Drive, Fairfax, Virginia 22030, USA
| | - Maha M Alotaibi
- Department of Chemistry and Biochemistry, George Mason University, 4400 University Drive, Fairfax, Virginia 22030, USA
| | - Andre Z Clayborne
- Department of Chemistry and Biochemistry, George Mason University, 4400 University Drive, Fairfax, Virginia 22030, USA
| |
Collapse
|
2
|
Melchakova I, Kuklin A, Avramov P. Towards spin quantum materials: Structure and potential energy profiles of weakly interacting arrays of iron porphyrin complexes at graphene armchair nanoribbon. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Artiukhin DG, Stein CJ, Reiher M, Neugebauer J. Quantum Chemical Spin Densities for Radical Cations of Photosynthetic Pigment Models. Photochem Photobiol 2017; 93:815-833. [DOI: 10.1111/php.12757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/30/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Denis G. Artiukhin
- Theoretische Organische Chemie; Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation; Westfälische Wilhelms-Universität Münster; Münster Germany
| | | | - Markus Reiher
- Laboratorium für Physikalische Chemie; ETH Zürich; Zürich Switzerland
| | - Johannes Neugebauer
- Theoretische Organische Chemie; Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation; Westfälische Wilhelms-Universität Münster; Münster Germany
| |
Collapse
|
4
|
Venturinelli Jannuzzi SA, Phung QM, Domingo A, Formiga ALB, Pierloot K. Spin State Energetics and Oxyl Character of Mn-Oxo Porphyrins by Multiconfigurational ab Initio Calculations: Implications on Reactivity. Inorg Chem 2016; 55:5168-79. [DOI: 10.1021/acs.inorgchem.5b02920] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sergio Augusto Venturinelli Jannuzzi
- Institute of Chemistry, P.O. Box 6154, University of Campinas − UNICAMP, 13083-970 Campinas, SP, Brazil
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Quan Manh Phung
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Alex Domingo
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | | | - Kristine Pierloot
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
5
|
Investigation of Interfacial Consecutive Electron Transfer and Redox Behaviors of Zinc-tetraarylporphyrins. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Fan Y, Huang Y, Jiang Y, Ning X, Wang X, Shan D, Lu X. Comparative study on the interfacial electron transfer of zinc porphyrins with meso-π-extension at a 2 n pattern. J Colloid Interface Sci 2016; 462:100-9. [DOI: 10.1016/j.jcis.2015.09.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/17/2015] [Accepted: 09/24/2015] [Indexed: 11/25/2022]
|
7
|
Sil D, Dey S, Kumar A, Bhowmik S, Rath SP. Oxidation triggers extensive conjugation and unusual stabilization of two di-heme dication diradical intermediates: role of bridging group for electronic communication. Chem Sci 2015; 7:1212-1223. [PMID: 29910877 PMCID: PMC5975787 DOI: 10.1039/c5sc03120f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/26/2015] [Indexed: 11/21/2022] Open
Abstract
Synthetic analogs of diheme enzyme MauG have been reported. Unlike the bis-Fe(iv) state in MauG, the 2e-oxidation stabilizes two ferric hemes, each coupled with a porphyrin π-cation radical.
MauG is a diheme enzyme that utilizes two covalently bound c-type hemes to catalyse the biosynthesis of the protein-derived cofactor tryptophan tryptophylquinone. The two hemes are physically separated by 14.5 Å and a hole-hopping mechanism is proposed in which a tryptophan residue located between the hemes undergoes reversible oxidation and reduction to increase the effective electronic coupling element and enhance the rate of reversible electron transfer between the hemes in bis-Fe(iv) MauG. The present work describes the structure and spectroscopic investigation of 2e-oxidations of the synthetic diheme analogs in which two heme centers are covalently connected through a conjugated ethylene bridge that leads to the stabilization of two unusual trans conformations (U and P′ forms) with different and distinct spectroscopic and geometric features. Unlike in MauG, where the two oxidizing equivalents are distributed within the diheme system giving rise to the bis-Fe(iv) redox state, the synthetic analog stabilizes two ferric hemes, each coupled with a porphyrin cation radical, a scenario resembling the binuclear dication diradical complex. Interestingly, charge resonance-transition phenomena are observed here both in 1e and 2e-oxidised species from the same system, which are also clearly distinguishable by their relative position and intensity. Detailed UV-vis-NIR, X-ray, Mössbauer, EPR and 1H NMR spectroscopic investigations as well as variable temperature magnetic studies have unraveled strong electronic communications between two porphyrin π-cation radicals through the bridging ethylene group. The extensive π-conjugation also allows antiferromagnetic coupling between iron(iii) centers and porphyrin radical spins of both rings. DFT calculations revealed extended π-conjugation and H-bonding interaction as the major factors in controlling the stability of the conformers.
Collapse
Affiliation(s)
- Debangsu Sil
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur-208016 , India . ;
| | - Soumyajit Dey
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur-208016 , India . ;
| | - Amit Kumar
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur-208016 , India . ;
| | - Susovan Bhowmik
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur-208016 , India . ;
| | - Sankar Prasad Rath
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur-208016 , India . ;
| |
Collapse
|
8
|
Białek MJ, Białońska A, Latos-Grażyński L. Oxidation and Oxygenation of Carbonyl Ruthenium(II) Azuliporphyrin. Inorg Chem 2015; 54:6184-94. [DOI: 10.1021/acs.inorgchem.5b00324] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michał J. Białek
- Department of Chemistry, University of Wrocław, F.
Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Agata Białońska
- Department of Chemistry, University of Wrocław, F.
Joliot-Curie 14, 50-383 Wrocław, Poland
| | | |
Collapse
|
9
|
Sahoo D, Rath SP. Controlled generation of highly saddled (porphyrinato)iron(iii) iodide, tri-iodide and one-electron oxidized complexes. Chem Commun (Camb) 2015; 51:16790-3. [DOI: 10.1039/c5cc07111a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three iron(iii) porphyrinato complexes have been isolated selectively just by varying the iodine concentration, which eventually form the admixed-intermediate (iodo complex), pure intermediate (tri-iodide complex) and high-spin (1e-oxidized complex) states of iron where iodide and/or tri-iodide were used as axial ligands.
Collapse
Affiliation(s)
- Dipankar Sahoo
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur-208016
- India
| | - Sankar Prasad Rath
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur-208016
- India
| |
Collapse
|
10
|
Gao H, Chen F, Yao G, Chen D. DFT Study on Structural Distortion and Vibronic Coupling of Vanadyl Porphyrin Anion and Cation. CHINESE J CHEM PHYS 2013. [DOI: 10.1063/1674-0068/26/05/504-511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
11
|
Lu X, Hu Y, Wang W, Du J, He H, Ai R, Liu X. A novel platform to study the photoinduced electron transfer at a dye-sensitized solid/liquid interface. Colloids Surf B Biointerfaces 2013; 103:608-14. [DOI: 10.1016/j.colsurfb.2012.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/22/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
|
12
|
Kumar N, Kuta J, Galezowski W, Kozlowski PM. Electronic Structure of One-Electron-Oxidized Form of the Methylcobalamin Cofactor: Spin Density Distribution and Pseudo-Jahn–Teller Effect. Inorg Chem 2013; 52:1762-71. [DOI: 10.1021/ic3013443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Neeraj Kumar
- Department of Chemistry, University of Louisville,
Louisville, Kentucky 40292, United States
| | - Jadwiga Kuta
- Department of Chemistry, University of Louisville,
Louisville, Kentucky 40292, United States
| | - Wlodzimierz Galezowski
- Department of Chemistry, A. Mickiewicz University,
Umultowska 89b, 61-614 Poznan, Poland
| | - Pawel M. Kozlowski
- Department of Chemistry, University of Louisville,
Louisville, Kentucky 40292, United States
| |
Collapse
|
13
|
Barbee J, Kuznetsov AE. Revealing substituent effects on the electronic structure and planarity of Ni-porphyrins. COMPUT THEOR CHEM 2012; 981:73-85. [PMID: 23560251 DOI: 10.1016/j.comptc.2011.11.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Using density functional theory, we have studied the effects on structural and electronic consequences (including HOMO-LUMO energy gaps, vertical ionization potentials (IPv), and vertical electron affinities (EAv)) of the following two factors: (a) meso- and β-substituents acting as inductive donors (CH3), inductive acceptors that are electron-donating through resonance (Br), inductive electron acceptors (CF3), and resonance enabled acceptors (NO2); and (b) complete replacement of pyrrole nitrogens with P-atoms. The principal results of the study are: (1) For the bare Ni-porphyrin, the solvents were found not to affect the HOMO-LUMO gaps but to change the IPv and EAv noticeably. (2) In the series CH3 → Br → CF3 → NO2 the HOMO-LUMO energy gaps, IPv, and EAv increase for both meso- and β-substituents. The ruffling distortion of the porphyrin core is retained, and becomes stronger for the two acceptor groups. In general, effects of meso-substituents on the ruffling distortion of the porphyrin core is more pronounced. (3) Most significantly, complete replacement of pyrrole nitrogens in the NiP with phosphorus atoms produces the species, NiP(P)4, with the structural and electronic features drastically different from the original NiP. This implies that NiP(P)4 can possess interesting and unusual novel properties, including aromaticity and reactivity, leading to its various beneficial potential applications. Furthermore, NiP(P)4 high stability both in the gas phase and different solvents was shown, implying the feasibility of its synthesis.
Collapse
Affiliation(s)
- Jenna Barbee
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
14
|
Afanasiev P, Kudrik EV, Albrieux F, Briois V, Koifman OI, Sorokin AB. Generation and characterization of high-valent iron oxo phthalocyanines. Chem Commun (Camb) 2012; 48:6088-90. [DOI: 10.1039/c2cc31917a] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Chaudhary A, Patra R, Rath SP. Binding of Catechols to Iron(III)-Octaethylporphyrin: An Experimental and DFT Investigation. Eur J Inorg Chem 2010. [DOI: 10.1002/ejic.201000707] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Girichev GV, Giricheva NI, Golubchikov OA, Mimenkov YV, Semeikin AS, Shlykov SA. Octamethylporphyrin copper, C28H28N4Cu – A first experimental structure determination of porphyrins in gas phase. J Mol Struct 2010. [DOI: 10.1016/j.molstruc.2010.02.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Chen H, Song J, Lai W, Wu W, Shaik S. Multiple Low-Lying States for Compound I of P450cam and Chloroperoxidase Revealed from Multireference Ab Initio QM/MM Calculations. J Chem Theory Comput 2010; 6:940-53. [DOI: 10.1021/ct9006234] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Chen
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel, State Key Laboratory of Physical Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, P. R. China
| | - Jinshuai Song
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel, State Key Laboratory of Physical Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, P. R. China
| | - Wenzhen Lai
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel, State Key Laboratory of Physical Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, P. R. China
| | - Wei Wu
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel, State Key Laboratory of Physical Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, P. R. China
| | - Sason Shaik
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel, State Key Laboratory of Physical Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, P. R. China
| |
Collapse
|
18
|
Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W. P450 Enzymes: Their Structure, Reactivity, and Selectivity—Modeled by QM/MM Calculations. Chem Rev 2009; 110:949-1017. [DOI: 10.1021/cr900121s] [Citation(s) in RCA: 791] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sason Shaik
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Shimrit Cohen
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Yong Wang
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Hui Chen
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Devesh Kumar
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
19
|
Rosa A, Ricciardi G. A time-dependent density functional theory (TDDFT) interpretation of the optical spectra of zinc phthalocyanine π-cation and π-anion radicals. CAN J CHEM 2009. [DOI: 10.1139/v09-066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The UV–visible and near-IR spectra of the zinc phthalocyanine π-cation and π-anion radicals, [ZnPc(–1)]•+ and [ZnPc(–3)]•–, are investigated by time-dependent density functional theory (TDDFT) calculations using the pure, asymptotically correct, statistical average of (model) orbital potentials (SAOP) functional. The nature and intensity of the main spectral features are highlighted and interpreted on the basis of the ground-state electronic structure of the complexes. Similarities and differences with previous TDDFT/B3LYP results are discussed. TDDFT/SAOP results for the π-anion radical prove to be in excellent agreement with the solution spectra and generally in line with deconvolution analyses of solution absorption and magnetic circular dichroism (MCD) spectra. On the basis of these results a novel interpretation of the Q-band system is proposed. For the π-cation radical TDDFT/SAOP calculations provide a satisfactory description of the UV region of the spectrum. However, they do not reproduce accurately the energy and intensity of the Q band observed at 825 nm. The description of the Q-band region appears to be complicated by the presence of spurious non-Gouterman transitions. Furthermore, the calculations, either in the gas phase or in solution, do not account for the broad absorption near 500 nm that has been suggested to arise from a nondegenerate, z-polarized 2A2g excited state. Theory and experiment can be reconciled if the presence of an axial ligand such as CN– is explicitly considered in the calculations. TDDFT/SAOP results for the axially ligated [ZnPc(–1)(CN)]• species indicate that the 500 nm feature is related to the axial ligation induced symmetry lowering of the π-cation radical and this band is assigned to a z-polarized transition associated with the hole in the 2a1u.
Collapse
Affiliation(s)
- Angela Rosa
- Dipartimento di Chimica, Università della Basilicata, Via N. Sauro 85, 85100 Potenza, Italy
| | - Giampaolo Ricciardi
- Dipartimento di Chimica, Università della Basilicata, Via N. Sauro 85, 85100 Potenza, Italy
| |
Collapse
|
20
|
Shaik S, Hirao H, Kumar D. Reactivity of high-valent iron-oxo species in enzymes and synthetic reagents: a tale of many states. Acc Chem Res 2007; 40:532-42. [PMID: 17488054 DOI: 10.1021/ar600042c] [Citation(s) in RCA: 453] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Account discusses the phenomenon of two-state reactivity (TSR) or multistate reactivity (MSR) in high-valent metal-oxo reagents, projecting its wide-ranging applicability starting from the bare species, through the reagents made by Que, Nam, and collaborators, to the Mn(V)-oxo substituted polyoxometalate, all the way to Compound I species of heme enzymes. The Account shows how the behaviors of all these variegated species derive from a simple set of electronic structure principles. Experimental trends that demonstrate TSR and MSR are discussed. Diagnostic mechanistic probes are proposed for the TSR/MSR scenario, based on kinetic isotope effect, stereochemical studies, and magnetic- and electric-field effects.
Collapse
Affiliation(s)
- Sason Shaik
- Department of Organic Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel.
| | | | | |
Collapse
|
21
|
Yoshizawa K, Nakayama T, Kamachi T, Kozlowski PM. Vibronic Interaction in Metalloporphyrin π-Anion Radicals. J Phys Chem A 2007; 111:852-7. [PMID: 17266225 DOI: 10.1021/jp0666479] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vibronic (vibrational-electronic) interactions in the pi-anion radicals of the metalloporphyrins (M=Cr, Mn, Fe, Co, Ni, Cu, and Zn), which show delocalized D4h structures in the neutral states, are discussed using B3LYP density-functional-theory calculations. The B1g and B2g modes of vibration can remove the degenerate 2Eg state of the pi-anion radicals in the D4h symmetric structures to lead to rectangular and diamond D2h distortions, respectively. Calculated vibronic coupling constants demonstrate that the B1g modes of vibration better couple with the degenerate electronic state, leading to the rectangular D2h distortion. In particular, the B1g modes of nu10 and nu11, which have dominant contributions from Calpha-Cm and Cbeta-Cbeta stretching, give large vibronic coupling constants in the pi-anion radicals. The vibronic coupling constant can be viewed as the Jahn-Teller distortion force, and therefore these C-C stretching B1g modes will play a central role in the Jahn-Teller effect of the pi-anion radicals of the metalloporphyrins.
Collapse
Affiliation(s)
- Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | | | |
Collapse
|
22
|
Abstract
The ions formally corresponding to protonated heme [Fe(II)-hemeH](+) have been obtained by collision-induced dissociation from the electrospray ionization of microperoxidase (MP11) and their gas-phase chemistry has been studied by FTICR mass spectrometry. H/D-exchange reactions, used as a tool to gain information on the protonation sites in polyfunctional molecules, show that labile hydrogens pertain to the propionyl substituents at the periphery of the protoporphyrin IX. Several conceivable isomers for protonated heme have been evaluated by density functional theory. The most stable among the species investigated is the one corresponding to protonation at the beta carbon atom of a vinyl group, yielding a proton affinity (PA) value for [Fe(II)-heme] of 1220 kJ mol(-1). This high PA is consistent with the inertness of the hydrogen atoms at the protonation site towards H/D exchange with ND(3) and CD(3)CO(2)D. Peculiar features of this [Fe(II)-hemeH](+) isomer emerge by analysis of its electronic structure, showing that the vinyl group undergoing formal protonation has gained significant radical character due to electron transfer from the metal center. As a consequence, the iron atom acquires partial iron(III) character and none of the two formal descriptions [Fe(II)-hemeH(+)] and [Fe(III)-hemeH(.)](+) alone may adequately illustrate the protonated heme ion. In agreement with this description, the reactivity of protonated heme presents dual facets, resembling iron(III) in some aspects and iron(II) in others. On the one hand, protonated heme behaves like [Fe(III)-heme](+) ions in H/D-exchange reactions. On the other, it shows markedly decreased reactivity towards the addition of ligands with the notable exception of NO, in line with the high affinity shown by iron(II) complexes towards this molecule, NO, of key biological role.
Collapse
Affiliation(s)
- Barbara Chiavarino
- Dipartimento Studi di Chimica e Tecnologia delle Sostanze, Biologicamente Attive, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | | | | | | |
Collapse
|