1
|
Wang P, Demaray J, Moroz S, Stuchebrukhov AA. Searching for proton transfer channels in respiratory complex I. Biophys J 2024:S0006-3495(24)00518-6. [PMID: 39095988 DOI: 10.1016/j.bpj.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/19/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
We have explored a strategy to identify potential proton transfer channels using computational analysis of a protein structure based on Voronoi partitioning and applied it for the analysis of proton transfer pathways in redox-driven proton-pumping respiratory complex I. The analysis results in a network of connected voids/channels, which represent the dual structure of the protein; we then hydrated the identified channels using our water placement program Dowser++. Many theoretical water molecules found in the channels perfectly match the observed experimental water molecules in the structure; some other predicted water molecules have not been resolved in the experiments. The channels are of varying cross sections. Some channels are big enough to accommodate water molecules that are suitable to conduct protons; others are too narrow to hold water but require only minor conformational changes to accommodate proton transfer. We provide a preliminary analysis of the proton conductivity of the network channels, classifying the proton transfer channels as open, closed, and partially open, and discuss possible conformational changes that can modulate, i.e., open and close, the channels.
Collapse
Affiliation(s)
- Panyue Wang
- Department of Chemistry, University of California at Davis, Davis, California
| | - Jackson Demaray
- Department of Chemistry, University of California at Davis, Davis, California
| | - Stanislav Moroz
- Department of Chemistry, University of California at Davis, Davis, California
| | | |
Collapse
|
2
|
Gaus M, Jin H, Demapan D, Christensen AS, Goyal P, Elstner M, Cui Q. DFTB3 Parametrization for Copper: The Importance of Orbital Angular Momentum Dependence of Hubbard Parameters. J Chem Theory Comput 2015; 11:4205-19. [PMID: 26575916 PMCID: PMC4827604 DOI: 10.1021/acs.jctc.5b00600] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the parametrization of a density functional tight binding method (DFTB3) for copper in a spin-polarized formulation. The parametrization is consistent with the framework of 3OB for main group elements (ONCHPS) and can be readily used for biological applications that involve copper proteins/peptides. The key to our parametrization is to introduce orbital angular momentum dependence of the Hubbard parameter and its charge derivative, thus allowing the 3d and 4s orbitals to adopt different sizes and responses to the change of charge state. The parametrization has been tested by applying to a fairly broad set of molecules of biological relevance, and the properties of interest include optimized geometries, ligand binding energies, and ligand proton affinities. Compared to the reference QM level (B3LYP/aug-cc-pVTZ, which is shown here to be similar to the B97-1 and CCSD(T) results, in terms of many properties of interest for a set of small copper containing molecules), our parametrization generally gives reliable structural properties for both Cu(I) and Cu(II) compounds, although several exceptions are also noted. For energetics, the results are more accurate for neutral ligands than for charged ligands, likely reflecting the minimal basis limitation of DFTB3; the results generally outperform NDDO based methods such as PM6 and even PBE with the 6-31+G(d,p) basis. For all ligand types, single-point B3LYP calculations at DFTB3 geometries give results very close (∼1-2 kcal/mol) to the reference B3LYP values, highlighting the consistency between DFTB3 and B3LYP structures. Possible further developments of the DFTB3 model for a better treatment of transition-metal ions are also discussed. In the current form, our first generation of DFTB3 copper model is expected to be particularly valuable as a method that drives sampling in systems that feature a dynamical copper binding site.
Collapse
Affiliation(s)
- Michael Gaus
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Haiyun Jin
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Darren Demapan
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Anders S Christensen
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Puja Goyal
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology , Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Qiang Cui
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Current advances in research of cytochrome c oxidase. Amino Acids 2013; 45:1073-87. [PMID: 23999646 DOI: 10.1007/s00726-013-1585-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/21/2013] [Indexed: 12/13/2022]
Abstract
The function of cytochrome c oxidase as a biomolecular nanomachine that transforms energy of redox reaction into protonmotive force across a biological membrane has been subject of intense research, debate, and controversy. The structure of the enzyme has been solved for several organisms; however details of its molecular mechanism of proton pumping still remain elusive. Particularly, the identity of the proton pumping site, the key element of the mechanism, is still open to dispute. The pumping mechanism has been for a long time one of the key unsolved issues of bioenergetics and biochemistry, but with the accelerating progress in this field many important details and principles have emerged. Current advances in cytochrome oxidase research are reviewed here, along with a brief discussion of the most complete proton pumping mechanism proposed to date, and a molecular basis for control of its efficiency.
Collapse
|
4
|
The mechanism for proton pumping in cytochrome c oxidase from an electrostatic and quantum chemical perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:495-505. [PMID: 21978537 DOI: 10.1016/j.bbabio.2011.09.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/02/2011] [Accepted: 09/03/2011] [Indexed: 11/21/2022]
Abstract
The mechanism for proton pumping in cytochrome c oxidase in the respiratory chain, has for decades been one of the main unsolved problems in biochemistry. However, even though several different suggested mechanisms exist, many of the steps in these mechanisms are quite similar and constitute a general consensus framework for discussing proton pumping. When these steps are analyzed, at least three critical gating situations are found, and these points are where the suggested mechanisms in general differ. The requirements for gating are reviewed and analyzed in detail, and a mechanism is suggested, where solutions for all the gating situations are formulated. This mechanism is based on an electrostatic analysis of a kinetic experiment fior the O to E transition. The key component of the mechanism is a positively charged transition state. An electron on heme a opens the gate for proton transfer from the N-side to a pump loading site (PLS). When the negative charge of the electron is compensated by a chemical proton, the positive transition state prevents backflow from the PLS to the N-side at the most critical stage of the pumping process. The mechanism has now been tested by large model DFT calculations, and these calculations give strong support for the suggested mechanism.
Collapse
|
5
|
Popovic DM, Leontyev IV, Beech DG, Stuchebrukhov AA. Similarity of cytochrome c oxidases in different organisms. Proteins 2010; 78:2691-8. [PMID: 20589635 DOI: 10.1002/prot.22783] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Most of biological oxygen reduction is catalyzed by the heme-copper oxygen reductases. These enzymes are redox-driven proton pumps that take part in generating the proton gradient in both prokaryotes and mitochondria that drives synthesis of ATP. The enzymes have been divided into three evolutionarily-related groups: the A-, B-, and C-families. Recent comparative studies suggest that all oxygen reductases perform the same chemistry for oxygen reduction and comprise the same essential elements of the proton pumping mechanism, such as the proton loading and kinetic gating sites, which, however, appear to be different in different families. All species of the A-family, however, demonstrate remarkable similarity of the central processing unit of the enzyme, as revealed by their recent crystal structures. Here we demonstrate that cytochrome c oxidases (CcO) of such diverse organisms as a mammal (bovine heart mitochondrial CcO), photosynthetic bacteria (Rhodobacter sphaeroides CcO), and soil bacteria (Paracoccus denitrificans CcO) are not only structurally similar, but almost identical in microscopic electrostatics and thermodynamics properties of their key amino-acids. By using pK(a) calculations of some of the key residues of the catalytic site, D- and K- proton input, and putative proton output channels of these three different enzymes, we demonstrate that the microscopic properties of key residues are almost identical, which strongly suggests the same mechanism in these species. The quantitative precision with which the microscopic physical properties of these enzymes have remained constant despite different evolutionary routes undertaken is striking.
Collapse
Affiliation(s)
- D M Popovic
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
6
|
Siegbahn PEM, Blomberg MRA. Quantum Chemical Studies of Proton-Coupled Electron Transfer in Metalloenzymes. Chem Rev 2010; 110:7040-61. [DOI: 10.1021/cr100070p] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Per E. M. Siegbahn
- Department of Physics, AlbaNova University Center and Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Margareta R. A. Blomberg
- Department of Physics, AlbaNova University Center and Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
7
|
Yoshioka Y, Mitani M. B3LYP study on reduction mechanisms from O2 to H2O at the catalytic sites of fully reduced and mixed-valence bovine cytochrome c oxidases. Bioinorg Chem Appl 2010; 2010:182804. [PMID: 20396396 PMCID: PMC2852611 DOI: 10.1155/2010/182804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 11/27/2009] [Accepted: 01/05/2010] [Indexed: 11/26/2022] Open
Abstract
Reduction mechanisms of oxygen molecule to water molecules in the fully reduced (FR) and mixed-valence (MV) bovine cytochrome c oxidases (CcO) have been systematically examined based on the B3LYP calculations. The catalytic cycle using four electrons and four protons has been also shown consistently. The MV CcO catalyses reduction to produce one water molecule, while the FR CcO catalyses to produce two water molecules. One water molecule is added into vacant space between His240 and His290 in the catalytic site. This water molecule constructs the network of hydrogen bonds of Tyr244, farnesyl ethyl, and Thr316 that is a terminal residue of the K-pathway. It plays crucial roles for the proton transfer to the dioxygen to produce the water molecules in both MV and FR CcOs. Tyr244 functions as a relay of the proton transfer from the K-pathway to the added water molecule, not as donors of a proton and an electron to the dioxygen. The reduction mechanisms of MV and FR CcOs are strictly distinguished. In the FR CcO, the Cu atom at the Cu(B) site maintains the reduced state Cu(I) during the process of formation of first water molecule and plays an electron storage. At the final stage of formation of first water molecule, the Cu(I) atom releases an electron to Fe-O. During the process of formation of second water molecule, the Cu atom maintains the oxidized state Cu(II). In contrast with experimental proposals, the K-pathway functions for formation of first water molecule, while the D-pathway functions for second water molecule. The intermediates, P(M), P(R), F, and O, obtained in this work are compared with those proposed experimentally.
Collapse
Affiliation(s)
- Yasunori Yoshioka
- Chemistry Department for Materials, Graduate School of Engineering, Mie University, Kurima-machiya 1577, Tsu, Mie 514-8507, Japan.
| | | |
Collapse
|
8
|
Ghosh N, Prat-Resina X, Gunner MR, Cui Q. Microscopic pKa analysis of Glu286 in cytochrome c oxidase (Rhodobacter sphaeroides): toward a calibrated molecular model. Biochemistry 2010; 48:2468-85. [PMID: 19243111 DOI: 10.1021/bi8021284] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As stringent tests for the molecular model and computational protocol, microscopic pK(a) calculations are performed for the key residue, Glu286, in cytochrome c oxidase (CcO) using a combined quantum mechanical/molecular mechanical (QM/MM) potential and a thermodynamic integration protocol. The impact of the number of water molecules in the hydrophobic cavity and protonation state of several key residues (e.g., His334, Cu(B)-bound water, and PRD(a3)) on the computed microscopic pK(a) values of Glu286 has been systematically examined. To help evaluate the systematic errors in the QM/MM-based protocol, microscopic pK(a) calculations have also been carried out for sites in a soluble protein (Asp70 in T4 lysozyme) and a better-characterized membrane protein (Asp85 in bacteriorhodopsin). Overall, the results show a significant degree of internal consistency and reproducibility that support the effectiveness of the computational framework. Although the number of water molecules in the hydrophobic cavity does not greatly influence the computed pK(a) of Glu286, the protonation states of several residues, some of which are rather far away, have more significant impacts. Adopting the standard protonation state for all titratable residues leaves a large net charge on the system and a significantly elevated pK(a) for Glu286, highlighting that any attempt to address the energetics of proton transfers in CcO at a microscopic level should carefully select the protonation state of residues, even those not in the immediate neighborhood of the active site. The calculations indirectly argue against the deprotonation of His334 for the proton pumping process, although further studies that explicitly compute its pK(a) are required for a more conclusive statement. Finally, the deprotonated Glu286 is found to be in a stable water-mediated connection with PRD(a3) for at least several nanoseconds when this presumed pumping site is protonated. This does not support the proposed role of Glu286 as a robust gating valve that prevents proton leakage, although a conclusive statement awaits a more elaborate characterization of the Glu286-PRD(a3) connectivity with free energy simulations and a protonated PRD(a3). The large sets of microscopic simulations performed here have provided useful guidance to the establishment of a meaningful molecular model and effective computational protocol for explicitly analyzing the proton transfer kinetics in CcO, which is required for answering key questions regarding the pumping function of this fascinating and complex system.
Collapse
Affiliation(s)
- Nilanjan Ghosh
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
9
|
Kaila VR, Verkhovsky MI, Hummer G, Wikström M. Mechanism and energetics by which glutamic acid 242 prevents leaks in cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1205-14. [DOI: 10.1016/j.bbabio.2009.04.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 04/08/2009] [Accepted: 04/14/2009] [Indexed: 12/01/2022]
|