1
|
Sülzner N, Jung G, Nuernberger P. A dual experimental-theoretical perspective on ESPT photoacids and their challenges ahead. Chem Sci 2025; 16:1560-1596. [PMID: 39759939 PMCID: PMC11697080 DOI: 10.1039/d4sc07148d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
Photoacids undergo an increase in acidity upon electronic excitation, enabling excited-state proton transfer (ESPT) reactions. A multitude of compounds that allow ESPT has been identified and integrated in numerous applications, as is outlined by reviewing the rich history of photoacid research reaching back more than 90 years. In particular, achievements together with ambitions and challenges are highlighted from a combined experimental and theoretical perspective. Besides explicating the spectral signatures, transient ion-pair species, and electronic states involved in an ESPT, special emphasis is put on the diversity of methods used for studying photoacids as well as on the effects of the environment on the ESPT, illustrated in detail for 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) and the naphthols as examples of prototypical photoacids. The development of exceptionally acidic super-photoacids and magic photoacids is subsequently discussed, which opens the way to applications even in aprotic solvents and provides additional insight into the mechanisms underlying ESPT. In the overview of highlights from theory, a comprehensive picture of the scope of studies on HPTS is presented, along with the general conceptualization of the electronic structure of photoacids and approaches for the quantification of excited-state acidity. We conclude with a juxtaposition of established applications of photoacids together with potential open questions and prospective research directions.
Collapse
Affiliation(s)
- Niklas Sülzner
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum 44780 Bochum Germany +49 234 32 24523
| | - Gregor Jung
- Biophysikalische Chemie, Universität des Saarlandes 66123 Saarbrücken Germany +49 681 302 71320
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg 93040 Regensburg Germany +49 941 943 4487
| |
Collapse
|
2
|
Pal T, Sahu K. Effect of salt addition on a triblock copolymer-zwitterionic surfactant assembly: insight from excited-state proton transfer. Phys Chem Chem Phys 2023; 25:29816-29830. [PMID: 37886857 DOI: 10.1039/d3cp03388k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Copolymer-surfactant assemblies are frequently utilized across various fields, from medicine to nanotechnology. Understanding the organization of the mixed assemblies in a saline environment will further expand their application horizons, especially under physiological conditions. Excited-state proton transfer (ESPT) can provide insight into the hydration nature and organization of the non-toxic assembly of a triblock copolymer F127 (poly-(ethylene oxide)101 (PEO101)-poly(propylene oxide)56 (PPO56)-PEO101)) and a zwitterionic sulfobetaine surfactant N-dodecyl-N,N-dimethyl-3-ammoniopropane sulfonate (SB12). Here, we present a comprehensive investigation of the compactness and hydration nature of the F127-SB12 mixed assemblies at different salt concentrations using the ESPT of 8-hydroxy pyrene-1,3,6-trisulfonate (HPTS). In the absence of salts, gradual SB12 addition to a premicellar (0.4 mM) or a post-micellar (4 mM) F127 solution leads to an anomalous modulation of the protonated and deprotonated emission bands. The emission intensity ratio (protonated/deprotonated) first increases to a maximum at a particular SB12 concentration (6 mM and 35 mM for the premicellar and post-micellar F127 assemblies, respectively), and then the ratio decreases with a further increase in the surfactant concentration. Since the intensity ratio is an indicator of the retardation of the ESPT process, the mixed micellar configuration displaying a maximum intensity ratio represents the most compact and least hydrated state. Salt addition to this configuration lowers the intensity ratio, signifying an enhanced ESPT process. Dynamic light scattering (DLS) results indicate that the size of the mixed assembly remains almost unaltered with the addition of salts. Thus, salinity enhances the ESPT process inside the F127-SB12 mixed assemblies without significantly altering the hydrodynamic radius.
Collapse
Affiliation(s)
- Tapas Pal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Kalyanasis Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
3
|
Sett R, Sen S, Paul BK, Guchhait N. Effect of temperature and salts on niosome-bound anti-cancer drug along with disruptive influence of cyclodextrins. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118261. [PMID: 32213458 DOI: 10.1016/j.saa.2020.118261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/03/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
Encapsulation of a persuasive anticancer drug (Sanguinarine, SGR) within microheterogeneous environment of niosome has been investigated. Utilizing steady-state and time-resolved spectroscopic methods the effects of extrinsically added salts and temperature on the photophysical properties of niosome-bound bio-active drug have been explored thoroughly. The prototropic (alkanolamine⇌ iminium) equilibrium of SGR is found to be preferentially favored toward the neutral form inside the hydrophobic interior of niosome. With addition of salts and increment of temperature the reverse tendency of stabilization of the cationic species is observed which can be explained on the basis of degree of water penetration of water molecules to the hydration layer of niosome. Furthermore, drug sequestration has been investigated via disruption of niosome applying cyclodextrins (CDs). Exploration of the effect of CDs (β-CD and γ-CD) on the niosome aids to have knowledge of the effect of CDs on cell membrane. In addition, the differential rotational relaxation behavior of SGR at various environmental circumstances has been observed to substantiate with other experimental results.
Collapse
Affiliation(s)
- Riya Sett
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Swagata Sen
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Bijan K Paul
- Department of Chemistry, Mahadevananda Mahavidyalaya, Barrackpore, Kolkata 700120, India.
| | - Nikhil Guchhait
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.
| |
Collapse
|
4
|
Sen S, Paul BK, Guchhait N. Binding interaction of phenazinium-based cationic photosensitizers with human hemoglobin: Exploring the effects of pH and chemical structure. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 186:88-97. [DOI: 10.1016/j.jphotobiol.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 12/27/2022]
|
5
|
Ultrafast excited state intermolecular proton transfer dynamics of 2-(4′-Pyridyl)benzimidazole inside the nanocavity of reverse micelles. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Tunable and purified luminescence via energy transfer and delamination of LRH (R = Tb, Y) composites with 8-hydroxypyrene-1,3,6-trisulphonate. J Colloid Interface Sci 2017; 496:353-363. [DOI: 10.1016/j.jcis.2017.02.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 11/18/2022]
|
7
|
Joung JF, Kim S, Park S. Ionic effects on the proton transfer mechanism in aqueous solutions. Phys Chem Chem Phys 2017; 19:25509-25517. [DOI: 10.1039/c7cp04392a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton dissociation (PD) reactions of weak acids and proton transfer (PT) processes in aqueous solutions are strongly influenced by ions.
Collapse
Affiliation(s)
| | - Sangin Kim
- Department of Chemistry
- Korea University
- Seoul
- Korea
| | - Sungnam Park
- Department of Chemistry
- Korea University
- Seoul
- Korea
| |
Collapse
|
8
|
Banik D, Roy A, Kundu N, Sarkar N. Modulation of the Excited-State Dynamics of 2,2′-Bipyridine-3,3′-diol in Crown Ethers: A Possible Way To Control the Morphology of a Glycine Fibril through Fluorescence Lifetime Imaging Microscopy. J Phys Chem B 2016; 120:11247-11255. [PMID: 27709952 DOI: 10.1021/acs.jpcb.6b07524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Debasis Banik
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Arpita Roy
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Niloy Kundu
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| |
Collapse
|
9
|
Das I, Panja S, Halder M. Modulation and Salt-Induced Reverse Modulation of the Excited-State Proton-Transfer Process of Lysozymized Pyranine: The Contrasting Scenario of the Ground-State Acid–Base Equilibrium of the Photoacid. J Phys Chem B 2016; 120:7076-87. [DOI: 10.1021/acs.jpcb.6b04111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ishita Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sudipta Panja
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mintu Halder
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
10
|
Phukon A, Ray S, Sahu K. How Does Interfacial Hydration Alter during Rod to Sphere Transition in DDAB/Water/Cyclohexane Reverse Micelles? Insights from Excited State Proton Transfer and Fluorescence Anisotropy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6656-6665. [PMID: 27292367 DOI: 10.1021/acs.langmuir.6b01254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
How does microscopic organization of an organized assembly alter during macroscopic structural transition? The question may be important to ascertain driving forces responsible for such transitions. Didodecyldimethylammonium bromide (DDAB)/water/cyclohexane reverse micelle is an attractive assembly that undergoes structural transition from rod to spherical shape when the amount of water loading, w0 ([water]/[surfactant]), exceeds a particular value (w0 ∼ 8). Here, we intend to investigate the effect of the morphological change upon interfacial hydration using steady-state and time-resolved fluorescence measurements. The anionic fluorophore 8-hydroxypyrene-1,3,6-trisulfonate (HPTS or pyranine) is expected to be trapped within the positively charged RM interface. The fluorophore can undergo excited-state proton transfer (ESPT) in the presence of water and, thus, is able to provide insight on the level of hydration within the interface. The ESPT process is markedly inhibited within the interface at low w0 and gradually favored with increase of w0. The time-resolved fluorescence decays could be best analyzed by assuming distribution of HPTS over two distinct interfacial regions- partly hydrated and mostly dehydrated. The relative population of the two regions varies distinctly at low w0 (<6) and high w0 (>6) regimes. Moreover, fluorescence anisotropy (steady-state and time-resolved) varies differently with respect to w0, before and after the transition point (w0 ∼ 8).
Collapse
Affiliation(s)
- Aparajita Phukon
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati 781039, Assam, India
| | - Sudipta Ray
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati 781039, Assam, India
| | - Kalyanasis Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati 781039, Assam, India
| |
Collapse
|
11
|
Liu W, Wang Y, Tang L, Oscar BG, Zhu L, Fang C. Panoramic portrait of primary molecular events preceding excited state proton transfer in water. Chem Sci 2016; 7:5484-5494. [PMID: 30034688 PMCID: PMC6021748 DOI: 10.1039/c6sc00672h] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/11/2016] [Indexed: 12/31/2022] Open
Abstract
Primary events that power ultrafast excited state proton transfer in water are revealed to involve coupled intermolecular and intramolecular motions.
Photochemistry powers numerous processes from luminescence and human vision, to light harvesting. However, the elucidation of multidimensional photochemical reaction coordinates on molecular timescales remains challenging. We developed wavelength-tunable femtosecond stimulated Raman spectroscopy to simultaneously achieve pre-resonance enhancement for transient reactant and product species of the widely used photoacid pyranine undergoing excited-state proton transfer (ESPT) reaction in solution. In the low-frequency region, the 280 cm–1 ring deformation mode following 400 nm photoexcitation exhibits pronounced intensity oscillations on the sub-picosecond timescale due to anharmonic vibrational coupling to the 180 cm–1 hydrogen-bond stretching mode only in ESPT-capable solvents, indicating a primary event of functional relevance. This leads to the contact ion pair formation on the 3 ps timescale before diffusion-controlled separation. The intermolecular 180 cm–1 mode also reveals vibrational cooling time constants, ∼500 fs and 45 ps in both H2O and D2O, which differ from ESPT time constants of ∼3/8 and 90/250 ps in H2O/D2O, respectively. Spectral results using H218O further substantiate the functional role of the intermolecular 180 cm–1 mode in modulating the distance between proton donor and acceptor and forming the transient ion pair. The direct observation of molecular structural evolution across a wide spectral region during photochemical reactions enriches our fundamental understanding of potential energy surface and holds the key to advancing energy and biological sciences with exceptional atomic and temporal precision.
Collapse
Affiliation(s)
- Weimin Liu
- Oregon State University , Department of Chemistry , 263 Linus Pauling Science Centre (lab) , 153 Gilbert Hall (office) , Corvallis , OR 97331 , USA . ; ; Tel: +1 541 737 6704
| | - Yanli Wang
- Oregon State University , Department of Chemistry , 263 Linus Pauling Science Centre (lab) , 153 Gilbert Hall (office) , Corvallis , OR 97331 , USA . ; ; Tel: +1 541 737 6704
| | - Longteng Tang
- Oregon State University , Department of Chemistry , 263 Linus Pauling Science Centre (lab) , 153 Gilbert Hall (office) , Corvallis , OR 97331 , USA . ; ; Tel: +1 541 737 6704
| | - Breland G Oscar
- Oregon State University , Department of Chemistry , 263 Linus Pauling Science Centre (lab) , 153 Gilbert Hall (office) , Corvallis , OR 97331 , USA . ; ; Tel: +1 541 737 6704
| | - Liangdong Zhu
- Oregon State University , Department of Chemistry , 263 Linus Pauling Science Centre (lab) , 153 Gilbert Hall (office) , Corvallis , OR 97331 , USA . ; ; Tel: +1 541 737 6704
| | - Chong Fang
- Oregon State University , Department of Chemistry , 263 Linus Pauling Science Centre (lab) , 153 Gilbert Hall (office) , Corvallis , OR 97331 , USA . ; ; Tel: +1 541 737 6704
| |
Collapse
|
12
|
Paul BK, Ghosh N, Mondal R, Mukherjee S. Contrasting Effects of Salt and Temperature on Niosome-Bound Norharmane: Direct Evidence for Positive Heat Capacity Change in the Niosome:β-Cyclodextrin Interaction. J Phys Chem B 2016; 120:4091-101. [DOI: 10.1021/acs.jpcb.6b02168] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Bijan K. Paul
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhauri, Bhopal 462066, Madhya Pradesh India
| | - Narayani Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhauri, Bhopal 462066, Madhya Pradesh India
| | - Ramakanta Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhauri, Bhopal 462066, Madhya Pradesh India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhauri, Bhopal 462066, Madhya Pradesh India
| |
Collapse
|
13
|
Oscar BG, Liu W, Rozanov ND, Fang C. Ultrafast intermolecular proton transfer to a proton scavenger in an organic solvent. Phys Chem Chem Phys 2016; 18:26151-26160. [DOI: 10.1039/c6cp05692j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The structural dynamics basis of intermolecular proton transfer from photoacid to acetate in methanol is revealed using femtosecond stimulated Raman spectroscopy.
Collapse
Affiliation(s)
- Breland G. Oscar
- Oregon State University
- Department of Chemistry
- 263 Linus Pauling Science Centre (lab)
- Corvallis
- USA
| | - Weimin Liu
- Oregon State University
- Department of Chemistry
- 263 Linus Pauling Science Centre (lab)
- Corvallis
- USA
| | - Nikita D. Rozanov
- Oregon State University
- Department of Chemistry
- 263 Linus Pauling Science Centre (lab)
- Corvallis
- USA
| | - Chong Fang
- Oregon State University
- Department of Chemistry
- 263 Linus Pauling Science Centre (lab)
- Corvallis
- USA
| |
Collapse
|
14
|
Simkovitch R, Huppert D. Excited-State Proton Transfer of Weak Photoacids Adsorbed on Biomaterials: Proton Transfer on Starch. J Phys Chem B 2015; 119:9795-804. [DOI: 10.1021/acs.jpcb.5b04510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ron Simkovitch
- Raymond and Beverly Sackler
Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Huppert
- Raymond and Beverly Sackler
Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
15
|
Affiliation(s)
- Christian Lawler
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
16
|
Koninti RK, Gavvala K, Sengupta A, Hazra P. Excited State Proton Transfer Dynamics of Topotecan Inside Biomimicking Nanocavity. J Phys Chem B 2014; 119:2363-71. [DOI: 10.1021/jp5066902] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raj Kumar Koninti
- Department
of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India
| | - Krishna Gavvala
- Department
of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India
| | - Abhigyan Sengupta
- Department
of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India
| | - Partha Hazra
- Department
of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India
| |
Collapse
|
17
|
Chowdhury R, Saha A, Mandal AK, Jana B, Ghosh S, Bhattacharyya K. Excited State Proton Transfer in the Lysosome of Live Lung Cells: Normal and Cancer Cells. J Phys Chem B 2014; 119:2149-56. [DOI: 10.1021/jp503804y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Rajdeep Chowdhury
- Department
of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Abhijit Saha
- Chemistry
Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Amit Kumar Mandal
- Department
of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Batakrishna Jana
- Chemistry
Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Surajit Ghosh
- Chemistry
Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Kankan Bhattacharyya
- Department
of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
18
|
Sen Mojumdar S, Chowdhury R, Mandal AK, Bhattacharyya K. In what time scale proton transfer takes place in a live CHO cell? J Chem Phys 2013; 138:215102. [PMID: 23758398 DOI: 10.1063/1.4807862] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Supratik Sen Mojumdar
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | | | | | | |
Collapse
|
19
|
Spies C, Finkler B, Acar N, Jung G. Solvatochromism of pyranine-derived photoacids. Phys Chem Chem Phys 2013; 15:19893-905. [DOI: 10.1039/c3cp53082e] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Mandal AK, Ghosh S, Das AK, Mondal T, Bhattacharyya K. Effect of NaCl on ESPT‐Mediated FRET in a CTAC Micelle: A Femtosecond and FCS Study. Chemphyschem 2012; 14:788-96. [PMID: 23143825 DOI: 10.1002/cphc.201200669] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Indexed: 02/01/2023]
Affiliation(s)
- Amit Kumar Mandal
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India), Fax: (+91) 33‐2473‐2805
| | - Shirsendu Ghosh
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India), Fax: (+91) 33‐2473‐2805
| | - Atanu Kumar Das
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India), Fax: (+91) 33‐2473‐2805
| | - Tridib Mondal
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India), Fax: (+91) 33‐2473‐2805
| | - Kankan Bhattacharyya
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India), Fax: (+91) 33‐2473‐2805
| |
Collapse
|
21
|
Mondal T, Ghosh S, Das AK, Mandal AK, Bhattacharyya K. Salt Effect on the Ultrafast Proton Transfer in Niosome. J Phys Chem B 2012; 116:8105-12. [DOI: 10.1021/jp3043957] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tridib Mondal
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur,
Kolkata 700032, India
| | - Shirsendu Ghosh
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur,
Kolkata 700032, India
| | - Atanu Kumar Das
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur,
Kolkata 700032, India
| | - Amit Kumar Mandal
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur,
Kolkata 700032, India
| | - Kankan Bhattacharyya
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur,
Kolkata 700032, India
| |
Collapse
|
22
|
Dang S, Yan D, Lu J. 8-Hydroxypyrene-1,3,6-trisulphonate and octanesulphonate co-assembled layered double hydroxide and its controllable solid-state luminescence by hydrothermal synthesis. J SOLID STATE CHEM 2012. [DOI: 10.1016/j.jssc.2011.10.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
23
|
Photoinduced proton transfer of 6-hydroxynaphthalene-1-sulfonic acid in n-propanol/water mixtures. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Andrews R, Seliskar C, Heineman W. Electrochemical and Optical Behavior of 8-Hydroxypyrene-1,3,6-trisulfonic Acid at Optically Transparent Electrodes. ELECTROANAL 2010. [DOI: 10.1002/elan.200900588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Barnadas-Rodríguez R, Estelrich J. Photophysical Changes of Pyranine Induced by Surfactants: Evidence of Premicellar Aggregates. J Phys Chem B 2009; 113:1972-82. [DOI: 10.1021/jp806808u] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ramon Barnadas-Rodríguez
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Avda. Joan XXIII s/n, 08028-Barcelona, Catalonia, Spain
| | - Joan Estelrich
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Avda. Joan XXIII s/n, 08028-Barcelona, Catalonia, Spain
| |
Collapse
|
26
|
Cox MJ, Siwick BJ, Bakker HJ. Influence of Ions on Aqueous Acid-Base Reactions. Chemphyschem 2009; 10:236-44. [DOI: 10.1002/cphc.200800406] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Effect of salts on the excited state of pyranine as determined by steady-state fluorescence. J Photochem Photobiol A Chem 2008. [DOI: 10.1016/j.jphotochem.2008.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Owrutsky JC, Pomfret MB, Barton DJ, Kidwell DA. Fourier transform infrared spectroscopy of azide and cyanate ion pairs in AOT reverse micelles. J Chem Phys 2008; 129:024513. [DOI: 10.1063/1.2952522] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Abstract
A time-resolved emission technique was employed to study the photoprotolytic cycle of two photoacids 2-naphtol-6-sulfonate (2N6S) and 2-naphtol-6,8-disulfonate (2N68DS) in ice in the presence of a low concentration of a weak base fluoride ion. We found that an additional proton-transfer process occurs in ice doped with F- ions. This reaction takes place between a mobile L-defect (created by static F- ions) and the photoacid. We used a diffusion assisted reaction model, based on the Debye-Smoluchowski equation, to account for the direct reaction of the L-defect with the excited photoacid.
Collapse
Affiliation(s)
- Anna Uritski
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
30
|
Leiderman P, Huppert D, Remington SJ, Tolbert LM, Solntsev KM. The effect of pressure on the excited-state proton transfer in the wild-type green fluorescent protein. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.02.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Leiderman P, Gepshtein R, Uritski A, Genosar L, Huppert D. Temperature Dependence of Excited-State Proton Transfer in Water Electrolyte Solutions and Water−Methanol Solutions. J Phys Chem A 2006; 110:9039-50. [PMID: 16854014 DOI: 10.1021/jp061226c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reversible proton dissociation and geminate recombination of a photoacid is studied as a function of temperature in water electrolyte solutions and binary water-methanol mixtures, containing 0.1 and 0.2 mole fractions of methanol. 8-Hydroxypyrene-1,3,6-trisulfonate trisodium salt (HPTS) is used as the photoacid. The experimental data are analyzed by the reversible geminate recombination model. We found that the slope of the logarithm of the proton-transfer rate constant as a function of the inverse of temperature (Arrhenius plot) in the liquid phase of these samples are temperature-dependent, while in the solid phase, the slope is nearly constant. The slope of the Arrhenius plot in frozen electrolyte solution is larger than that of the water-methanol mixtures, which is about the same as in pure water. Careful examination of the time-resolved emission in ice samples shows that the fit quality using the geminate recombination model is rather poor at relatively short times. We were able to get a better fit using an inhomogeneous kinetics model assuming the proton-transfer rate consists of a distribution of rates. The model is consistent with an inhomogeneous frozen water distribution next to the photoacid.
Collapse
Affiliation(s)
- Pavel Leiderman
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|