1
|
Sun J, Vogel J, Chen L, Schleper AL, Bergner T, Kuehne AJC, von Delius M. Carbodiimide-Driven Dimerization and Self-Assembly of Artificial, Ribose-Based Amphiphiles. Chemistry 2022; 28:e202104116. [PMID: 35038189 PMCID: PMC9303926 DOI: 10.1002/chem.202104116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 12/20/2022]
Abstract
The aqueous self-assembly of amphiphiles into aggregates such as micelles and vesicles has been widely investigated over the past decades with applications ranging from materials science to drug delivery. The combination of characteristic properties of nucleic acids and amphiphiles is of substantial interest to mimic biological self-organization and compartmentalization. Herein, we present ribose- and ribonucleotide-based amphiphiles and investigate their self-assembly as well as their fundamental reactivity. We found that various types of aggregates are formed, ranging in size from nanometers to micrometers and all amphiphiles exhibit aggregation-induced emission (AIE) in solution as well as in the solid state. We also observed that the addition of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) leads to rapid and selective dimerization of the amphiphiles into pyrophosphates, which decreases the critical aggregation concentration (CAC) by a factor of 25 when compared to the monomers. Since the propensity for amphiphile dimerization is correlated with their tendency to self-assemble, our results may be relevant for the formation of rudimentary compartments under prebiotic conditions.
Collapse
Affiliation(s)
- Jing Sun
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Julian Vogel
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Lisa Chen
- Institute of Macromolecular and Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - A. Lennart Schleper
- Institute of Macromolecular and Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Tim Bergner
- Central Facility for Electron MicroscopyUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Alexander J. C. Kuehne
- Institute of Macromolecular and Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- DWI – Leibniz-Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Max von Delius
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
2
|
Mougin J, Bourgaux C, Couvreur P. Elongated self-assembled nanocarriers: From molecular organization to therapeutic applications. Adv Drug Deliv Rev 2021; 172:127-147. [PMID: 33705872 DOI: 10.1016/j.addr.2021.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/18/2020] [Accepted: 02/26/2021] [Indexed: 12/31/2022]
Abstract
Self-assembled cylindrical aggregates made of amphiphilic molecules emerged almost 40 years ago. Due to their length up to micrometers, those particles display original physico-chemical properties such as important flexibility and, for concentrated samples, a high viscoelasticity making them suitable for a wide range of industrial applications. However, a quarter of century was needed to successfully take advantage of those improvements towards therapeutic purposes. Since then, a wide diversity of biocompatible materials such as polymers, lipids or peptides, have been developed to design self-assembling elongated drug nanocarriers, suitable for therapeutic or diagnostic applications. More recently, the investigation of the main forces driving the unidirectional growth of these nanodevices allowed a translation toward the formation of pure nanodrugs to avoid the use of unnecessary side materials and the possible toxicity concerns associated.
Collapse
Affiliation(s)
- Julie Mougin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Claudie Bourgaux
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Patrick Couvreur
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
3
|
Mougin J, Yesylevskyy SO, Bourgaux C, Chapron D, Michel JP, Dosio F, Stella B, Ramseyer C, Couvreur P. Stacking as a Key Property for Creating Nanoparticles with Tunable Shape: The Case of Squalenoyl-Doxorubicin. ACS NANO 2019; 13:12870-12879. [PMID: 31603305 DOI: 10.1021/acsnano.9b05303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development of elongated nanoparticles for drug delivery is of growing interest in recent years, due to longer blood circulation and improved efficacy compared to spherical counterparts. Squalenoyl-doxorubicin (SQ-Dox) conjugate was previously shown to form elongated nanoparticles with improved therapeutic efficacy and decreased toxicity compared to free doxorubicin. By using experimental and computational techniques, we demonstrate here that the specific physical properties of SQ-Dox, which include stacking and electrostatic interactions of doxorubicin as well as hydrophobic interactions of squalene, are involved in the formation of nanoassemblies with diverse elongated structures. We show that SQ-Dox bioconjugate concentration, ionic strength, and anion nature can be used to modulate the shape and stiffness of SQ-Dox nanoparticles. As those parameters are involved in nanoparticle behavior in biological media, these findings could bring interesting opportunities for drug delivery and serve as an example for the design of original nanodrugs with stacking properties tuned for particular clinical purposes.
Collapse
Affiliation(s)
- Julie Mougin
- Institut Galien Paris-Sud UMR CNRS 8612 , Faculty of Pharmacy, Université Paris-Sud, Université Paris-Saclay , 92290 Châtenay-Malabry , France
| | - Semen O Yesylevskyy
- Department of Physics of Biological Systems , Institute of Physics of the National Academy of Sciences of Ukraine , Prospect Nauky 46 , 03028 Kyiv , Ukraine
- Laboratoire Chrono Environnement UMR CNRS 6249 , Université de Bourgogne Franche-Comté , 16 route de Gray , 25030 Besançon Cedex, France
| | - Claudie Bourgaux
- Institut Galien Paris-Sud UMR CNRS 8612 , Faculty of Pharmacy, Université Paris-Sud, Université Paris-Saclay , 92290 Châtenay-Malabry , France
| | - David Chapron
- Institut Galien Paris-Sud UMR CNRS 8612 , Faculty of Pharmacy, Université Paris-Sud, Université Paris-Saclay , 92290 Châtenay-Malabry , France
| | - Jean-Philippe Michel
- Institut Galien Paris-Sud UMR CNRS 8612 , Faculty of Pharmacy, Université Paris-Sud, Université Paris-Saclay , 92290 Châtenay-Malabry , France
| | - Franco Dosio
- Dipartimento di Scienza e Tecnologia del Farmaco , Università degli Studi di Torino , 10125 Turin , Italy
| | - Barbara Stella
- Dipartimento di Scienza e Tecnologia del Farmaco , Università degli Studi di Torino , 10125 Turin , Italy
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS 6249 , Université de Bourgogne Franche-Comté , 16 route de Gray , 25030 Besançon Cedex, France
| | - Patrick Couvreur
- Institut Galien Paris-Sud UMR CNRS 8612 , Faculty of Pharmacy, Université Paris-Sud, Université Paris-Saclay , 92290 Châtenay-Malabry , France
| |
Collapse
|
4
|
Rouquette M, Lepetre-Mouelhi S, Couvreur P. Adenosine and lipids: A forced marriage or a love match? Adv Drug Deliv Rev 2019; 151-152:233-244. [PMID: 30797954 DOI: 10.1016/j.addr.2019.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/21/2022]
Abstract
Adenosine is a fascinating compound, crucial in many biochemical processes: this ubiquitous nucleoside serves as an essential building block of RNA, is also a component of ATP and regulates numerous pathophysiological mechanisms via binding to four extracellular receptors. Due to its hydrophilic nature, it belongs to a different world than lipids, and has no affinity for them. Since the 1970's, however, new discoveries have emerged and prompted the scientific community to associate adenosine with the lipid family, especially via liposomal preparations and bioconjugation. This seems to be an arranged marriage, but could it turn into a true love match? This review considered all types of unions established between adenosine and lipids. Even though exciting supramolecular structures were observed with adenosine-lipid conjugates, as well as with liposomal preparations which resulted in promising pre-clinical results, the translation of these technologies to the clinic is still limited.
Collapse
|
5
|
Roy A, Banerjee P, Dutta R, Kundu S, Sarkar N. Probing the Interaction between a DNA Nucleotide (Adenosine-5'-Monophosphate Disodium) and Surface Active Ionic Liquids by Rotational Relaxation Measurement and Fluorescence Correlation Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10946-10956. [PMID: 27690468 DOI: 10.1021/acs.langmuir.6b02794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This article demonstrates the interaction of a deoxyribonucleic acid (DNA) nucleotide, adenosine-5'-monophosphate disodium (AMP) with a cationic surface active ionic liquid (SAIL) 1-dodecyl-3-methylimidazoium chloride (C12mimCl), and an anionic SAIL, 1-butyl-3-methylimidazolium n-octylsulfate ([C4mim][C8SO4]). Dynamic light scattering (DLS) measurements and 1H NMR (nuclear magnetic resonance) studies indicate that substantial interaction is taking place among the DNA nucleotide (AMP) and the SAILs. Moreover, cryogenic transmission electron microscopy (cryo-TEM) suggests that SAILs containing micellar assemblies are transformed into larger micellar assemblies in the presence of DNA nucleotides. Additionally, the rotational motion of two oppositely charged molecules, rhodamine 6G perchlorate (R6G) and fluorescein sodium salt (Fl-Na), have been monitored in these aggregates. The rotational motion of R6G and Fl-Na differs significantly between SAILs micelles and SAILs-AMP containing larger micellar aggregates. The effect of negatively charged DNA nucleotide (AMP) addition into the cationic and anionic SAILs is more prominent for the cationic charged molecule R6G than that of anionic probe Fl-Na due to the favorable electrostatic interaction between the AMP and cationic R6G. Moreover, the influence of the anionic DNA nucleotide on the cationic and anionic SAIL micelles is monitored through the variation of the lateral diffusion motion of oppositely charged probe molecules (R6G and Fl-Na) inside these aggregates. This variation in diffusion coefficient values also suggests that the interaction pattern of these oppositely charged probes are different within the SAILs-nucleotide containing aggregates. Therefore, both rotational and translational diffusion measurements confirm that the DNA nucleotide (AMP) renders more rigid microenvironment within the micellar solution of SAILs.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India
| | - Pavel Banerjee
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India
| | - Rupam Dutta
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India
| | - Sangita Kundu
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India
| |
Collapse
|
6
|
Liu Z, Wang D, Cao M, Han Y, Xu H, Wang Y. Enhanced Molecular Recognition between Nucleobases and Guanine-5'-monophosphate-disodium (GMP) by Surfactant Aggregates in Aqueous Solution. ACS APPLIED MATERIALS & INTERFACES 2015; 7:15078-15087. [PMID: 26106937 DOI: 10.1021/acsami.5b04441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Only specific base pairs on DNA can bind with each other through hydrogen bonds, which is called the Watson-Crick (W/C) pairing rule. However, without the constraint of DNA chains, the nucleobases in bulk aqueous solution usually do not follow the W/C pairing rule anymore because of the strong competitive effect of water and the multi-interaction edges of nucleobases. The present work applied surfactant aggregates noncovalently functionalized by nucleotide to enhance the recognition between nucleobases without DNA chains in aqueous solution, and it revealed the effects of their self-assembling ability and morphologies on the recognition. The cationic ammonium monomeric, dimeric, and trimeric surfactants DTAB, 12-3-12, and 12-3-12-3-12 were chosen. The surfactants with guanine-5'-monophosphate-disodium (GMP) form micelles, vesicles, and fingerprint-like and plate-like aggregates bearing the hydrogen-bonding sites of GMP, respectively. The binding parameters of these aggregates with adenine (A), uracil (U), guanine (G), and cytosine(C) indicate that the surfactants can promote W/C recognitions in aqueous solution when they form vesicles (GMP/DTAB) or plate-like aggregates (GMP/12-3-12) with proper molecular packing compactness, which not only provide hydrophobic environments but also shield non-W/C recognition edges. However, the GMP/12-3-12 micelles with loose molecular packing, the GMP/12-3-12 fingerprint-like aggregates where the hydrogen bond sites of GMP are occupied by itself, and the GMP/12-3-12-3-12 vesicles with too strong self-assembling ability cannot promote W/C recognition. This work provides insight into how to design self-assemblies with the performance of enhanced molecule recognition.
Collapse
Affiliation(s)
- Zhang Liu
- †Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Dong Wang
- ‡Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Meiwen Cao
- ‡Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yuchun Han
- †Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hai Xu
- ‡Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yilin Wang
- †Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
7
|
Arteta MY, Berti D, Montis C, Campbell RA, Eriksson C, Clifton LA, Skoda MWA, Soltwedel O, Koutsioubas A, Baglioni P, Nylander T. On the formation of dendrimer/nucleolipids surface films for directed self-assembly. SOFT MATTER 2015; 11:1973-1990. [PMID: 25626114 DOI: 10.1039/c4sm02712d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We describe the formation and structure of nucleolipid/dendrimer multilayer films controlled by non-covalent interactions to obtain biomaterials that exhibit molecular recognition of nucleic acids. Layers of cationic poly(amidoamine) (PAMAM) dendrimers of generation 4 and the anionic nucleolipids 1,2-dilauroyl-sn-glycero-3-phosphatidylnucleosides (DLPNs) based on uridine (DLPU) and adenosine (DLPA) were first formed at the silica-water interface. The PAMAM/DLPN layers were then exposed to short oligonucleotides, polynucleotides and single stranded DNA (ssDNA). The interfacial properties were characterized using quartz crystal microbalance with dissipation monitoring, attenuated total reflection Fourier transform infrared spectroscopy and neutron reflectometry. Both types of DLPN were found to adsorb as aggregates to preadsorbed PAMAM monolayers with a similar interfacial structure and composition before rinsing with pure aqueous solution. Nucleic acids were found to interact with PAMAM/DLPA layers due to base pairing interactions, while the PAMAM/DLPU layers did not have the same capability. This was attributed to the structure of the DLPA layer, which is formed by aggregates that extend from the interface towards the bulk after rinsing with pure solvent, while the DLPU layer forms compact structures. In complementary experiments using a different protocol, premixed PAMAM/DLPN samples adsorbed to hydrophilic silica only when the mixtures contained positively charged aggregates, which is rationalized in terms of electrostatic forces. The PAMAM/DLPA layers formed from the adsorption of these mixtures also bind ssDNA although in this case the adsorption is mediated by the opposite charges of the film and the nucleic acid rather than specific base pairing. The observed molecular recognition of nucleic acids by dendrimers functionalized via non-covalent interactions with nucleolipids is discussed in terms of biomedical applications such as gene vectors and biosensors.
Collapse
Affiliation(s)
- Marianna Yanez Arteta
- Physical Chemistry, Department of Chemistry, Lund University, P. O. Box 124, S-221 00 Lund, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Arteta MY, Berti D, Montis C, Campbell RA, Clifton LA, Skoda MWA, Soltwedel O, Baglioni P, Nylander T. Molecular recognition of nucleic acids by nucleolipid/dendrimer surface complexes. SOFT MATTER 2014; 10:8401-8405. [PMID: 25246334 DOI: 10.1039/c4sm01733a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We show for the first time that 1,2-dilauroyl-sn-glycero-3-phosphatidyladenosine nucleolipid surface complexes with cationic poly(amidoamine) dendrimers can be used to selectively bind DNA including oligonucleotides. This molecular recognition has high potential for applications involving biomedical and bioanalytic devices as well as drug delivery systems based on nucleic acids.
Collapse
Affiliation(s)
- Marianna Yanez Arteta
- Physical Chemistry, Department of Chemistry, Lund University, P. O. Box 124, S-221 00 Lund, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Barclay TG, Constantopoulos K, Matisons J. Nanotubes Self-Assembled from Amphiphilic Molecules via Helical Intermediates. Chem Rev 2014; 114:10217-91. [DOI: 10.1021/cr400085m] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Thomas G. Barclay
- Flinders Centre for Nanoscale Science & Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide, South Australia 5042, Australia
| | - Kristina Constantopoulos
- Flinders Centre for Nanoscale Science & Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide, South Australia 5042, Australia
| | - Janis Matisons
- Flinders Centre for Nanoscale Science & Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide, South Australia 5042, Australia
| |
Collapse
|
10
|
Allain V, Bourgaux C, Couvreur P. Self-assembled nucleolipids: from supramolecular structure to soft nucleic acid and drug delivery devices. Nucleic Acids Res 2011; 40:1891-903. [PMID: 22075995 PMCID: PMC3300006 DOI: 10.1093/nar/gkr681] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This short review aims at presenting some recent illustrative examples of spontaneous nucleolipids self-assembly. High-resolution structural investigations reveal the diversity and complexity of assemblies formed by these bioinspired amphiphiles, resulting from the interplay between aggregation of the lipid chains and base–base interactions. Nucleolipids supramolecular assemblies are promising soft drug delivery systems, particularly for nucleic acids. Regarding prodrugs, squalenoylation is an innovative concept for improving efficacy and delivery of nucleosidic drugs.
Collapse
Affiliation(s)
- Vanessa Allain
- Laboratoire de Physicochimie, Pharmacotechnie et Biopharmacie, UMR CNRS 8612, Université Paris-Sud 11, Faculté de Pharmacie, 5 rue J.B. Clément, 92296 Châtenay-Malabry, France
| | | | | |
Collapse
|
11
|
Zhao F, Liu Z, Feng L, Sun J, Hu J. Chiroptical aggregates from block copolymer bearing amino acid moieties in aqueous solution. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/polb.21739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Bombelli FB, Gambinossi F, Lagi M, Berti D, Caminati G, Brown T, Sciortino F, Norden B, Baglioni P. DNA closed nanostructures: a structural and Monte Carlo simulation study. J Phys Chem B 2009; 112:15283-94. [PMID: 18989907 DOI: 10.1021/jp804544u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA nanoconstructs are obtained in solution by using six unique 42-mer DNA oligonucleotides, whose sequences have been designed to form a pseudohexagonal structure. The required flexibility is provided by the insertion of two non-base-paired thymines in the middle of each sequence that work as flexible hinges and constitute the corners of the nanostructure when formed. We show that hexagonally shaped nanostructures of about 7 nm diameter and their corresponding linear open constructs are formed by self-assembly of the specifically designed linear oligonucleotides. The structural and dynamical characterization of the nanostructure is obtained in situ for the first time by using dynamic light scattering (DLS), a noninvasive method that provides a fast dynamic and structural analysis and allows the characterization of the different synthetic DNA nanoconstructs in solution. A validation of the LS results is obtained through Monte Carlo (MC) simulations and atomic force microscopy (AFM). In particular, a mesoscale molecular model for DNA, developed by Knotts et al., is exploited to perform MC simulations and to obtain information about the conformations as well as the conformational flexibilities of these nanostructures, while AFM provides a very detailed particle analysis that yields an estimation of the particle size and size distribution. The structural features obtained by MC and AFM are in good agreement with DLS, showing that DLS is a fast and reliable tool for characterization of DNA nanostructures in solution.
Collapse
Affiliation(s)
- Francesca Baldelli Bombelli
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3 - Sesto Fiorentino, 50019 Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Aimé C, Nishiyabu R, Gondo R, Kaneko K, Kimizuka N. Controlled self-assembly of nucleotide-lanthanide complexes: specific formation of nanofibers from dimeric guanine nucleotides. Chem Commun (Camb) 2008:6534-6. [PMID: 19057770 DOI: 10.1039/b815779k] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monomeric and dimeric guanine nucleotides monophosphate spontaneously self-assemble into nanoparticles and nanofibers in the presence of lanthanide ions, which reflects differences in the unit coordination structures and their hierarchical assembly.
Collapse
Affiliation(s)
- Carole Aimé
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | | | | | | | | |
Collapse
|
14
|
Baldelli Bombelli F, Berti D, Milani S, Lagi M, Barbaro P, Karlsson G, Brandt A, Baglioni P. Collective headgroup conformational transition in twisted micellar superstructures. SOFT MATTER 2008; 4:1102-1113. [PMID: 32907145 DOI: 10.1039/b800210j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Predictions on amphiphilic self-assemblies traditionally rely on considerations on molecular shape and charge of the surfactant. In the case of functional surfactants a more sophisticated toolbox becomes necessary to design amphiphiles encoding chemical functionalities that provide additional responsive properties to their self-assemblies. Here we report on a comprehensive and combined structural-spectroscopic characterization of 1,2-dilauroyl-phosphatidyl-adenosine (DLPA) micelles in phosphate buffer. The temperature dependence, more precisely the thermal history of the sample, is explicitly taken into account. The experimental data, supplemented with MD simulations, indicate the presence of two possible states at room temperature, characterized by distinctly different structural properties that depend on the thermal history of the sample. The twisted superstructures, produced by aging DLPA micelles through intermicellar assembly of locally cylindrical aggregates at room temperature, collapse upon warming at 35 °C, yielding aligned filaments and/or wormlike structures. The initial superstructures cannot be recovered by thermal inversion. The reason for this behaviour is that the thermal activation causes a redistribution of syn-anti conformations of adenosine headgroups, as indicated by spectroscopic results (NMR, CD, FTIR), which is then collectively frozen thanks to molecular constraints present in the aggregate.
Collapse
Affiliation(s)
| | - Debora Berti
- Department of Chemistry and CSGI, University of Florence, Sesto Fiorentino, Florence, Italy.
| | - Silvia Milani
- Department of Chemistry and CSGI, University of Florence, Sesto Fiorentino, Florence, Italy.
| | - Marco Lagi
- Department of Chemistry and CSGI, University of Florence, Sesto Fiorentino, Florence, Italy.
| | | | - Göran Karlsson
- Department of Physical and Analytical Chemistry, Uppsala University, Sweden
| | | | - Piero Baglioni
- Department of Chemistry and CSGI, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
15
|
Aimé C, Manet S, Satoh T, Ihara H, Park KY, Godde F, Oda R. Self-assembly of nucleoamphiphiles: investigating nucleosides effect and the mechanism of micrometric helix formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:12875-12885. [PMID: 17994775 DOI: 10.1021/la702105s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A new family of self-assembling systems based on nucleoamphiphiles is described. Nano to micrometric left-handed helix formation in aqueous solution was induced simply by complexing a GMP or an AMP with a nonchiral monocationic amphiphile. The assembling behavior such as micellar formation, monolayer at air-water interface, as well as the aggregates in solution of these nucleoamphiphiles are strongly influenced by the presence of nucleosides in solution. The observed effects depend on the properties of complexed nucleotides and nucleosides with a complex mixture of pi stacking, hydrophobicity of the bases, and hydrogen bonding.
Collapse
Affiliation(s)
- Carole Aimé
- Institut Européen de Chimie et Biologie, UMR 5248 CBMN, CNRS-Université Bordeaux 1-ENITAB, IECB, 2 rue Robert Escarpit, 33607 Pessac, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Berti D, Bombelli FB, Fortini M, Baglioni P. Amphiphilic Self-Assemblies Decorated by Nucleobases. J Phys Chem B 2007; 111:11734-44. [PMID: 17880129 DOI: 10.1021/jp0744073] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphatidyl-nucleosides are a class of functional amphiphiles, where a nucleic acid monomer is conjugated to a lipid skeleton. These derivatives self-organize in aqueous solution as assemblies of various size, shape, and interfacial curvature. This paper presents a comparison of the aggregation behavior of different 1-R,2-R-sn-glycero-3-phosphatidyl-nucleosides, where R = 8 (DiC8PN) or R = 12 (DLPN) and N is either adenosine (a purine) or uridine (a pyrimidine), a complementary pair in RNA. Surface tension, small angle neutron scattering, cryo-TEM, and circular dichroism are used to highlight and distinguish the impact of the hydrophobic assembler and of the base substitution on the solution phase behavior. Our main conclusion is that the nucleic functionalization provides an additional parameter to control self-assembly through specific interactions among the polar heads. Further nonideal effects are induced by mixing nucleolipids with complementary base substitution. We show that these contributions alter the aggregation thresholds and modulate properties of the aggregates on the mesoscale.
Collapse
Affiliation(s)
- Debora Berti
- Department of Chemistry and CSGI, University of Florence, Via della Lastrucccia 3-Sesto Fiorentino, Florence, Italy.
| | | | | | | |
Collapse
|
17
|
Dreiss CÃCA. Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. SOFT MATTER 2007; 3:956-970. [PMID: 32900044 DOI: 10.1039/b705775j] [Citation(s) in RCA: 555] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Wormlike micelles are elongated flexible self-assembly structures formed by the aggregation of amphiphiles. Above a threshold concentration, they entangle into a dynamic network, reminiscent of polymer solutions, and display remarkable visco-elastic properties, which have been exploited in numerous industrial and technological fields. Relating the microstructure of these intricate structures with their bulk properties is still an ongoing quest. In this review, we present a classification of wormlike micelles, with a focus on novel systems and applications. We describe the current state of understanding of their linear rheology and give a detailed account of recent progress in small-angle neutron scattering, a particularly powerful technique to elucidate their microstructure on a wide range of length-scales.
Collapse
Affiliation(s)
- CÃ Cile A Dreiss
- Pharmaceutical Science Research Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, UKSE1 9NH
| |
Collapse
|