• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4632670)   Today's Articles (47)   Subscriber (49921)
For: Vatamanu J, Kusalik PG. Molecular Insights into the Heterogeneous Crystal Growth of sI Methane Hydrate. J Phys Chem B 2006;110:15896-904. [PMID: 16898742 DOI: 10.1021/jp061684l] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Number Cited by Other Article(s)
1
Li K, Chen B, Yang M, Song Y, Sum AK. Methane hydrate phase equilibrium considering dissolved methane concentrations and interfacial geometries from molecular simulations. J Chem Phys 2023;159:244505. [PMID: 38153154 DOI: 10.1063/5.0174705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]  Open
2
Song Y, Li K, Sun H, Chen B, Yang M. New Sights on derived behaviors of methane hydrate molecular structure in Na+/Cl- ions invading process. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
3
Formation of the structure-II gas hydrate from low-concentration propane mixed with methane. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
4
Chen Y, Takeya S, Sum AK. A Clathrate Hydrate Structure Hidden in Plain Sight. J Phys Chem Lett 2022;13:8673-8676. [PMID: 36094377 DOI: 10.1021/acs.jpclett.2c02170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
5
Molecular insights into the heterogeneous crystal growth of tetrahydrofuran hydrate: Kinetic and interfacial properties. J Mol Graph Model 2022;115:108205. [DOI: 10.1016/j.jmgm.2022.108205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/17/2022] [Accepted: 04/23/2022] [Indexed: 11/22/2022]
6
A review of clathrate hydrate nucleation, growth and decomposition studied using molecular dynamics simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
7
Fernández-Fernández ÁM, Pérez-Rodríguez M, Piñeiro MM. Molecular dynamics of fluoromethane type I hydrates. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
8
Cao P. Molecular Origins of Deformation in Amorphous Methane Hydrates. J Phys Chem B 2021;125:9811-9823. [PMID: 34420306 DOI: 10.1021/acs.jpcb.1c03777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
9
Thakre N, Palodkar AV, Dongre HJ, Jana AK. Microscopic Molecular Insights into Hydrate Formation and Growth in Pure and Saline Water Environments. J Phys Chem A 2020;124:4241-4252. [PMID: 32368914 DOI: 10.1021/acs.jpca.0c00621] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
10
Liu T, Liu N, Chen L. Microscopic Insights into the Formation of Methane Hydrate in the Absence/Presence of Electrolyte Ions. ChemistrySelect 2020. [DOI: 10.1002/slct.201904693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
11
Unbiased atomistic insight in the competing nucleation mechanisms of methane hydrates. Proc Natl Acad Sci U S A 2019;116:19305-19310. [PMID: 31501333 PMCID: PMC6765301 DOI: 10.1073/pnas.1906502116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
12
Kondori J, Zendehboudi S, James L. Molecular dynamic simulations to evaluate dissociation of hydrate structure II in the presence of inhibitors: A mechanistic study. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.05.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
13
Nakate P, Ghosh B, Das S, Roy S, Kumar R. Molecular dynamics study on growth of carbon dioxide and methane hydrate from a seed crystal. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
14
English NJ, Ghaani MR. Hybrid versus global thermostatting in molecular-dynamics simulation of methane-hydrate crystallisation. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.02.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
15
Striolo A. Clathrate hydrates: recent advances on CH4 and CO2 hydrates, and possible new frontiers. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1646436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
16
Liang S, Hall KW, Laaksonen A, Zhang Z, Kusalik PG. Characterizing key features in the formation of ice and gas hydrate systems. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019;377:20180167. [PMID: 30982452 PMCID: PMC6501917 DOI: 10.1098/rsta.2018.0167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/26/2019] [Indexed: 05/16/2023]
17
Ghaani MR, English NJ. Hydrogen-/propane-hydrate decomposition: thermodynamic and kinetic analysis. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1567845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
18
Ghaani MR, English NJ. Non-equilibrium molecular-dynamics study of electromagnetic-field-induced propane-hydrate dissociation. J Chem Phys 2018;149:124702. [PMID: 30278679 DOI: 10.1063/1.5029457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]  Open
19
Sicard F, Bui T, Monteiro D, Lan Q, Ceglio M, Burress C, Striolo A. Emergent Properties of Antiagglomerant Films Control Methane Transport: Implications for Hydrate Management. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018;34:9701-9710. [PMID: 30058809 DOI: 10.1021/acs.langmuir.8b01366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
20
Choudhary N, Hande VR, Roy S, Chakrabarty S, Kumar R. Effect of Sodium Dodecyl Sulfate Surfactant on Methane Hydrate Formation: A Molecular Dynamics Study. J Phys Chem B 2018;122:6536-6542. [PMID: 29882664 DOI: 10.1021/acs.jpcb.8b02285] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
21
Yagasaki T, Matsumoto M, Tanaka H. Adsorption of Kinetic Hydrate Inhibitors on Growing Surfaces: A Molecular Dynamics Study. J Phys Chem B 2018;122:3396-3406. [PMID: 29278335 DOI: 10.1021/acs.jpcb.7b10356] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
22
Ghaani MR, English NJ. Molecular-dynamics study of propane-hydrate dissociation: Fluctuation-dissipation and non-equilibrium analysis. J Chem Phys 2018;148:114504. [PMID: 29566503 DOI: 10.1063/1.5018192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
23
Different Mechanism Effect between Gas-Solid and Liquid-Solid Interface on the Three-Phase Coexistence Hydrate System Dissociation in Seawater: A Molecular Dynamics Simulation Study. ENERGIES 2017. [DOI: 10.3390/en11010006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
24
Kim K, Kim Y, Yang J, Ha KS, Usta H, Lee J, Kim C. Enhanced mass transfer rate and solubility of methane via addition of alcohols for Methylosinus trichosporium OB3b fermentation. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
25
Liu L, Mao S, Li Q, Wang X, Yang M, Li L. Confinement of hydrogen and hydroxyl radicals in water cages: a density functional theory study. RSC Adv 2017. [DOI: 10.1039/c6ra28804a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]  Open
26
Sujith KS, Ramachandran CN. Natural Gas Evolution in a Gas Hydrate Melt: Effect of Thermodynamic Hydrate Inhibitors. J Phys Chem B 2016;121:153-163. [DOI: 10.1021/acs.jpcb.6b07782] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
27
Yan KF, Li XS, Chen ZY, Xia ZM, Xu CG, Zhang Z. Molecular Dynamics Simulation of the Crystal Nucleation and Growth Behavior of Methane Hydrate in the Presence of the Surface and Nanopores of Porous Sediment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016;32:7975-7984. [PMID: 27398713 DOI: 10.1021/acs.langmuir.6b01601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
28
Sun T, Davies PL, Walker VK. Structural Basis for the Inhibition of Gas Hydrates by α-Helical Antifreeze Proteins. Biophys J 2016;109:1698-705. [PMID: 26488661 DOI: 10.1016/j.bpj.2015.08.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/10/2015] [Accepted: 08/31/2015] [Indexed: 10/22/2022]  Open
29
Yagasaki T, Matsumoto M, Tanaka H. Effects of thermodynamic inhibitors on the dissociation of methane hydrate: a molecular dynamics study. Phys Chem Chem Phys 2015;17:32347-57. [PMID: 26587576 DOI: 10.1039/c5cp03008k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
30
Yagasaki T, Matsumoto M, Tanaka H. Adsorption Mechanism of Inhibitor and Guest Molecules on the Surface of Gas Hydrates. J Am Chem Soc 2015;137:12079-85. [DOI: 10.1021/jacs.5b07417] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
31
Liang S, Kusalik PG. The nucleation of gas hydrates near silica surfaces. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0443] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
32
Lauricella M, Meloni S, Liang S, English NJ, Kusalik PG, Ciccotti G. Clathrate structure-type recognition: Application to hydrate nucleation and crystallisation. J Chem Phys 2015;142:244503. [DOI: 10.1063/1.4922696] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]  Open
33
Bagherzadeh SA, Alavi S, Ripmeester J, Englezos P. Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth. J Chem Phys 2015;142:214701. [DOI: 10.1063/1.4920971] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
34
Míguez JM, Conde MM, Torré JP, Blas FJ, Piñeiro MM, Vega C. Molecular dynamics simulation of CO2hydrates: Prediction of three phase coexistence line. J Chem Phys 2015;142:124505. [DOI: 10.1063/1.4916119] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
35
Das S, Baghel VS, Roy S, Kumar R. A molecular dynamics study of model SI clathrate hydrates: the effect of guest size and guest–water interaction on decomposition kinetics. Phys Chem Chem Phys 2015;17:9509-18. [PMID: 25767053 DOI: 10.1039/c5cp00678c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
36
Perspectives on molecular simulation of clathrate hydrates: Progress, prospects and challenges. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.07.047] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
37
English NJ. Massively parallel molecular-dynamics simulation of ice crystallisation and melting: The roles of system size, ensemble, and electrostatics. J Chem Phys 2014;141:234501. [DOI: 10.1063/1.4903786] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]  Open
38
Yagasaki T, Matsumoto M, Andoh Y, Okazaki S, Tanaka H. Dissociation of Methane Hydrate in Aqueous NaCl Solutions. J Phys Chem B 2014;118:11797-804. [DOI: 10.1021/jp507978u] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
39
Yi L, Liang D, Zhou X, Li D, Wang J. Molecular dynamics simulations of carbon dioxide hydrate growth in electrolyte solutions of NaCl and MgCl2. Mol Phys 2014. [DOI: 10.1080/00268976.2014.932454] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
40
Molecular dynamics simulation of the intercalation behaviors of methane hydrate in montmorillonite. J Mol Model 2014;20:2311. [PMID: 24906646 DOI: 10.1007/s00894-014-2311-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
41
English NJ, Lauricella M, Meloni S. Massively parallel molecular dynamics simulation of formation of clathrate-hydrate precursors at planar water-methane interfaces: Insights into heterogeneous nucleation. J Chem Phys 2014;140:204714. [DOI: 10.1063/1.4879777] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]  Open
42
Nguyen AH, Molinero V. Cross-nucleation between clathrate hydrate polymorphs: Assessing the role of stability, growth rate, and structure matching. J Chem Phys 2014;140:084506. [DOI: 10.1063/1.4866143] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]  Open
43
Yagasaki T, Matsumoto M, Andoh Y, Okazaki S, Tanaka H. Effect of Bubble Formation on the Dissociation of Methane Hydrate in Water: A Molecular Dynamics Study. J Phys Chem B 2014;118:1900-6. [DOI: 10.1021/jp412692d] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
44
Rozmanov D, Baoukina S, Tieleman DP. Density based visualization for molecular simulation. Faraday Discuss 2014;169:225-43. [DOI: 10.1039/c3fd00124e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
45
Conde MM, Gonzalez MA, Abascal JLF, Vega C. Determining the phase diagram of water from direct coexistence simulations: The phase diagram of the TIP4P/2005 model revisited. J Chem Phys 2013;139:154505. [DOI: 10.1063/1.4824627] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]  Open
46
English NJ, Clarke ET. Molecular dynamics study of CO2 hydrate dissociation: Fluctuation-dissipation and non-equilibrium analysis. J Chem Phys 2013;139:094701. [DOI: 10.1063/1.4819269] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
47
Conde MM, Vega C. Note: A simple correlation to locate the three phase coexistence line in methane-hydrate simulations. J Chem Phys 2013;138:056101. [DOI: 10.1063/1.4790647] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
48
Liang S, Kusalik PG. Nucleation of gas hydrates within constant energy systems. J Phys Chem B 2013;117:1403-10. [PMID: 23330680 DOI: 10.1021/jp308395x] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
49
Tung YT, Chen LJ, Chen YP, Lin ST. Molecular Dynamics Study on the Growth of Structure I Methane Hydrate in Aqueous Solution of Sodium Chloride. J Phys Chem B 2012;116:14115-25. [DOI: 10.1021/jp308224v] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
50
The Wolf method applied to the type I methane and carbon dioxide gas hydrates. J Mol Graph Model 2012;38:455-64. [DOI: 10.1016/j.jmgm.2012.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/29/2012] [Accepted: 10/05/2012] [Indexed: 11/23/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA