1
|
Sasaki Y, Zhang Y, Ohshiro K, Tsuchiya K, Lyu X, Kamiko M, Ueno Y, Tanaka H, Minami T. An organic transistor for detecting the oxidation of an organic sulfur compound at a solid-liquid interface and its chemical sensing applications. Faraday Discuss 2024; 250:60-73. [PMID: 37975288 DOI: 10.1039/d3fd00149k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The development of chemical sensors has advanced due to an increase in demand; however, the potential of chemical sensors as devices to monitor organic reactions has not been revealed yet. Thus, we aim to propose a chemical sensor platform for facile monitoring of chemical reactions, especially at a solid-liquid interface. In this study, an extended-gate-type organic field-effect transistor (OFET) has been employed as a platform to detect chemical reactions at an interface between the extended-gate electrode and an aqueous solution. The OFET device functionalized with 4,4'-thiobisbenzenthiol has shown time- and concentration-dependent shifts in transistor characteristics upon adding H2O2. In a selectivity test using seven oxidant agents, the transistor responses depended on the oxidation of the organic sulfur compound (i.e., 4,4'-thiobisbenzenthiol) stemming from the ability of the oxidant agents. Therefore, the observed changes in the transistor characteristics have suggested the generation of sulfur-oxidized products at the interface. In this regard, the observed responses were caused by disulfide formation accompanied by changes in the charges under neutral pH conditions. Meanwhile, weak transistor responses derived from the generation of oxygen adducts have also been observed, which were caused by changes in the dipole moments. Indeed, the yields of the oxygen adducts have been revealed by X-ray photoelectron spectroscopy. The monitoring of gradual changes originating from the decrease in the disulfide formation and the increase in the oxygen adducts implied a novel aspect of the OFET device as a platform to simultaneously detect reversible and irreversible reactions at interfaces without using large-sized analytical instruments. Sulfur oxidation by H2O2 on the OFET device has been further applied to the indirect monitoring of an enzymatic reaction in solution. The OFET-based chemical sensor has shown continuous changes with an increase in a substance (i.e., lactate) in the presence of an enzyme (i.e., lactate oxidase), which indicates that the OFET response depends on the H2O2 generated through the enzymatic reaction in the solution. In this study, we have clarified the versatility of organic devices as platforms to monitor different chemical reactions using a single detection method.
Collapse
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yijing Zhang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Kazuhiko Tsuchiya
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Masao Kamiko
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Yoshinori Ueno
- Corporate Research Center, Toyobo Co., Ltd, 2-1-1 Katata, Otsu, Shiga, 520-0292, Japan
| | - Hikaru Tanaka
- Corporate Research Center, Toyobo Co., Ltd, 2-1-1 Katata, Otsu, Shiga, 520-0292, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
2
|
You T, Lang X, Huang A, Yin P. A DFT study on surface-enhanced Raman spectroscopy of aromatic dithiol derivatives adsorbed on gold nanojunctions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:222-229. [PMID: 28715690 DOI: 10.1016/j.saa.2017.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
A computational study on aromatic dithiol derivatives (HS-Ar-X-Ar-SH, X=O, S, Se, NH, CH2, NN, CHCH, CC) interacting with gold cluster(s) was presented to investigate the chemical enhancement mechanism related to surface-enhanced Raman spectroscopy (SERS) for molecular junctions. Density functional theory (DFT) were performed on derivatives molecules as well as their single-end-linked (SEL) or double-end-linked (DEL) complexes for geometric, spectra, electronic and excitation properties, leading to discussions on dominant factor during SERS process. The resulted enhancement factors of SEL and DEL complexes exhibited specific dependency on linking atom or functional group between two phenyls, which was in accordance with the variation of polarizabilities and molecule-cluster transition energy.
Collapse
Affiliation(s)
- Tingting You
- School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
| | - Xiufeng Lang
- Material Simulation and Computing Laboratory, Department of Physics, Hebei Normal University of Science & Technology, Qinghuangdao 066004, China
| | - Anping Huang
- School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
| | - Penggang Yin
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China.
| |
Collapse
|
4
|
Karn-orachai K, Sakamoto K, Laocharoensuk R, Bamrungsap S, Songsivilai S, Dharakul T, Miki K. Extrinsic surface-enhanced Raman scattering detection of influenza A virus enhanced by two-dimensional gold@silver core–shell nanoparticle arrays. RSC Adv 2016. [DOI: 10.1039/c6ra17143e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A surface enhanced Raman scattering (SERS) based biosensor using a direct immunoassay platform was demonstrated for influenza A detection. The sensitivity was improved ~4 times by using a well-tuned Au@Ag 2D array instead of a flat Au film.
Collapse
Affiliation(s)
- Kullavadee Karn-orachai
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
- Faculty of Pure and Applied Sciences
- University of Tsukuba
| | - Kenji Sakamoto
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - Rawiwan Laocharoensuk
- National Nanotechnology Center (NANOTEC)
- National Science and Technology Development Agency (NSTDA)
- Pathumthani 12120
- Thailand
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC)
- National Science and Technology Development Agency (NSTDA)
- Pathumthani 12120
- Thailand
| | - Sirirurg Songsivilai
- National Nanotechnology Center (NANOTEC)
- National Science and Technology Development Agency (NSTDA)
- Pathumthani 12120
- Thailand
| | - Tararaj Dharakul
- National Nanotechnology Center (NANOTEC)
- National Science and Technology Development Agency (NSTDA)
- Pathumthani 12120
- Thailand
- Department of Immunology
| | - Kazushi Miki
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
- Faculty of Pure and Applied Sciences
- University of Tsukuba
| |
Collapse
|
5
|
You TT, Yin PG, Jiang L, Lang XF, Guo L, Yang SH. In situ identification of the adsorption of 4,4′-thiobisbenzenethiol on silver nanoparticles surface: a combined investigation of surface-enhanced Raman scattering and density functional theory study. Phys Chem Chem Phys 2012; 14:6817-25. [DOI: 10.1039/c2cp24147a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Shamsipur M, Kazemi SH, Alizadeh A, Mousavi MF, Workentin MS. Self-assembled monolayers of a hydroquinone-terminated alkanethiol onto gold surface. Interfacial electrochemistry and Michael-addition reaction with glutathione. J Electroanal Chem (Lausanne) 2007. [DOI: 10.1016/j.jelechem.2007.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|