1
|
Sepulveda-Montaño LX, Galindo JF, Kuroda DG. A new computational methodology for the characterization of complex molecular environments using IR spectroscopy: bridging the gap between experiments and computations. Chem Sci 2024; 15:d4sc03219e. [PMID: 39156932 PMCID: PMC11328912 DOI: 10.1039/d4sc03219e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
The molecular interactions and dynamics of complex liquid solutions are now routinely measured using IR and 2DIR spectroscopy. In particular, the use of the latter allows the determination of the frequency fluctuation correlation function (FFCF), while the former provides us with the average frequency. In turn, the FFCF can be used to quantify the vibrational dynamics of a molecule in a solution, and the center frequency provides details about the chemical environment, solvatochromism, of the vibrational mode. In simple solutions, the IR methodology can be used to unambiguously assign the interactions and dynamics observed by a molecule in solution. However, in complex environments with molecular heterogeneities, this assignment is not simple. Therefore, a method that allows for such an assignment is essential. Here, a parametrization free method, called Instantaneous Frequencies of Molecules or IFM, is presented. The IFM method, when coupled to classical molecular simulations, can predict the FFCF of a molecule in solutions. Here, N-methylacetamide (NMA) in seven different chemical environments, both simple and complex, is used to test this new method. The results show good agreement with experiments for the NMA solvatochromism and FFCF dynamics, including characteristic times and amplitudes of fluctuations. In addition, the new method shows equivalent or improved results when compared to conventional frequency maps. Overall, the use of the new method in conjunction with molecular dynamics simulations allows unlocking the full potential of IR spectroscopy to generate molecular maps from vibrational observables, capable of describing the interaction landscape of complex molecular systems.
Collapse
Affiliation(s)
| | - Johan F Galindo
- Department of Chemistry, Universidad Nacional de Colombia Sede Bogotá Bogotá 111321 Colombia
| | - Daniel G Kuroda
- Department of Chemistry, Louisiana State University Baton Rouge Louisiana 70803 USA
| |
Collapse
|
2
|
Ryan M, Gao L, Valiyaveetil FI, Kananenka AA, Zanni MT. Water inside the Selectivity Filter of a K + Ion Channel: Structural Heterogeneity, Picosecond Dynamics, and Hydrogen Bonding. J Am Chem Soc 2024; 146:1543-1553. [PMID: 38181505 PMCID: PMC10797622 DOI: 10.1021/jacs.3c11513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Water inside biological ion channels regulates the key properties of these proteins, such as selectivity, ion conductance, and gating. In this article, we measure the picosecond spectral diffusion of amide I vibrations of an isotope-labeled KcsA potassium channel using two-dimensional infrared (2D IR) spectroscopy. By combining waiting time (100-2000 fs) 2D IR measurements of the KcsA channel including 13C18O isotope-labeled Val76 and Gly77 residues with molecular dynamics simulations, we elucidated the site-specific dynamics of water and K+ ions inside the selectivity filter of KcsA. We observe inhomogeneous 2D line shapes with extremely slow spectral diffusion. Our simulations quantitatively reproduce the experiments and show that water is the only component with any appreciable dynamics, whereas K+ ions and the protein are essentially static on a picosecond timescale. By analyzing simulated and experimental vibrational frequencies, we find that water in the selectivity filter can be oriented to form hydrogen bonds with adjacent or nonadjacent carbonyl groups with the reorientation timescales being three times slower and comparable to that of water molecules in liquid, respectively. Water molecules can reside in the cavity sufficiently far from carbonyls and behave essentially like "free" gas-phase-like water with fast reorientation times. Remarkably, no interconversion between these configurations was observed on a picosecond timescale. These dynamics are in stark contrast with liquid water, which remains highly dynamic even in the presence of ions at high concentrations.
Collapse
Affiliation(s)
- Matthew
J. Ryan
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lujia Gao
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Francis I. Valiyaveetil
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Alexei A. Kananenka
- Department
of Physics and Astronomy, University of
Delaware, Newark, Delaware 19716, United States
| | - Martin T. Zanni
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Ryan MJ, Gao L, Valiyaveetil FI, Kananenka AA, Zanni MT. Water inside the selectivity filter of a K + ion channel: structural heterogeneity, picosecond dynamics, and hydrogen-bonding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567415. [PMID: 38014355 PMCID: PMC10680850 DOI: 10.1101/2023.11.16.567415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Water inside biological ion channels regulates the key properties of these proteins such as selectivity, ion conductance, and gating. In this Article we measure the picosecond spectral diffusion of amide I vibrations of an isotope labeled KcsA potassium channel using two-dimensional infrared (2D IR) spectroscopy. By combining waiting time (100 - 2000 fs) 2D IR measurements of the KcsA channel including 13C18O isotope labeled Val76 and Gly77 residues with molecular dynamics simulations, we elucidated the site-specific dynamics of water and K+ ions inside the selectivity filter of KcsA. We observe inhomogeneous 2D lineshapes with extremely slow spectral diffusion. Our simulations quantitatively reproduce the experiments and show that water is the only component with any appreciable dynamics, whereas K+ ions and the protein are essentially static on a picosecond timescale. By analyzing simulated and experimental vibrational frequencies, we find that water in the selectivity filter can be oriented to form hydrogen bonds with adjacent, or non-adjacent carbonyl groups with the reorientation timescales being three times slower and comparable to that of water molecules in liquid, respectively. Water molecules can reside in the cavity sufficiently far from carbonyls and behave essentially like "free" gas-phase-like water with fast reorientation times. Remarkably, no interconversion between these configurations were observed on a picosecond timescale. These dynamics are in stark contrast with liquid water that remains highly dynamic even in the presence of ions at high concentrations.
Collapse
Affiliation(s)
- Matthew J. Ryan
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lujia Gao
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Francis I. Valiyaveetil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alexei A. Kananenka
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
4
|
Sepulveda-Montaño LX, Galindo JF, Kuroda DG. Infrared Spectroscopy of Liquid Solutions as a Benchmarking Tool of Semiempirical QM Methods: The Case of GFN2-xTB. J Phys Chem B 2023; 127:7955-7963. [PMID: 37676972 DOI: 10.1021/acs.jpcb.3c03174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The accurate description of large molecular systems has triggered the development of new computational methods. Due to the computational cost of modeling large systems, the methods usually require a trade-off between accuracy and speed. Therefore, benchmarking to test the accuracy and precision of the method is an important step in their development. The typical gold standard for evaluating these methods is isolated molecules, because of the low computational cost. However, the advent of high-performance computing has made it possible to benchmark computational methods using observables from more complex systems such as liquid solutions. To this end, infrared spectroscopy provides a suitable set of observables (i.e., vibrational transitions) for liquid systems. Here, IR spectroscopy observables are used to benchmark the predictions of the newly developed GFN2-xTB semiempirical method. Three different IR probes (i.e., N-methylacetamide, benzonitrile, and semiheavy water) in solution are selected for this purpose. The work presented here shows that GFN2-xTB predicts central frequencies with errors of less than 10% in all probes. In addition, the method captures detailed properties of the molecular environment such as weak interactions. Finally, the GFN2-xTB correctly assesses the vibrational solvatochromism for N-methylacetamide and semiheavy water but does not have the accuracy needed to properly describe benzonitrile. Overall, the results indicate not only that GFN2-xTB can be used to predict the central frequencies and their dependence on the molecular environment with reasonable accuracy but also that IR spectroscopy data of liquid solutions provide a suitable set of observables for the benchmarking of computational methods.
Collapse
Affiliation(s)
| | - Johan Fabian Galindo
- Department of Chemistry, Universidad Nacional de Colombia sede Bogotá, 111321 Bogotá, Colombia
| | - Daniel G Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
5
|
Busto-Moner L, Feng CJ, Antoszewski A, Tokmakoff A, Dinner AR. Structural Ensemble of the Insulin Monomer. Biochemistry 2021; 60:3125-3136. [PMID: 34637307 PMCID: PMC8552439 DOI: 10.1021/acs.biochem.1c00583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Indexed: 11/29/2022]
Abstract
Experimental evidence suggests that monomeric insulin exhibits significant conformational heterogeneity, and modifications of apparently disordered regions affect both biological activity and the longevity of pharmaceutical formulations, presumably through receptor binding and fibrillation/degradation, respectively. However, a microscopic understanding of conformational heterogeneity has been lacking. Here, we integrate all-atom molecular dynamics simulations with an analysis pipeline to investigate the structural ensemble of human insulin monomers. We find that 60% of the structures present at least one of the following elements of disorder: melting of the A-chain N-terminal helix, detachment of the B-chain N-terminus, and detachment of the B-chain C-terminus. We also observe partial melting and extension of the B-chain helix and significant conformational heterogeneity in the region containing the B-chain β-turn. We then estimate hydrogen-exchange protection factors for the sampled ensemble and find them in line with experimental results for KP-insulin, although the simulations underestimate the importance of unfolded states. Our results help explain the ready exchange of specific amide sites that appear to be protected in crystal structures. Finally, we discuss the implications for insulin function and stability.
Collapse
Affiliation(s)
- Luis Busto-Moner
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chi-Jui Feng
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Adam Antoszewski
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James
Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute
for Biophysical Dynamics, The University
of Chicago, Chicago, Illinois 60637, United
States
| | - Aaron R. Dinner
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James
Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute
for Biophysical Dynamics, The University
of Chicago, Chicago, Illinois 60637, United
States
| |
Collapse
|
6
|
Zhang X, Chen X, Kuroda DG. Computing the frequency fluctuation dynamics of highly coupled vibrational transitions using neural networks. J Chem Phys 2021; 154:164514. [PMID: 33940799 DOI: 10.1063/5.0044911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The description of frequency fluctuations for highly coupled vibrational transitions has been a challenging problem in physical chemistry. In particular, the complexity of their vibrational Hamiltonian does not allow us to directly derive the time evolution of vibrational frequencies for these systems. In this paper, we present a new approach to this problem by exploiting the artificial neural network to describe the vibrational frequencies without relying on the deconstruction of the vibrational Hamiltonian. To this end, we first explored the use of the methodology to predict the frequency fluctuations of the amide I mode of N-methylacetamide in water. The results show good performance compared with the previous experimental and theoretical results. In the second part, the neural network approach is used to investigate the frequency fluctuations of the highly coupled carbonyl stretch modes for the organic carbonates in the solvation shell of the lithium ion. In this case, the frequency fluctuation predicted by the neural networks shows a good agreement with the experimental results, which suggests that this model can be used to describe the dynamics of the frequency in highly coupled transitions.
Collapse
Affiliation(s)
- Xiaoliu Zhang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Xiaobing Chen
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Daniel G Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
7
|
Feng CJ, Sinitskiy A, Pande V, Tokmakoff A. Computational IR Spectroscopy of Insulin Dimer Structure and Conformational Heterogeneity. J Phys Chem B 2021; 125:4620-4633. [PMID: 33929849 DOI: 10.1021/acs.jpcb.1c00399] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have investigated the structure and conformational dynamics of insulin dimer using a Markov state model (MSM) built from extensive unbiased atomistic molecular dynamics simulations and performed infrared spectral simulations of the insulin MSM to describe how structural variation within the dimer can be experimentally resolved. Our model reveals two significant conformations to the dimer: a dominant native state consistent with other experimental structures of the dimer and a twisted state with a structure that appears to reflect a ∼55° clockwise rotation of the native dimer interface. The twisted state primarily influences the contacts involving the C-terminus of insulin's B chain, shifting the registry of its intermolecular hydrogen bonds and reorganizing its side-chain packing. The MSM kinetics predict that these configurations exchange on a 14 μs time scale, largely passing through two Markov states with a solvated dimer interface. Computational amide I spectroscopy of site-specifically 13C18O labeled amides indicates that the native and twisted conformation can be distinguished through a series of single and dual labels involving the B24F, B25F, and B26Y residues. Additional structural heterogeneity and disorder is observed within the native and twisted states, and amide I spectroscopy can also be used to gain insight into this variation. This study will provide important interpretive tools for IR spectroscopic investigations of insulin structure and transient IR kinetics experiments studying the conformational dynamics of insulin dimer.
Collapse
Affiliation(s)
- Chi-Jui Feng
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Anton Sinitskiy
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Vijay Pande
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
8
|
Birdsall ER, Petti MK, Saraswat V, Ostrander JS, Arnold MS, Zanni MT. Structure Changes of a Membrane Polypeptide under an Applied Voltage Observed with Surface-Enhanced 2D IR Spectroscopy. J Phys Chem Lett 2021; 12:1786-1792. [PMID: 33576633 PMCID: PMC8162810 DOI: 10.1021/acs.jpclett.0c03706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The structures of many membrane-bound proteins and polypeptides depend on the membrane potential. However, spectroscopically studying their structures under an applied field is challenging, because a potential is difficult to generate across more than a few bilayers. We study the voltage-dependent structures of the membrane-bound polypeptide, alamethicin, using a spectroelectrochemical cell coated with a rough, gold film to create surface plasmons. The plasmons sufficiently enhance the 2D IR signal to measure a single bilayer. The film is also thick enough to conduct current and thereby apply a potential. The 2D IR spectra resolve features from both 310- and α-helical structures and cross-peaks connecting the two. We observe changes in the peak intensity, not their frequencies, upon applying a voltage. A similar change occurs with pH, which is known to alter the angle of alamethicin relative to the surface normal. The spectra are modeled using a vibrational exciton Hamiltonian, and the voltage-dependent spectra are consistent with a change in angle of the 310- and α-helices in the membrane from 55 to 44°and from 31 to 60°, respectively. The 310- and α-helices are coupled by approximately 10 cm-1. These experiments provide new structural information about alamethicin under a potential difference and demonstrate a technique that might be applied to voltage-gated membrane proteins and compared to molecular dynamics structures.
Collapse
Affiliation(s)
- Erin R Birdsall
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Megan K Petti
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Vivek Saraswat
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua S Ostrander
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, Indiana Wesleyan University, Marion, Indiana 46953, United States
| | - Michael S Arnold
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
9
|
Stevenson P, Tokmakoff A. Ultrafast Fluctuations of High Amplitude Electric Fields in Lipid Membranes. J Am Chem Soc 2017; 139:4743-4752. [DOI: 10.1021/jacs.6b12412] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Paul Stevenson
- Department
of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Ave., Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, James Frank Institute, and The Institute
for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department
of Chemistry, James Frank Institute, and The Institute
for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
Edington SC, Flanagan JC, Baiz CR. An Empirical IR Frequency Map for Ester C═O Stretching Vibrations. J Phys Chem A 2016; 120:3888-96. [DOI: 10.1021/acs.jpca.6b02887] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sean C. Edington
- Department
of Chemistry, University of Texas at Austin, 105 E. 24th St. Stop A5300, Austin, Texas 78712-1224, United States
| | - Jennifer C. Flanagan
- Department
of Chemistry, University of Texas at Austin, 105 E. 24th St. Stop A5300, Austin, Texas 78712-1224, United States
| | - Carlos R. Baiz
- Department
of Chemistry, University of Texas at Austin, 105 E. 24th St. Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
11
|
Reppert M, Tokmakoff A. Computational Amide I 2D IR Spectroscopy as a Probe of Protein Structure and Dynamics. Annu Rev Phys Chem 2016; 67:359-86. [DOI: 10.1146/annurev-physchem-040215-112055] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mike Reppert
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637;
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
12
|
Dunkelberger EB, Grechko M, Zanni MT. Transition Dipoles from 1D and 2D Infrared Spectroscopy Help Reveal the Secondary Structures of Proteins: Application to Amyloids. J Phys Chem B 2015; 119:14065-75. [PMID: 26446575 DOI: 10.1021/acs.jpcb.5b07706] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transition dipoles are an underutilized quantity for probing molecular structures. The transition dipole strengths in an extended system like a protein are modulated by the couplings and thus probe the structures. Here we measure the absolute transition dipole strengths of human and rat amylin in their solution, aggregated, membrane, and micelleular bound forms, using a combination of 1D and 2D infrared spectroscopy. We find that the vibrational modes of amyloid fibers made of human amylin can extend across as many as 12 amino acids, reflecting very ordered β-sheets in the most carefully prepared samples. Rat amylin has FTIR spectra that are nearly identical in solution, micelles, and membranes. We show that the transition dipoles of rat amylin are much larger when bound to micelles and membranes than when in solution, consistent with rat amylin adopting an α-helical structure. We interpret the transition dipole strengths as experimental measurements of the inverse participation ratio often calculated in theoretical studies. The structure of aggregating and membrane-bound proteins can be difficult to identify with existing techniques, especially during kinetics. These results demonstrate how absolute transition dipoles measured via our 1D/2D spectroscopy method can provide important structural information.
Collapse
Affiliation(s)
- Emily B Dunkelberger
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706-1396, United States
| | - Maksim Grechko
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706-1396, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706-1396, United States
| |
Collapse
|
13
|
Ding B, Panahi A, Ho JJ, Laaser JE, Brooks CL, Zanni MT, Chen Z. Probing Site-Specific Structural Information of Peptides at Model Membrane Interface In Situ. J Am Chem Soc 2015; 137:10190-8. [PMID: 26241117 DOI: 10.1021/jacs.5b04024] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isotope labeling is a powerful technique to probe detailed structures of biological molecules with a variety of analytical methods such as NMR and vibrational spectroscopies. It is important to obtain molecular structural information on biological molecules at interfaces such as cell membranes, but it is challenging to use the isotope labeling method to study interfacial biomolecules. Here, by individually (13)C═(16)O labeling ten residues of a peptide, Ovispirin-1, we have demonstrated for the first time that a site-specific environment of membrane associated peptide can be probed by the submonolayer surface sensitive sum frequency generation (SFG) vibrational spectroscopy in situ. With the peptide associated with a single lipid bilayer, the sinusoidal trend of the SFG line width and peak-center frequency suggests that the peptide is located at the interface beneath the lipid headgroup region. The constructive interferences between the isotope labeled peaks and the main peptide amide I peak contributed by the unlabeled components were used to determine the membrane orientation of the peptide. From the SFG spectral peak-center frequency, line width, and polarization dependence of the isotope labeled units, we deduced structural information on individual units of the peptide associated with a model cell membrane. We also performed molecular dynamics (MD) simulations to understand peptide-membrane interactions. The physical pictures described by simulation agree well with the SFG experimental result. This research demonstrates the feasibility and power of using isotope labeling SFG to probe molecular structures of interfacial biological molecules in situ in real time.
Collapse
Affiliation(s)
- Bei Ding
- †Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Afra Panahi
- †Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jia-Jung Ho
- ‡Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53703, United States
| | - Jennifer E Laaser
- ‡Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53703, United States
| | - Charles L Brooks
- †Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Martin T Zanni
- ‡Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53703, United States
| | - Zhan Chen
- †Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
14
|
Carr JK, Wang L, Roy S, Skinner JL. Theoretical Sum Frequency Generation Spectroscopy of Peptides. J Phys Chem B 2014; 119:8969-83. [PMID: 25203677 PMCID: PMC4516311 DOI: 10.1021/jp507861t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vibrational sum frequency generation (SFG) has become a very promising technique for the study of proteins at interfaces, and it has been applied to important systems such as anti-microbial peptides, ion channel proteins, and human islet amyloid polypeptide. Moreover, so-called "chiral" SFG techniques, which rely on polarization combinations that generate strong signals primarily for chiral molecules, have proven to be particularly discriminatory of protein secondary structure. In this work, we present a theoretical strategy for calculating protein amide I SFG spectra by combining line-shape theory with molecular dynamics simulations. We then apply this method to three model peptides, demonstrating the existence of a significant chiral SFG signal for peptides with chiral centers, and providing a framework for interpreting the results on the basis of the dependence of the SFG signal on the peptide orientation. We also examine the importance of dynamical and coupling effects. Finally, we suggest a simple method for determining a chromophore's orientation relative to the surface using ratios of experimental heterodyne-detected signals with different polarizations, and test this method using theoretical spectra.
Collapse
Affiliation(s)
- Joshua K Carr
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Lu Wang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Santanu Roy
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - James L Skinner
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
15
|
Carr JK, Zabuga AV, Roy S, Rizzo TR, Skinner JL. Assessment of amide I spectroscopic maps for a gas-phase peptide using IR-UV double-resonance spectroscopy and density functional theory calculations. J Chem Phys 2014; 140:224111. [PMID: 24929378 PMCID: PMC4187283 DOI: 10.1063/1.4882059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/26/2014] [Indexed: 02/04/2023] Open
Abstract
The spectroscopy of amide I vibrations has become a powerful tool for exploring protein structure and dynamics. To help with spectral interpretation, it is often useful to perform molecular dynamics (MD) simulations. To connect spectroscopic experiments to simulations in an efficient manner, several researchers have proposed "maps," which relate observables in classical MD simulations to quantum spectroscopic variables. It can be difficult to discern whether errors in the theoretical results (compared to experiment) arise from inaccuracies in the MD trajectories or in the maps themselves. In this work, we evaluate spectroscopic maps independently from MD simulations by comparing experimental and theoretical spectra for a single conformation of the α-helical model peptide Ac-Phe-(Ala)5-Lys-H(+) in the gas phase. Conformation-specific experimental spectra are obtained for the unlabeled peptide and for several singly and doubly (13)C-labeled variants using infrared-ultraviolet double-resonance spectroscopy, and these spectra are found to be well-modeled by density functional theory (DFT) calculations at the B3LYP/6-31G** level. We then compare DFT results for the deuterated and (13)C(18)O-labeled peptide with those from spectroscopic maps developed and used previously by the Skinner group. We find that the maps are typically accurate to within a few cm(-1) for both frequencies and couplings, having larger errors only for the frequencies of terminal amides.
Collapse
Affiliation(s)
- J K Carr
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - A V Zabuga
- Laboratoire de Chimie Physique Moleculaire, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - S Roy
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - T R Rizzo
- Laboratoire de Chimie Physique Moleculaire, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - J L Skinner
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
16
|
Bridgeman JS, Ladell K, Sheard VE, Miners K, Hawkins RE, Price DA, Gilham DE. CD3ζ-based chimeric antigen receptors mediate T cell activation via cis- and trans-signalling mechanisms: implications for optimization of receptor structure for adoptive cell therapy. Clin Exp Immunol 2014; 175:258-67. [PMID: 24116999 PMCID: PMC3892417 DOI: 10.1111/cei.12216] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2013] [Indexed: 01/22/2023] Open
Abstract
Chimeric antigen receptors (CARs) can mediate redirected lysis of tumour cells in a major histocompatibility complex (MHC)-independent manner, thereby enabling autologous adoptive T cell therapy for a variety of malignant neoplasms. Currently, most CARs incorporate the T cell receptor (TCR) CD3ζ signalling chain; however, the precise mechanisms responsible for CAR-mediated T cell activation are unclear. In this study, we used a series of immunoreceptor tyrosine-based activation motif (ITAM)-mutant and transmembrane-modified receptors to demonstrate that CARs activate T cells both directly via the antigen-ligated signalling chain and indirectly via associated chains within the TCR complex. These observations allowed us to generate new receptors capable of eliciting polyfunctional responses in primary human T cells. This work increases our understanding of CAR function and identifies new avenues for the optimization of CAR-based therapeutic interventions.
Collapse
Affiliation(s)
- J S Bridgeman
- Clinical and Experimental Immunotherapy Group, Department of Medical Oncology, Institute of Cancer Sciences, Manchester Academic Health Centre, The University of Manchester, Manchester, UK; Institute of Infection and Immunity, Henry Wellcome Building, Cardiff University School of Medicine, Cardiff, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Małolepsza E, Straub JE. Empirical maps for the calculation of amide I vibrational spectra of proteins from classical molecular dynamics simulations. J Phys Chem B 2014; 118:7848-55. [PMID: 24654732 PMCID: PMC4317051 DOI: 10.1021/jp412827s] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
New sets of parameters (maps) for
calculating amide I vibrational
spectra for proteins through a vibrational exciton model are proposed.
The maps are calculated as a function of electric field and van der
Waals forces on the atoms of peptide bonds, taking into account the
full interaction between peptide bonds and the surrounding environment.
The maps are designed to be employed using data obtained from standard
all-atom molecular simulations without any additional constraints
on the system. Six proteins representing a wide range of sizes and
secondary structure complexity were chosen as a test set. Spectra
calculated for these proteins reproduce experimental data both qualitatively
and quantitatively. The proposed maps lead to spectra that capture
the weak second peak observed in proteins containing β-sheets,
allowing for clear distinction between α-helical and β-sheet
proteins. While the parametrization is specific to the CHARMM force
field, the methodology presented can be readily applied to any empirical
force field.
Collapse
Affiliation(s)
- Edyta Małolepsza
- Department of Chemistry, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | | |
Collapse
|
18
|
Ding B, Laaser JE, Liu Y, Wang P, Zanni MT, Chen Z. Site-specific orientation of an α-helical peptide ovispirin-1 from isotope-labeled SFG spectroscopy. J Phys Chem B 2013; 117:14625-34. [PMID: 24228619 DOI: 10.1021/jp408064b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Sum-frequency generation (SFG) vibrational spectroscopy is often used to probe the backbone structures and orientations of polypeptides at surfaces. Using the ovispirin-1 polypeptide at the solid/liquid interface of polystyrene, we demonstrate for the first time that SFG can probe the polarization response of a single-isotope-labeled residue. To interpret the spectral intensities, we simulated the spectra using an excitonic Hamiltonian approach. We show that the polarization dependence of either the label or the unlabeled amide I band alone does not provide sufficient structural constraints to obtain both the tilt and the twist of the ovispirin helix at a solid/liquid interface, but that both can be determined from the polarization dependence of the complete spectrum. For ovispirin, the detailed analysis of the polarized SFG experimental data shows that the helix axis is tilted at roughly 138° from the surface normal, and the transition dipole of the isotope-labeled C═O group is tilted at 23° from the surface normal, with the hydrophobic region facing the polystyrene surface. We further demonstrate that the Hamiltonian approach is able to address the coupling effect and the structural disorder. For comparison, we also collected the FTIR spectrum of ovispirin under similar conditions, which reveals the enhanced sensitivity of SFG for structural studies of single monolayer peptide surfaces. Our study provides insight into how structural and environmental effects appear in SFG spectra of the amide I band and establishes that SFG of isotope-labeled peptides will be a powerful technique for elucidating secondary structures with residue-by-residue resolution.
Collapse
Affiliation(s)
- Bei Ding
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | | | | | | | |
Collapse
|
19
|
Kim H, Cho M. Infrared Probes for Studying the Structure and Dynamics of Biomolecules. Chem Rev 2013; 113:5817-47. [DOI: 10.1021/cr3005185] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Heejae Kim
- Department of Chemistry, Korea University, Seoul 136-713, Korea
| | - Minhaeng Cho
- Department of Chemistry, Korea University, Seoul 136-713, Korea
- Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute,
Seoul 136-713, Korea
| |
Collapse
|
20
|
Manor J, Arkin IT. Gaining insight into membrane protein structure using isotope-edited FTIR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012. [PMID: 23196348 DOI: 10.1016/j.bbamem.2012.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
FTIR spectroscopy has long been used as a tool used to gain average structural information on proteins. With the advent of stable isotope editing, FTIR can be used to derive accurate information on isolated amino acids. In particular, in an anisotropic sample such as membrane layers, it is possible to measure the orientation of the peptidic carbonyl groups. Herein, we review the theory that enables one to obtain accurate restraints from FTIR spectroscopy, alongside considerations for sample suitability and general applicability. We also propose approaches that may be used to generate structural models of simple membrane proteins based on FTIR orientational restraints. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.
Collapse
Affiliation(s)
- Joshua Manor
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem, 91904, Israel
| | | |
Collapse
|
21
|
Woys AM, Almeida AM, Wang L, Chiu CC, McGovern M, de Pablo JJ, Skinner JL, Gellman SH, Zanni MT. Parallel β-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: quantitative benchmark for the interpretation of amyloid and protein infrared spectra. J Am Chem Soc 2012; 134:19118-28. [PMID: 23113791 DOI: 10.1021/ja3074962] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Infrared spectroscopy is playing an important role in the elucidation of amyloid fiber formation, but the coupling models that link spectra to structure are not well tested for parallel β-sheets. Using a synthetic macrocycle that enforces a two stranded parallel β-sheet conformation, we measured the lifetimes and frequency for six combinations of doubly (13)C═(18)O labeled amide I modes using 2D IR spectroscopy. The average vibrational lifetime of the isotope labeled residues was 550 fs. The frequencies of the labels ranged from 1585 to 1595 cm(-1), with the largest frequency shift occurring for in-register amino acids. The 2D IR spectra of the coupled isotope labels were calculated from molecular dynamics simulations of a series of macrocycle structures generated from replica exchange dynamics to fully sample the conformational distribution. The models used to simulate the spectra include through-space coupling, through-bond coupling, and local frequency shifts caused by environment electrostatics and hydrogen bonding. The calculated spectra predict the line widths and frequencies nearly quantitatively. Historically, the characteristic features of β-sheet infrared spectra have been attributed to through-space couplings such as transition dipole coupling. We find that frequency shifts of the local carbonyl groups due to nearest neighbor couplings and environmental factors are more important, while the through-space couplings dictate the spectral intensities. As a result, the characteristic absorption spectra empirically used for decades to assign parallel β-sheet secondary structure arises because of a redistribution of oscillator strength, but the through-space couplings do not themselves dramatically alter the frequency distribution of eigenstates much more than already exists in random coil structures. Moreover, solvent exposed residues have amide I bands with >20 cm(-1) line width. Narrower line widths indicate that the amide I backbone is solvent protected inside the macrocycle. This work provides calculated and experimentally verified couplings for parallel β-sheets that can be used in structure-based models to simulate and interpret the infrared spectra of β-sheet containing proteins and protein assemblies, such as amyloid fibers.
Collapse
Affiliation(s)
- Ann Marie Woys
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhao J, Wang J. Chain-length and mode-delocalization dependent amide-I anharmonicity in peptide oligomers. J Chem Phys 2012; 136:214112. [PMID: 22697535 DOI: 10.1063/1.4725181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The diagonal anharmonicities of the amide-I mode in the alanine oligomers are examined in the normal-mode basis by ab initio calculations. The selected oligomers range from dimer to heptamer, in either the α-helical or β-sheet conformations. It is found that the anharmonicity varies from mode to mode within the same oligomer. For a given amide-I mode, the anharmonicity is closely related to the delocalization extent of the mode: the less it delocalizes, the larger the anharmonicity it has. Thus, the single-mode potential energy distribution (PED(max)) can be used as an indicator of the magnitude of the anharmonicity. It is found that as the peptide chain length increases, the averaged diagonal anharmonicity generally decreases; however, the sum of the averaged diagonal and off-diagonal anharmonicities within a peptide roughly remains a constant for all the oligomers examined, indicating the excitonic characteristics of the amide-I modes. Excitonic coupling tends to decrease the diagonal anharmonicities in a coupled system with multiple chromophores, which explains the observed behavior of the anharmonicities. The excitonic nature of the amide-I band in peptide oligomers is thus verified by the anharmonic computations. Isotopic substitution effect on the anharmonicities and mode localizations of the amide-I modes in peptides is also discussed.
Collapse
Affiliation(s)
- Juan Zhao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | | |
Collapse
|
23
|
Chen H, Bian H, Li J, Wen X, Zheng J. Ultrafast multiple-mode multiple-dimensional vibrational spectroscopy. INT REV PHYS CHEM 2012. [DOI: 10.1080/0144235x.2012.733116] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Wang L, Skinner JL. Thermally induced protein unfolding probed by isotope-edited IR spectroscopy. J Phys Chem B 2012; 116:9627-34. [PMID: 22853174 PMCID: PMC3463243 DOI: 10.1021/jp304613b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infrared (IR) spectroscopy has been widely utilized for the study of protein folding, unfolding, and misfolding processes. We have previously developed a theoretical method for calculating IR spectra of proteins in the amide I region. In this work, we apply this method, in combination with replica-exchange molecular dynamics simulations, to study the equilibrium thermal unfolding transition of the villin headpiece subdomain (HP36). Temperature-dependent IR spectra and spectral densities are calculated. The spectral densities correctly reflect the unfolding conformational changes in the simulation. With the help of isotope labeling, we are able to capture the feature that helix 2 of HP36 loses its secondary structure before global unfolding occurs, in agreement with experiment.
Collapse
Affiliation(s)
- Lu Wang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, WI 53706 USA
| | - James L. Skinner
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, WI 53706 USA
| |
Collapse
|
25
|
Karjalainen EL, Ersmark T, Barth A. Optimization of Model Parameters for Describing the Amide I Spectrum of a Large Set of Proteins. J Phys Chem B 2012; 116:4831-42. [DOI: 10.1021/jp301095v] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eeva-Liisa Karjalainen
- Department of Biochemistry and Biophysics,
Arrhenius
Laboratories of Natural Sciences, Stockholm University, SE-106 91, Sweden
| | - Tore Ersmark
- Department of Biochemistry and Biophysics,
Arrhenius
Laboratories of Natural Sciences, Stockholm University, SE-106 91, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics,
Arrhenius
Laboratories of Natural Sciences, Stockholm University, SE-106 91, Sweden
| |
Collapse
|
26
|
Wang L, Middleton CT, Singh S, Reddy AS, Woys AM, Strasfeld DB, Marek P, Raleigh DP, de Pablo JJ, Zanni MT, Skinner JL. 2DIR spectroscopy of human amylin fibrils reflects stable β-sheet structure. J Am Chem Soc 2011; 133:16062-71. [PMID: 21916515 PMCID: PMC3196637 DOI: 10.1021/ja204035k] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aggregation of human amylin to form amyloid contributes to islet β-cell dysfunction in type 2 diabetes. Studies of amyloid formation have been hindered by the low structural resolution or relatively modest time resolution of standard methods. Two-dimensional infrared (2DIR) spectroscopy, with its sensitivity to protein secondary structures and its intrinsic fast time resolution, is capable of capturing structural changes during the aggregation process. Moreover, isotope labeling enables the measurement of residue-specific information. The diagonal line widths of 2DIR spectra contain information about dynamics and structural heterogeneity of the system. We illustrate the power of a combined atomistic molecular dynamics simulation and theoretical and experimental 2DIR approach by analyzing the variation in diagonal line widths of individual amide I modes in a series of labeled samples of amylin amyloid fibrils. The theoretical and experimental 2DIR line widths suggest a "W" pattern, as a function of residue number. We show that large line widths result from substantial structural disorder and that this pattern is indicative of the stable secondary structure of the two β-sheet regions. This work provides a protocol for bridging MD simulation and 2DIR experiments for future aggregation studies.
Collapse
Affiliation(s)
- Lu Wang
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Middleton CT, Buchanan LE, Dunkelberger EB, Zanni MT. Utilizing Lifetimes to Suppress Random Coil Features in 2D IR Spectra of Peptides. J Phys Chem Lett 2011; 2:2357-2361. [PMID: 21966585 PMCID: PMC3182477 DOI: 10.1021/jz201024m] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We report that the waiting time delay in 2D IR pulse sequences can be used to suppress signals from structurally disordered regions of amyloid fibrils. At a waiting time delay of 1.0 ps, the random coil vibrational modes of amylin fibrils are no longer detectable, leaving only the sharp excitonic vibrational features of the fibril β-sheets. Isotope labeling with (13)C(18)O reveals that structurally disordered residues decay faster than residues protected from solvent. Since structural disorder is usually accompanied by hydration, we conclude that the shorter lifetimes of random-coil residues is due to solvent exposure. These results indicate that 2D IR pulse sequences can utilize the waiting time to better resolve solvent-protected regions of peptides and that local mode lifetimes should be included in simulations of 2D IR spectra.
Collapse
|
28
|
Remorino A, Korendovych IV, Wu Y, DeGrado WF, Hochstrasser RM. Residue-specific vibrational echoes yield 3D structures of a transmembrane helix dimer. Science 2011; 332:1206-9. [PMID: 21636774 PMCID: PMC3295544 DOI: 10.1126/science.1202997] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Two-dimensional (2D) vibrational echo spectroscopy has previously been applied to structural determination of small peptides. Here we extend the technique to a more complex, biologically important system: the homodimeric transmembrane dimer from the α chain of the integrin α(IIb)β(3). We prepared micelle suspensions of the pair of 30-residue chains that span the membrane in the native structure, with varying levels of heavy ((13)C=(18)O) isotopes substituted in the backbone of the central 10th through 20th positions. The constraints derived from vibrational coupling of the precisely spaced heavy residues led to determination of an optimized structure from a range of model candidates: Glycine residues at the 12th, 15th, and 16th positions form a tertiary contact in parallel right-handed helix dimers with crossing angles of -58° ± 9° and interhelical distances of 7.7 ± 0.5 angstroms. The frequency correlation established the dynamical model used in the analysis, and it indicated the absence of mobile water associated with labeled residues. Delocalization of vibrational excitations between the helices was also quantitatively established.
Collapse
Affiliation(s)
- Amanda Remorino
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | | | | | | | | |
Collapse
|
29
|
Wang L, Middleton CT, Zanni MT, Skinner JL. Development and validation of transferable amide I vibrational frequency maps for peptides. J Phys Chem B 2011; 115:3713-24. [PMID: 21405034 DOI: 10.1021/jp200745r] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infrared (IR) spectroscopy of the amide I band has been widely utilized for the analysis of peptides and proteins. Theoretical modeling of IR spectra of proteins requires an accurate and efficient description of the amide I frequencies. In this paper, amide I frequency maps for protein backbone and side chain groups are developed from experimental spectra and vibrational lifetimes of N-methylacetamide and acetamide in different solvents. The frequency maps, along with established nearest-neighbor frequency shift and coupling schemes, are then applied to a variety of peptides in aqueous solution and reproduce experimental spectra well. The frequency maps are designed to be transferable to different environments; therefore, they can be used for heterogeneous systems, such as membrane proteins.
Collapse
Affiliation(s)
- L Wang
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
30
|
Dijkstra AG, Jansen TLC, Knoester J. Modeling the vibrational dynamics and nonlinear infrared spectra of coupled amide I and II modes in peptides. J Phys Chem B 2011; 115:5392-401. [PMID: 21208013 DOI: 10.1021/jp109431a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The amide vibrational modes play an important role in energy transport and relaxation in polypeptides and proteins and provide us with spectral markers for structure and structural dynamics of these macromolecules. Here, we present a detailed model to describe the dynamic properties of the amide I and amide II modes and the resulting linear and nonlinear spectra. These two modes have large oscillator strengths, and their mutual coupling plays an important role in their relaxation. Using first-principles calculations of NMA-d(7) and a dipeptide in a fluctuating bath described by molecular dynamics simulations, we model the frequencies of the local vibrations as well as the coupling between them. Both the coherent couplings and the fluctuations induced by contact with their environment are taken into account. We apply the resulting model of interacting fluctuating oscillators to study the collective vibrations and the partially coherent transport of vibrational energy through a model α-helix. We find that the instantaneous vibrations are delocalized over a few (up to four) amide units, while the coherences in the helix survive for 0.5-1 ps, leading to coherent transport on a similar time scale.
Collapse
Affiliation(s)
- Arend G Dijkstra
- Centre for Theoretical Physics and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
31
|
Middleton CT, Woys AM, Mukherjee SS, Zanni MT. Residue-specific structural kinetics of proteins through the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy. Methods 2010; 52:12-22. [PMID: 20472067 PMCID: PMC2933966 DOI: 10.1016/j.ymeth.2010.05.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/08/2010] [Accepted: 05/11/2010] [Indexed: 12/12/2022] Open
Abstract
We describe a methodology for studying protein kinetics using a rapid-scan technology for collecting 2D IR spectra. In conjunction with isotope labeling, 2D IR spectroscopy is able to probe the secondary structure and environment of individual residues in polypeptides and proteins. It is particularly useful for membrane and aggregate proteins. Our rapid-scan technology relies on a mid-IR pulse shaper that computer generates the pulse shapes, much like in an NMR spectrometer. With this device, data collection is faster, easier, and more accurate. We describe our 2D IR spectrometer, as well as protocols for (13)C(18)O isotope labeling, and then illustrate the technique with an application to the aggregation of the human islet amyloid polypeptide implicated in type 2 diabetes.
Collapse
Affiliation(s)
- Chris T. Middleton
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1396
| | - Ann Marie Woys
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1396
| | - Sudipta S. Mukherjee
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1396
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1396
| |
Collapse
|
32
|
Bridgeman JS, Hawkins RE, Bagley S, Blaylock M, Holland M, Gilham DE. The optimal antigen response of chimeric antigen receptors harboring the CD3zeta transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex. THE JOURNAL OF IMMUNOLOGY 2010; 184:6938-49. [PMID: 20483753 DOI: 10.4049/jimmunol.0901766] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chimeric Ag receptors (CARs) expressed in T cells permit the redirected lysis of tumor cells in an MHC-unrestricted manner. In the Jurkat T cell model system, expression of a carcinoembryonic Ag-specific CD3zeta CAR (MFEzeta) resulted in an increased sensitivity of the transduced Jurkat cell to generate cytokines when stimulated through the endogenous TCR complex. This effect was driven through two key characteristics of the MFEzeta CAR: 1) receptor dimerization and 2) the interaction of the CAR with the endogenous TCR complex. Mutations of the CAR transmembrane domain that abrogated these interactions resulted in a reduced functional capacity of the MFEzeta CAR to respond to carcinoembryonic Ag protein Ag. Taken together, these results indicate that CARs containing the CD3zeta transmembrane domain can form a complex with the endogenous TCR that may be beneficial for optimal T cell activation. This observation has potential implications for the future design of CARs for cancer therapy.
Collapse
Affiliation(s)
- John S Bridgeman
- Cell Therapy Group, Cancer Research UK Department of Medical Oncology, Paterson Institute for Cancer Research, Manchester, UK
| | | | | | | | | | | |
Collapse
|
33
|
Hanna G, Geva E. Computational study of the signature of hydrogen-bond strength on the infrared spectra of a hydrogen-bonded complex dissolved in a polar liquid. Chem Phys 2010. [DOI: 10.1016/j.chemphys.2010.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Seyfried MS, Lauber BS, Luedtke NW. Multiple-turnover isotopic labeling of Fmoc- and Boc-protected amino acids with oxygen isotopes. Org Lett 2010; 12:104-6. [PMID: 20035564 DOI: 10.1021/ol902519g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient method for the selective isotopic labeling of carboxylic acids is reported. By reacting an amino acid with excess carbodiimide and (18)OH(2), a kinetically enhanced multiple turnover reaction provides the (18)O-labeled product in high yield and excellent isotopic enrichment. This reaction is fully compatible with standard Fmoc, Boc, Trt, and OtBu protecting groups and provides a means to selectively label the alpha-carboxylic acids of functionalized amino acids with stable oxygen isotopes.
Collapse
Affiliation(s)
- Martin S Seyfried
- Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
35
|
Sharp KA, Vanderkooi JM. Water in the half shell: structure of water, focusing on angular structure and solvation. Acc Chem Res 2010; 43:231-9. [PMID: 19845327 DOI: 10.1021/ar900154j] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water is a highly polar molecule, consisting of a very electronegative atom, oxygen, bonded to two weakly electropositive hydrogen atoms with two lone pairs of electrons. These features give water remarkable physical properties, some of which are anomalous, such as its lower density in the solid phase compared with the liquid phase. Its ability to serve as both a hydrogen bond donor and hydrogen bond acceptor governs its role as a solvent, a role that is of central interest for biological chemists. In this Account, we focus on water's properties as a solvent. Water dissolves a vast range of solutes with solubilities that range over 10 orders of magnitude. Differences in solubility define the fundamental dichotomy between polar, or hydrophilic, solutes and apolar, or hydrophobic, solutes. This important distinction plays a large part in the structure, stability, and function of biological macromolecules. The strength of hydrogen bonding depends on the H-O...O H-bond angle, and the angular distribution is bimodal. Changes in the width and frequency of infrared spectral lines and in the heat capacity of the solution provide a measure of the changes in the strength and distribution of angles of the hydrogen bonds. Polar solutes and inorganic ions increase the population of bent hydrogen bonds at the expense of the more linear population, while apolar solutes or groups have the opposite effect. We examine how protein denaturants might alter the solvation behavior of water. Urea has very little effect on water's hydrogen bond network, while guanidinium ions promote more linear hydrogen bonds. These results point to fundamental differences in the protein denaturation mechanisms of these molecules. We also suggest a mechanism of action for antifreeze (or thermal hysteresis) proteins: ordering of water around the surface of these proteins prior to freezing appears to interfere with ice formation.
Collapse
Affiliation(s)
- Kim A. Sharp
- E. R. Johnson Research Foundation and Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jane M. Vanderkooi
- E. R. Johnson Research Foundation and Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
36
|
Woys AM, Lin YS, Reddy AS, Xiong W, de Pablo JJ, Skinner JL, Zanni MT. 2D IR Line Shapes Probe Ovispirin Peptide Conformation and Depth in Lipid Bilayers. J Am Chem Soc 2010; 132:2832-8. [DOI: 10.1021/ja9101776] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ann Marie Woys
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| | - Yu-Shan Lin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| | - Allam S. Reddy
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| | - Wei Xiong
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| | - Juan J. de Pablo
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| | - James L. Skinner
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| |
Collapse
|
37
|
Bonner GM, Ridley AR, Ibrahim SK, Pickett CJ, Hunt NT. Probing the effect of the solution environment on the vibrational dynamics of an enzyme model system with ultrafast 2D-IRspectroscopy. Faraday Discuss 2010. [DOI: 10.1039/b906163k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Nam HJ, Jeon J, Kim S. Bioinformatic approaches for the structure and function of membrane proteins. BMB Rep 2009; 42:697-704. [PMID: 19944009 DOI: 10.5483/bmbrep.2009.42.11.697] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane proteins play important roles in the biology of the cell, including intercellular communication and molecular transport. Their well-established importance notwithstanding, the high-resolution structures of membrane proteins remain elusive due to difficulties in protein expression, purification and crystallization. Thus, accurate prediction of membrane protein topology can increase the understanding of membrane protein function. Here, we provide a brief review of the diverse computational methods for predicting membrane protein structure and function, including recent progress and essential bioinformatics tools. Our hope is that this review will be instructive to users studying membrane protein biology in their choice of appropriate bioinformatics methods.
Collapse
Affiliation(s)
- Hyun-Jun Nam
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea
| | | | | |
Collapse
|
39
|
Bian H, Zhao W, Zheng J. Intermolecular vibrational energy exchange directly probed with ultrafast two dimensional infrared spectroscopy. J Chem Phys 2009; 131:124501. [DOI: 10.1063/1.3212618] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Langosch D, Arkin IT. Interaction and conformational dynamics of membrane-spanning protein helices. Protein Sci 2009; 18:1343-58. [PMID: 19530249 PMCID: PMC2775205 DOI: 10.1002/pro.154] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/19/2009] [Accepted: 04/20/2009] [Indexed: 12/23/2022]
Abstract
Within 1 or 2 decades, the reputation of membrane-spanning alpha-helices has changed dramatically. Once mostly regarded as dull membrane anchors, transmembrane domains are now recognized as major instigators of protein-protein interaction. These interactions may be of exquisite specificity in mediating assembly of stable membrane protein complexes from cognate subunits. Further, they can be reversible and regulatable by external factors to allow for dynamic changes of protein conformation in biological function. Finally, these helices are increasingly regarded as dynamic domains. These domains can move relative to each other in different functional protein conformations. In addition, small-scale backbone fluctuations may affect their function and their impact on surrounding lipid shells. Elucidating the ways by which these intricate structural features are encoded by the amino acid sequences will be a fascinating subject of research for years to come.
Collapse
Affiliation(s)
- Dieter Langosch
- Lehrstuhl Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany.
| | | |
Collapse
|
41
|
Manor J, Mukherjee P, Lin YS, Leonov H, Skinner JL, Zanni MT, Arkin IT. Gating mechanism of the influenza A M2 channel revealed by 1D and 2D IR spectroscopies. Structure 2009; 17:247-54. [PMID: 19217395 DOI: 10.1016/j.str.2008.12.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 12/04/2008] [Accepted: 12/07/2008] [Indexed: 11/19/2022]
Abstract
The pH-controlled M2 protein from influenza A is a critical component of the virus and serves as a target for the aminoadamantane antiflu agents that block its H+ channel activity. To better understand its H+ gating mechanism, we investigated M2 in lipid bilayers with a new combination of IR spectroscopies and theory. Linear Fourier transform infrared (FTIR) spectroscopy was used to measure the precise orientation of the backbone carbonyl groups, and 2D infrared (IR) spectroscopy was used to identify channel-lining residues. At low pH (open state), our results match previously published solid-state NMR and X-ray structures remarkably well. However, at neutral pH when the channel is closed, our measurements indicate that a large conformational change occurs that is consistent with the transmembrane alpha-helices rotating by one amino acid register--a structural rearrangement not previously observed. The combination of simulations and isotope-labeled FTIR and 2D IR spectroscopies provides a noninvasive means of interrogating the structures of membrane proteins in general and ion channels in particular.
Collapse
Affiliation(s)
- Joshua Manor
- The Alexander Silberman Institute of Life Sciences, Department of Biological Chemistry, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Givat-Ram, Jerusalem 91904, Israel
| | | | | | | | | | | | | |
Collapse
|
42
|
Lin YS, Shorb JM, Mukherjee P, Zanni MT, Skinner JL. Empirical amide I vibrational frequency map: application to 2D-IR line shapes for isotope-edited membrane peptide bundles. J Phys Chem B 2009; 113:592-602. [PMID: 19053670 PMCID: PMC2633092 DOI: 10.1021/jp807528q] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The amide I vibrational mode, primarily associated with peptide-bond carbonyl stretches, has long been used to probe the structures and dynamics of peptides and proteins by infrared (IR) spectroscopy. A number of ab initio-based amide I vibrational frequency maps have been developed for calculating IR line shapes. In this paper, a new empirical amide I vibrational frequency map is developed. To evaluate its performance, we applied this map to a system of isotope-edited CD3-zeta membrane peptide bundles in aqueous solution. The calculated 2D-IR diagonal line widths vary from residue to residue and show an asymmetric pattern as a function of position in the membrane. The theoretical results are in fair agreement with experiments on the same system. Through analysis of the computed frequency time-correlation functions, it is found that the 2D-IR diagonal widths are dominated by contributions from the inhomogeneous frequency distributions, from which it follows that these widths are a good probe of the extent of local structural fluctuations. Thus, the asymmetric pattern of line widths follows from the asymmetric structure of the bundle in the membrane.
Collapse
Affiliation(s)
- Y-S Lin
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
43
|
Poschner BC, Quint S, Hofmann MW, Langosch D. Sequence-specific conformational dynamics of model transmembrane domains determines their membrane fusogenic function. J Mol Biol 2009; 386:733-41. [PMID: 19154744 DOI: 10.1016/j.jmb.2008.12.077] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 12/29/2008] [Indexed: 10/21/2022]
Abstract
The transmembrane domains of fusion proteins are known to be functionally important and display an overabundance of helix-destabilizing Ile and Val residues. In an effort to systematically study the relationship of fusogenicity and helix stability, we previously designed LV peptides, a low-complexity model system whose hydrophobic core consists of Leu and Val residues at different ratios. The ability of LV peptides to fuse membranes increases with the content of helix-destabilizing residues. Here, we monitored the kinetics of amide deuterium/hydrogen exchange of LV-peptide helices to probe their conformational dynamics. The kinetics indeed increases strongly with the content of helix-destabilizing residues and is likely to reflect local fluctuations of the helix backbones as all peptides exhibit uncorrelated exchange and contain subpopulations of amide deuterium atoms that exchange with different velocities. Interestingly, helices whose amide deuterium atoms are shifted from slower to faster subpopulations are more fusogenic. Novel peptide variants in which Val residues are concentrated at peripheral or central domains of the hydrophobic core were designed to map functionally relevant helix subdomains. Their structural and functional analysis suggests that dynamic domains close to the helix termini are more relevant for fusogenicity than central domains but cooperate with the latter to achieve strong fusogenicity.
Collapse
Affiliation(s)
- Bernhard C Poschner
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | | | | | | |
Collapse
|
44
|
Wang J. Assessment of the amide-I local modes in γ- and β-turns of peptides. Phys Chem Chem Phys 2009; 11:5310-22. [DOI: 10.1039/b900063a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
Paschek D, Pühse M, Perez-Goicochea A, Gnanakaran S, García AE, Winter R, Geiger A. The Solvent-Dependent Shift of the Amide I Band of a Fully Solvated Peptide as a Local Probe for the Solvent Composition in the Peptide/Solvent Interface. Chemphyschem 2008; 9:2742-50. [DOI: 10.1002/cphc.200800540] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Hanna G, Geva E. Computational Study of the One and Two Dimensional Infrared Spectra of a Vibrational Mode Strongly Coupled to Its Environment: Beyond the Cumulant and Condon Approximations. J Phys Chem B 2008; 112:12991-3004. [DOI: 10.1021/jp804120v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriel Hanna
- Department of Chemistry and FOCUS center, University of Michigan, Ann Arbor, Michigan 48109-1055
| | - Eitan Geva
- Department of Chemistry and FOCUS center, University of Michigan, Ann Arbor, Michigan 48109-1055
| |
Collapse
|
47
|
Nee MJ, Baiz CR, Anna JM, McCanne R, Kubarych KJ. Multilevel vibrational coherence transfer and wavepacket dynamics probed with multidimensional IR spectroscopy. J Chem Phys 2008; 129:084503. [DOI: 10.1063/1.2969900] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
48
|
|
49
|
Sequence-specific conformational flexibility of SNARE transmembrane helices probed by hydrogen/deuterium exchange. Biophys J 2008; 95:1326-35. [PMID: 18456822 DOI: 10.1529/biophysj.108.132928] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SNARE proteins mediate fusion of intracellular eukaryotic membranes and their alpha-helical transmembrane domains are known to contribute to lipid bilayer mixing. Synthetic transmembrane domain peptides were previously shown to mimic the function of SNARE proteins in that they trigger liposome fusion in a sequence-specific fashion. Here, we performed a detailed investigation of the conformational dynamics of the transmembrane helices of the presynaptic SNAREs synaptobrevin II and syntaxin 1a. To this end, we recorded deuterium/hydrogen-exchange kinetics in isotropic solution as well as in the membrane-embedded state. In solution, the exchange kinetics of each peptide can be described by three different classes of amide deuteriums that exchange with different rate constants. These are likely to originate from exchange at different domains of the helices. Interestingly, the rate constants of each class vary with the TMD sequence. Thus, the exchange rate is position-specific and sequence-specific. Further, the rate constants correlate with the previously determined membrane fusogenicities. In membranes, exchange is retarded and a significant proportion of amide hydrogens are protected from exchange. We conclude that the conformational dynamics of SNARE TMD helices is mechanistically linked to their ability to drive lipid mixing.
Collapse
|
50
|
Affiliation(s)
- Minhaeng Cho
- Department of Chemistry and Center for Multidimensional Spectroscopy, Korea University, Seoul 136-701, Korea.
| |
Collapse
|