1
|
Tao S, Jiang D. Exceptional Anhydrous Proton Conduction in Covalent Organic Frameworks. J Am Chem Soc 2024; 146:18151-18160. [PMID: 38907725 DOI: 10.1021/jacs.4c06049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Covalent organic frameworks (COFs) offer an irreplaceable platform for mass transport, as they provide aligned one-dimensional channels as pathways. Especially, proton conduction is of great scientific interest and technological importance. However, unlike proton conduction under humidity, anhydrous proton conduction remains a challenge, as it requires robust materials and proceeds under harsh conditions. Here, we report exceptional anhydrous proton conduction in stable crystalline porous COFs by integrating neat phosphoric acid into the channels to form extended hydrogen-bonding networks. The phosphoric acid networks in the pores are stabilized by hierarchical multipoint and multichain hydrogen-bonding interactions with the 3D channel walls. We synthesized five hexagonal COFs that possess different pore sizes, which are gradually tuned from micropores to mesopores. Remarkably, mesoporous COFs with a high pore volume exhibit an exceptional anhydrous proton conductivity of 0.31 S cm-1, which marks the highest conductivity among all examples reported for COFs. We observed that the proton conductivity is dependent on the pore volume, pore size, and content of phosphoric acid. Increasing the pore volume improves the proton conductivity in an exponential fashion. Remarkably, changing the pore volume from 0.41 to 1.60 cm3 g-1 increases the proton conductivity by 1150-fold. Interestingly, as the pore size increases, the activation energy barrier of proton conduction decreases in linear mode. The mesopores enable fast proton hopping across the channels, while the micropores follow sluggish vehicle conduction. Experiments on tuning phosphoric acid loading contents revealed that a well-developed hydrogen-bonding phosphoric acid network in the pores is critical for proton conduction.
Collapse
Affiliation(s)
- Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
2
|
Zhang L, Liu M, Zhu D, Tang M, Zhu T, Gao C, Huang F, Xue L. Double cross-linked 3D layered PBI proton exchange membranes for stable fuel cell performance above 200 °C. Nat Commun 2024; 15:3409. [PMID: 38649702 PMCID: PMC11035571 DOI: 10.1038/s41467-024-47627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Phosphoric acid doped proton exchange membranes often experience performance degradation above 200 °C due to membrane creeping and phosphoric acid evaporation, migration, dehydration, and condensation. To address these issues, here we present gel-state polybenzimidazole membranes with double cross-linked three-dimensional layered structures via a polyphosphoric acid sol-gel process, enabling stable operation above 200 °C. These membranes, featuring proton-conducting cross-linking phosphate bridges and branched polybenzimidazole networks, effectively anchor and retain phosphoric acid molecules, prevent 96% of its dehydration and condensation, improve creep resistance, and maintain excellent proton conductivity stability. The resulting membrane, with superior through-plane proton conductivity of 0.348 S cm-1, delivers outstanding peak power densities ranging from 1.20-1.48 W cm-2 in fuel cells operated at 200-240 °C and a low voltage decay rate of only 0.27 mV h-1 over a 250-hour period at 220 °C, opening up possibilities for their direct integration with methanol steam reforming systems.
Collapse
Affiliation(s)
- Liang Zhang
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Mengjiao Liu
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Danyi Zhu
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Mingyuan Tang
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Taizhong Zhu
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Fei Huang
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, China.
| | - Lixin Xue
- College of Chemistry and Materials Engineering, Wenzhou University, 325035, Wenzhou, Zhejiang, China.
- Institute of New Materials & Industrial Technologies, Wenzhou University, 325024, Wenzhou, China.
| |
Collapse
|
3
|
Popov I, Zhu Z, Young-Gonzales AR, Sacci RL, Mamontov E, Gainaru C, Paddison SJ, Sokolov AP. Search for a Grotthuss mechanism through the observation of proton transfer. Commun Chem 2023; 6:77. [PMID: 37087505 PMCID: PMC10122652 DOI: 10.1038/s42004-023-00878-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 04/24/2023] Open
Abstract
The transport of protons is critical in a variety of bio- and electro-chemical processes and technologies. The Grotthuss mechanism is considered to be the most efficient proton transport mechanism, generally implying a transfer of protons between 'chains' of host molecules via elementary reactions within the hydrogen bonds. Although Grotthuss proposed this concept more than 200 years ago, only indirect experimental evidence of the mechanism has been observed. Here we report the first experimental observation of proton transfer between the molecules in pure and 85% aqueous phosphoric acid. Employing dielectric spectroscopy, quasielastic neutron, and light scattering, and ab initio molecular dynamic simulations we determined that protons move by surprisingly short jumps of only ~0.5-0.7 Å, much smaller than the typical ion jump length in ionic liquids. Our analysis confirms the existence of correlations in these proton jumps. However, these correlations actually reduce the conductivity, in contrast to a desirable enhancement, as is usually assumed by a Grotthuss mechanism. Furthermore, our analysis suggests that the expected Grotthuss-like enhancement of conductivity cannot be realized in bulk liquids where ionic correlations always decrease conductivity.
Collapse
Affiliation(s)
- Ivan Popov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Zhenghao Zhu
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | | | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Catalin Gainaru
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Stephen J Paddison
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA.
| | - Alexei P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
4
|
Liu M, Deng WH, Wang X, Liu J, Jin S, Xu G, Tan B. Hydrogen Bond Activation by Pyridinic Nitrogen for the High Proton Conductivity of Covalent Triazine Framework Loaded with H 3 PO 4. CHEMSUSCHEM 2022; 15:e202201298. [PMID: 36184870 DOI: 10.1002/cssc.202201298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Under high temperature anhydrous conditions, it is still a formidable challenge to improve the performance of proton-conducting materials based on H3 PO4 and elucidate its proton conduction mechanism. Herein, a highly stable covalent triazine frameworks (CTFs) based on H3 PO4 is reported. The more pyridinic nitrogen CTFs contain, the higher proton conductivity is. Compared with H3 PO4 @CTF-L with less pyridinic nitrogen, H3 PO4 @CTF-H has a higher proton conductivity of 1.6×10-1 S cm-1 at 150 °C under anhydrous conditions, which does not decay after about 18 months exposure in air. The high proton conductivity is associated with the formation and breaking of the activated Ntriazine ⋯H+ ⋯H2 PO4 - pairs by pyridinic nitrogen of CTFs. The outstanding long-term stability is mainly attributed to the ultra-strong triazine skeleton structure of CTFs.
Collapse
Affiliation(s)
- Manying Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan, 461000, P. R. China
| | - Wei-Hua Deng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xueqing Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jing Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Shangbin Jin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
5
|
Trevani LN, Lépori CMO, Garro Linck Y, Monti GA, Abuin GC, Vaca Chávez F, Corti HR. Speciation and Proton Conductivity of Phosphoric Acid Confined in Mesoporous Silica. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33248-33256. [PMID: 35849482 DOI: 10.1021/acsami.2c07740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phosphoric acid (PA) confined in a commercial mesoporous silica (CARIACT G) with porous size in the range of 3 to 10 nm was studied in relation to its coordination with the silanol groups on the silica surface as a function of temperature, up to 180 °C, using 31P and 29Si MAS NMR spectroscopy. As the temperature increases, the coordination of Si and P in the mesopores depends on the pore size, that is, on the area/volume ratio of the silica matrix. In the mesoporous silica with the higher pore size (10 nm), a considerable fraction of PA is nonbonded to the silanol groups on the surface, and it seems to be responsible for its higher conductivity at temperatures above 120 °C as compared to the samples with a smaller pore size. The electrical conductivity of the functionalized mesoporous silica was higher than that reported for other silico-phosphoric composites synthesized by sol-gel methods using soft templates, which require high-temperature calcination and high-cost reagents and are close to that of the best PA-doped polybenzimidazole membranes used in high-temperature proton exchange membrane fuel cells (HT-PEMFCs). The rate of PA release from the mesoporous silica matrix when the system is exposed to water has been measured, and it was found to be strongly dependent on the pore size. The low cost and simplicity of the PA-functionalized mesoporous silica preparation method makes this material a promising candidate to be used as an electrolyte in HT-PEMFCs.
Collapse
Affiliation(s)
- Liliana N Trevani
- Faculty of Science, Ontario Tech University, 2000 Simcoe St. North, Oshawa L1H 7K4, Ontario, Canada
| | - Cristian M O Lépori
- CONICET. Instituto de Física Enrique Gaviola (IFEG), Córdoba 5000, Argentina
| | - Yamila Garro Linck
- CONICET. Instituto de Física Enrique Gaviola (IFEG), Córdoba 5000, Argentina
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba 5000, Argentina
| | - Gustavo A Monti
- CONICET. Instituto de Física Enrique Gaviola (IFEG), Córdoba 5000, Argentina
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba 5000, Argentina
| | - Graciela C Abuin
- Departamento de Almacenamiento de la Energía, Instituto Nacional de Tecnología Industrial (INTI), Av. General Paz 5445, San Martín B1650KNA, Buenos Aires, Argentina
| | - Fabián Vaca Chávez
- CONICET. Instituto de Física Enrique Gaviola (IFEG), Córdoba 5000, Argentina
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba 5000, Argentina
| | - Horacio R Corti
- Departamento de Física de la Materia Condensada e Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, Avda. General Paz 1499, San Martín B1650KNA, Buenos Aires, Argentina
| |
Collapse
|
6
|
Ahlmann S, Hoffmann L, Keppler M, Münzner P, Tonauer CM, Loerting T, Gainaru C, Böhmer R. Isotope effects on the dynamics of amorphous ices and aqueous phosphoric acid solutions. Phys Chem Chem Phys 2022; 24:14846-14856. [PMID: 35697341 DOI: 10.1039/d2cp01455f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glass transitions of amorphous ices as well as of aqueous phosphoric acid solutions were reported to display very large 1H/2H isotope effects. Using dielectric spectroscopy, in both types of glassformers for equimolar protonated/deuterated mixtures an almost ideal isotope-mixing behavior rather than a bimodal relaxation is found. For the amorphous ices this finding is interpreted in terms of a glass-to-liquid rather than an orientational glass transition scenario. Based on calorimetric results revealing that major 16O/18O isotope effects are missing, the latter scenario was previously favored for the amorphous ices. Considering the dielectric results on 18O substituted amorphous ices and by comparison with corresponding results for the aqueous phosphoric acid solutions, it is argued that the present findings are compatible with the glass-to-liquid scenario. To provide additional information regarding the deeply supercooled state of 1H/2H isotopically mixed and 18O substituted glassformers, the aqueous phosphoric acid solutions are studied using shear mechanical spectroscopy as well, a technique which so far could not successfully be applied to characterize the glass transitions of the amorphous ices.
Collapse
Affiliation(s)
- S Ahlmann
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - L Hoffmann
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - M Keppler
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - P Münzner
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - C M Tonauer
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - T Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - C Gainaru
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - R Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
7
|
Jinnouchi R. Molecular dynamics simulations of proton conducting mediums containing phosphoric acid. Phys Chem Chem Phys 2022; 24:15522-15531. [DOI: 10.1039/d2cp00484d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An anhydrous proton conducting electrolyte is a key material to realise medium-temperature fuel cells that can drastically simplify heat radiation systems in transportation applications. However, practical applications are limited by...
Collapse
|
8
|
Ahlmann S, Münzner P, Moch K, Sokolov AP, Böhmer R, Gainaru C. The relationship between charge and molecular dynamics in viscous acid hydrates. J Chem Phys 2021; 155:014505. [PMID: 34241375 DOI: 10.1063/5.0055179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oscillatory shear rheology has been employed to access the structural rearrangements of deeply supercooled sulfuric acid tetrahydrate (SA4H) and phosphoric acid monohydrate, the latter in protonated (PA1H) and deuterated (PA1D) forms. Their viscoelastic responses are analyzed in relation to their previously investigated electric conductivity. The comparison of the also presently reported dielectric response of deuterated sulfuric acid tetrahydrate (SA4D) and that of its protonated analog SA4H reveals an absence of isotope effects for the charge transport in this hydrate. This finding clearly contrasts with the situation known for PA1H and PA1D. Our analyses also demonstrate that the conductivity relaxation profiles of acid hydrides closely resemble those exhibited by classical ionic electrolytes, even though the charge transport in phosphoric acid hydrates is dominated by proton transfer processes. At variance with this dielectric simplicity, the viscoelastic responses of these materials depend on their structural compositions. While SA4H displays a "simple liquid"-like viscoelastic behavior, the mechanical responses of PA1H and PA1D are more complex, revealing relaxation modes, which are faster than their ubiquitous structural rearrangements. Interestingly, the characteristic rates of these fast mechanical relaxations agree well with the characteristic frequencies of the charge rearrangements probed in the dielectric investigations, suggesting appearance of a proton transfer in mechanical relaxation of phosphoric acid hydrates. These findings open the exciting perspective of exploiting shear rheology to access not only the dynamics of the matrix but also that of the charge carriers in highly viscous decoupled conductors.
Collapse
Affiliation(s)
- S Ahlmann
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - P Münzner
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - K Moch
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - A P Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - R Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - C Gainaru
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
9
|
Li J, Wang J, Wu Z, Tao S, Jiang D. Ultrafast and Stable Proton Conduction in Polybenzimidazole Covalent Organic Frameworks via Confinement and Activation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Juan Li
- Institute of Crystalline Materials Shanxi University Wucheng Rd No 92 Taiyuan 030006 China
| | - Jing Wang
- Institute of Crystalline Materials Shanxi University Wucheng Rd No 92 Taiyuan 030006 China
| | - Zhenzhen Wu
- Institute of Crystalline Materials Shanxi University Wucheng Rd No 92 Taiyuan 030006 China
| | - Shanshan Tao
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Donglin Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
10
|
Li J, Wang J, Wu Z, Tao S, Jiang D. Ultrafast and Stable Proton Conduction in Polybenzimidazole Covalent Organic Frameworks via Confinement and Activation. Angew Chem Int Ed Engl 2021; 60:12918-12923. [DOI: 10.1002/anie.202101400] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/13/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Juan Li
- Institute of Crystalline Materials Shanxi University Wucheng Rd No 92 Taiyuan 030006 China
| | - Jing Wang
- Institute of Crystalline Materials Shanxi University Wucheng Rd No 92 Taiyuan 030006 China
| | - Zhenzhen Wu
- Institute of Crystalline Materials Shanxi University Wucheng Rd No 92 Taiyuan 030006 China
| | - Shanshan Tao
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Donglin Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
11
|
Young-Gonzales AR, Paddison SJ, Sokolov AP. Tuning proton conductivity and energy barriers for proton transfer. J Chem Phys 2021; 154:014503. [PMID: 33412878 DOI: 10.1063/5.0032512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proton transport is critical for many technologies and for a variety of biochemical and biophysical processes. Proton transfer between molecules (via structural diffusion) is considered to be an efficient mechanism in highly proton conducting materials. Yet, the mechanism and what controls energy barriers for this process remain poorly understood. It was shown that mixing phosphoric acid (PA) with lidocaine leads to an increase in proton conductivity at the same liquid viscosity. However, recent simulations of mixtures of PA with various bases, including lidocaine, suggested no decrease in the proton transfer energy barrier. To elucidate this surprising result, we have performed broadband dielectric spectroscopy to verify the predictions of the simulations for mixtures of PA with several bases. Our results reveal that adding bases to PA increases the energy barriers for proton transfer, and the observed increase in proton conductivity at a similar viscosity appears to be related to the increase in the glass transition temperature (Tg) of the mixture. Moreover, the energy barrier seems to increase with Tg of the mixtures, emphasizing the importance of molecular mobility or interactions in the proton transfer mechanism.
Collapse
Affiliation(s)
| | - Stephen J Paddison
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Alexei P Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
12
|
Mikalčiūtė A, Vilčiauskas L. Insights into the hydrogen bond network topology of phosphoric acid and water systems. Phys Chem Chem Phys 2021; 23:6213-6224. [PMID: 33687381 DOI: 10.1039/d0cp05126h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphoric acid and its mixtures with water are some of the best proton conducting materials known to science. Although the proton conductivity in pure phosphoric acid decreases upon external doping with excess H+ or OH-, the addition of water improves it substantially. A number of experimental and theoretical studies indicate that these systems form a very special case of hydrogen bond networks which not only facilitate fast proton transport but also show a number of other interesting properties such as glass forming ability. In this work, we present the molecular dynamics simulation results of the H3PO4-H2O system over the entire concentration range. The hydrogen bond networks were analyzed in terms of conventional microscopic as well as topological properties based on graph and network theory. The results show that the hydrogen bond network of H3PO4 is fundamentally different from that of H2O. On average, each phosphoric acid molecule tends to form more and stronger hydrogen bonds than water which leads to a much more connected and clustered network showing small-world properties which are absent in pure water. Moreover, these hydrogen bond network properties persist in the H3PO4-H2O mixtures as well, even at relatively high water contents. Finally, many of the physical properties such as molecular diffusion coefficients seem to be also intimately related to the network topological properties and follow similar trends with respect to system content. These results strongly indicate that many important properties such as proton transport in phosphoric acid and its aqueous systems are fundamentally related to their hydrogen bond network topology and might hold the key for their ultimate molecular understanding.
Collapse
Affiliation(s)
- Austėja Mikalčiūtė
- Institute of Chemistry, Vilnius University, Saulėtekio al. 3, LT-10257, Vilnius, Lithuania.
| | - Linas Vilčiauskas
- Institute of Chemistry, Vilnius University, Saulėtekio al. 3, LT-10257, Vilnius, Lithuania. and Center for Physical Sciences and Technology (FTMC), Saulėtekio al. 3, LT-10257, Vilnius, Lithuania
| |
Collapse
|
13
|
Geng K, Arumugam V, Xu H, Gao Y, Jiang D. Covalent organic frameworks: Polymer chemistry and functional design. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101288] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Tao S, Zhai L, Dinga Wonanke AD, Addicoat MA, Jiang Q, Jiang D. Confining H 3PO 4 network in covalent organic frameworks enables proton super flow. Nat Commun 2020; 11:1981. [PMID: 32332734 PMCID: PMC7181855 DOI: 10.1038/s41467-020-15918-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/03/2020] [Indexed: 11/13/2022] Open
Abstract
Development of porous materials combining stability and high performance has remained a challenge. This is particularly true for proton-transporting materials essential for applications in sensing, catalysis and energy conversion and storage. Here we report the topology guided synthesis of an imine-bonded (C=N) dually stable covalent organic framework to construct dense yet aligned one-dimensional nanochannels, in which the linkers induce hyperconjugation and inductive effects to stabilize the pore structure and the nitrogen sites on pore walls confine and stabilize the H3PO4 network in the channels via hydrogen-bonding interactions. The resulting materials enable proton super flow to enhance rates by 2–8 orders of magnitude compared to other analogues. Temperature profile and molecular dynamics reveal proton hopping at low activation and reorganization energies with greatly enhanced mobility. Development of porous proton-transporting materials combining stability and high performance has remained a challenge. Here, the authors report a stable covalent organic framework with excellent proton conductivity in which nitrogen sites on pore walls confine and stabilize a H3PO4 network in the channels via hydrogen-bonding interactions.
Collapse
Affiliation(s)
- Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Lipeng Zhai
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - A D Dinga Wonanke
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Matthew A Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Qiuhong Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
| |
Collapse
|
15
|
Thomas S, Araya SS, Frensch SH, Steenberg T, Kær SK. Hydrogen mass transport resistance changes in a high temperature polymer membrane fuel cell as a function of current density and acid doping. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
In Operando Neutron Radiography Analysis of a High-Temperature Polymer Electrolyte Fuel Cell Based on a Phosphoric Acid-Doped Polybenzimidazole Membrane Using the Hydrogen-Deuterium Contrast Method. ENERGIES 2018. [DOI: 10.3390/en11092214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to characterize high temperature polymer electrolyte fuel cells (HT-PEFCs) in operando, neutron radiography imaging, in combination with the deuterium contrast method, was used to analyze the hydrogen distribution and proton exchange processes in operando. These measurements were then combined with the electrochemical impedance spectroscopy measurements. The cell was operated under different current densities and stoichiometries. Neutron images of the active area of the cell were captured in order to study the changeover times when the fuel supply was switched between hydrogen and deuterium, as well as to analyze the cell during steady state conditions. This work demonstrates that the changeover from proton to deuteron (and vice versa) leads to local varying media distributions in the electrolyte, independent of the overall exchange dynamics. A faster proton-to-deuteron exchange was re-discovered when switching the gas supply from H2 to D2 than that from D2 to H2. Furthermore, the D2 uptake and discharge were faster at a higher current density. Specifically, the changeover from H to D takes 5–6 min at 200 mA cm−2, 2–3 min at 400 mA cm−2 and 1–2 min at 600 mA cm−2. An effect on the transmittance changes is apparent when the stoichiometry changes.
Collapse
|
17
|
Liu F, Wang S, Li J, Tian X, Wang X, Chen H, Wang Z. Polybenzimidazole/ionic-liquid-functional silica composite membranes with improved proton conductivity for high temperature proton exchange membrane fuel cells. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.07.026] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Melchior JP, Frick B. On the nanosecond proton dynamics in phosphoric acid–benzimidazole and phosphoric acid–water mixtures. Phys Chem Chem Phys 2017; 19:28540-28554. [DOI: 10.1039/c7cp04116k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Combining 1H-NMR, 17O-NMR, and high-resolution backscattering QENS hydrodynamic and structural proton transport in phosphoric acid is separated. The rate limiting steps for structural proton diffusion in mixtures of acid with Brønsted bases are found to occur below the nanosecond timescale.
Collapse
|
19
|
Suwannakham P, Sagarik K. Dynamics of structural diffusion in phosphoric acid hydrogen-bond clusters. RSC Adv 2017. [DOI: 10.1039/c7ra01829k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
For protonated H3PO4 clusters, the Eigen–Zundel–Eigen mechanism is enhanced by fluctuations in the H-bond chain length and local-dielectric environment, and can proceed without the reorientation of H3PO4 molecules as in the case of neat liquid H3PO4.
Collapse
Affiliation(s)
- Parichart Suwannakham
- School of Chemistry
- Institute of Science
- Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| | - Kritsana Sagarik
- School of Chemistry
- Institute of Science
- Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| |
Collapse
|
20
|
Melchior JP, Majer G, Kreuer KD. Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells? Phys Chem Chem Phys 2017; 19:601-612. [DOI: 10.1039/c6cp05331a] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This 1H-NMR, 31P-NMR, thermo-gravimetrical analysis, and conductivity study elucidates how hygroscopicity, acidity, and proton transport of phosphoric acid are affected by acid–base interactions with (benz)imidazole present in proton conducting high-temperature PEM fuel cell membranes.
Collapse
Affiliation(s)
| | - Günter Majer
- Max-Planck-Institut für Intelligente Systeme
- Stuttgart
- Germany
| | | |
Collapse
|
21
|
Melchior JP, Kreuer KD, Maier J. Proton conduction mechanisms in the phosphoric acid–water system (H4P2O7–H3PO4·2H2O): a 1H, 31P and 17O PFG-NMR and conductivity study. Phys Chem Chem Phys 2017; 19:587-600. [DOI: 10.1039/c6cp04855b] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The exceptionally high structural proton conductivity in neat phosphoric acid (H3PO4), which is closely related to the topology of its frustrated hydrogen bond network, is a singularity in that its contribution to the total ionic conductivity decreases with both increasing and decreasing water content.
Collapse
Affiliation(s)
| | | | - Joachim Maier
- Max-Planck-Institute für Festkörperforschung
- Stuttgart
- Germany
| |
Collapse
|
22
|
Heres M, Wang Y, Griffin PJ, Gainaru C, Sokolov AP. Proton Conductivity in Phosphoric Acid: The Role of Quantum Effects. PHYSICAL REVIEW LETTERS 2016; 117:156001. [PMID: 27768354 DOI: 10.1103/physrevlett.117.156001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Indexed: 05/07/2023]
Abstract
Phosphoric acid has one of the highest intrinsic proton conductivities of any known liquids, and the mechanism of this exceptional conductivity remains a puzzle. Our detailed experimental studies discovered a strong isotope effect in the conductivity of phosphoric acids caused by (i) a strong isotope shift of the glass transition temperature and (ii) a significant reduction of the energy barrier by zero-point quantum fluctuations. These results suggest that the high conductivity in phosphoric acids is caused by a very efficient proton transfer mechanism, which is strongly assisted by quantum effects.
Collapse
Affiliation(s)
- M Heres
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee 37996, USA
| | - Y Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - P J Griffin
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - C Gainaru
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, Tennessee 37996, USA
| | - A P Sokolov
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, Tennessee 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
23
|
Fedorova IV, Safonova LP. Proton transfer in the molecular complexes of phosphorus acids with DMSO. Struct Chem 2016. [DOI: 10.1007/s11224-016-0786-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Risskov Sørensen D, Nielsen UG, Skou EM. Solid state 31P MAS NMR spectroscopy and conductivity measurements on NbOPO4 and H3PO4 composite materials. J SOLID STATE CHEM 2014. [DOI: 10.1016/j.jssc.2014.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Dybtsev DN, Ponomareva VG, Aliev SB, Chupakhin AP, Gallyamov MR, Moroz NK, Kolesov BA, Kovalenko KA, Shutova ES, Fedin VP. High proton conductivity and spectroscopic investigations of metal-organic framework materials impregnated by strong acids. ACS APPLIED MATERIALS & INTERFACES 2014; 6:5161-5167. [PMID: 24641006 DOI: 10.1021/am500438a] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Strong toluenesulfonic and triflic acids were incorporated into a MIL-101 chromium(III) terephthalate coordination framework, producing hybrid proton-conducting solid electrolytes. These acid@MIL hybrid materials possess stable crystalline structures that do not deteriorate during multiple measurements or prolonged heating. Particularly, the triflic-containing compound demonstrates the highest 0.08 S cm(-1) proton conductivity at 15% relative humidity and a temperature of 60 °C, exceeding any of today's commercial materials for proton-exchange membranes. The structure of the proton-conducting media, as well as the long-range proton-transfer mechanics, was unveiled, in a certain respect, by Fourier transform infrared and (1)H NMR spectroscopy investigations. The acidic media presumably constitutes large separated droplets, coexisting in the MIL nanocages. One component of proton transfer appears to be related to the facile relay (Grotthuss) mechanism through extensive hydrogen-bonding interactions within such droplets. The second component occurs during continuous reorganization of the droplets, thus ensuring long-range proton transfer along the porous structure of the material.
Collapse
Affiliation(s)
- Danil N Dybtsev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences , 630090 Novosibirsk, Russian Federation
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang Y, Lane NA, Sun CN, Fan F, Zawodzinski TA, Sokolov AP. Ionic Conductivity and Glass Transition of Phosphoric Acids. J Phys Chem B 2013; 117:8003-9. [DOI: 10.1021/jp403867a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yangyang Wang
- Chemical
Sciences Division and ‡Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge,
Tennessee 37831, United States
- Department
of Chemical and Biomolecular Engineering and ∥Department of Chemistry, University of Tennessee, Knoxville,
Tennessee 37996, United States
| | - Nathan A. Lane
- Chemical
Sciences Division and ‡Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge,
Tennessee 37831, United States
- Department
of Chemical and Biomolecular Engineering and ∥Department of Chemistry, University of Tennessee, Knoxville,
Tennessee 37996, United States
| | - Che-Nan Sun
- Chemical
Sciences Division and ‡Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge,
Tennessee 37831, United States
- Department
of Chemical and Biomolecular Engineering and ∥Department of Chemistry, University of Tennessee, Knoxville,
Tennessee 37996, United States
| | - Fei Fan
- Chemical
Sciences Division and ‡Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge,
Tennessee 37831, United States
- Department
of Chemical and Biomolecular Engineering and ∥Department of Chemistry, University of Tennessee, Knoxville,
Tennessee 37996, United States
| | - Thomas A. Zawodzinski
- Chemical
Sciences Division and ‡Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge,
Tennessee 37831, United States
- Department
of Chemical and Biomolecular Engineering and ∥Department of Chemistry, University of Tennessee, Knoxville,
Tennessee 37996, United States
| | - Alexei P. Sokolov
- Chemical
Sciences Division and ‡Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge,
Tennessee 37831, United States
- Department
of Chemical and Biomolecular Engineering and ∥Department of Chemistry, University of Tennessee, Knoxville,
Tennessee 37996, United States
| |
Collapse
|
27
|
|
28
|
Kreuer KD, Wohlfarth A. Limits of Proton Conductivity. Angew Chem Int Ed Engl 2012; 51:10454-6; author reply 10457-8. [DOI: 10.1002/anie.201203887] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Indexed: 11/06/2022]
|
29
|
Vilčiauskas L, Tuckerman ME, Bester G, Paddison SJ, Kreuer KD. The mechanism of proton conduction in phosphoric acid. Nat Chem 2012; 4:461-6. [DOI: 10.1038/nchem.1329] [Citation(s) in RCA: 349] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/12/2012] [Indexed: 02/07/2023]
|
30
|
Hydrated phosphorus oxyacids alone and adsorbed on nanosilica. J Colloid Interface Sci 2012; 368:263-72. [DOI: 10.1016/j.jcis.2011.11.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/01/2011] [Accepted: 11/06/2011] [Indexed: 11/20/2022]
|
31
|
Fedorova IV, Kiselev MG, Safonova LP. Simulating the proton transfer reaction in the phosphoric acid-N,N-dimethylformamide system by means of the AM1 semiempirical method. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2011. [DOI: 10.1134/s0036024411100049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Corti HR, Nores-Pondal FJ, Angell CA. Heat capacity and glass transition in P2O5–H2O solutions: support for Mishima's conjecture on solvent water at low temperature. Phys Chem Chem Phys 2011; 13:19741-8. [DOI: 10.1039/c1cp22185j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Xu X, Tao S, Wormald P, Irvine JTS. Intermediate temperature stable proton conductors based upon SnP2O7, including additional H3PO4. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm01089h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Fedorova IV, Kiselev MG, Safonova LP. A molecular dynamics simulation of H3PO4, H2PO 4 − , and the protonated form of N,N-dimethylformamide in liquid N,N-dimethylformamide. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2009. [DOI: 10.1134/s0036024409120176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Lee HS, Roy A, Lane O, McGrath JE. Synthesis and characterization of poly(arylene ether sulfone)-b-polybenzimidazole copolymers for high temperature low humidity proton exchange membrane fuel cells. POLYMER 2008. [DOI: 10.1016/j.polymer.2008.09.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Hayamizu K, Tsuzuki S, Seki S. Molecular Motions and Ion Diffusions of the Room-Temperature Ionic Liquid 1,2-Dimethyl-3-propylimidazolium Bis(trifluoromethylsulfonyl)amide (DMPImTFSA) Studied by 1H, 13C, and 19F NMR. J Phys Chem A 2008; 112:12027-36. [DOI: 10.1021/jp802392t] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kikuko Hayamizu
- National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Center 5, Tsukuba 305-8565, Japan, and Materials Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1, Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Seiji Tsuzuki
- National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Center 5, Tsukuba 305-8565, Japan, and Materials Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1, Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Shiro Seki
- National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Center 5, Tsukuba 305-8565, Japan, and Materials Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1, Iwado-kita, Komae, Tokyo 201-8511, Japan
| |
Collapse
|
37
|
Hayamizu K, Tsuzuki S, Seki S, Ohno Y, Miyashiro H, Kobayashi Y. Quaternary Ammonium Room-Temperature Ionic Liquid Including an Oxygen Atom in Side Chain/Lithium Salt Binary Electrolytes: Ionic Conductivity and 1H, 7Li, and 19F NMR Studies on Diffusion Coefficients and Local Motions. J Phys Chem B 2008; 112:1189-97. [DOI: 10.1021/jp077714h] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kikuko Hayamizu
- National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Center 5, Tsukuba, Ibaraki 305-8565, Japan, and Materials Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1, Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Seiji Tsuzuki
- National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Center 5, Tsukuba, Ibaraki 305-8565, Japan, and Materials Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1, Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Shiro Seki
- National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Center 5, Tsukuba, Ibaraki 305-8565, Japan, and Materials Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1, Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Yasutaka Ohno
- National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Center 5, Tsukuba, Ibaraki 305-8565, Japan, and Materials Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1, Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Hajime Miyashiro
- National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Center 5, Tsukuba, Ibaraki 305-8565, Japan, and Materials Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1, Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Yo Kobayashi
- National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Center 5, Tsukuba, Ibaraki 305-8565, Japan, and Materials Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1, Iwado-kita, Komae, Tokyo 201-8511, Japan
| |
Collapse
|
38
|
Hayamizu K, Aihara Y. ELECTROCHEMISTRY 2007; 75:75-79. [DOI: 10.5796/electrochemistry.75.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|