Zhao L, Guo W, Yang T, Lu X. Theoretical survey of the potential energy surface of methyl nitrite + Cu+ reaction.
J Phys Chem A 2008;
112:533-41. [PMID:
18161951 DOI:
10.1021/jp075007i]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The gas-phase reaction of methyl nitrite with Cu+ has been investigated using density functional theory. The geometries and energies of all the stationary points involved in the reaction have been investigated at the B3LYP/6-311+G(2df,2pd) level. Seven different structures of the encounter complexes could be formed when Cu+ attacking at different electronegative heteroatoms of trans and cis conformational isomers of methyl nitrite, in which the inner oxygen attacks account for the most stable complexes. Extensive conversions could take place for these complexes converting into each other. Various mechanisms leading to the loss of NO and HNO are analyzed in terms of the topology of the potential energy surface. The reaction proceeds exclusively from the inner oxygen attachments, followed by four different mechanisms, i.e., direct dissociation, direct H abstraction, N-O activation, and C-H activation, where the former two provide direct channels for the respective losses of NO and HNO, the third one accounts for both of the losses, and C-H activation is unlikely to be important due to the energetics.
Collapse