1
|
Fujisawa T, Unno M. Near-Infrared Excited Raman Optical Activity as a Tool to Uncover Active Sites of Photoreceptor Proteins. J Phys Chem B 2024; 128:2228-2235. [PMID: 38441478 DOI: 10.1021/acs.jpcb.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024]
Abstract
Raman optical activity (ROA) is a chiral sensitive technique to measure the difference in Raman scattering intensity between right and left circularly polarized light. The method has been applied to the study of biological molecules such as proteins, and it is now recognized as a powerful tool for investigating biomolecular structures. We have expanded the capability of this chiroptical technique to colored molecules, such as photoreceptor proteins, by using a near-infrared excitation. A photoreceptor protein contains a light-absorbing chromophore as an active site, and the precise determination of its structure is vital for comprehending the protein's function at the atomic level. In a photoreceptor protein, the protein environment can distort an achiral chromophore into a chiral conformation. ROA spectroscopy offers detailed structural information about the chromophore under physiological conditions. Here we explore recent progress in near-infrared ROA spectroscopy and its application to biological systems.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
2
|
Fujisawa T, Shingae T, Ren J, Haraguchi S, Hanamoto T, Hoff WD, Unno M. Spectroscopic Validation of Crystallographic Structures of a Protein Active Site by Chiroptical Spectroscopy. J Phys Chem Lett 2023; 14:9304-9309. [PMID: 37816034 DOI: 10.1021/acs.jpclett.3c01954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Out-of-plane distortions of a cofactor molecule in a protein active site are functionally important, and in photoreceptors, it has been proposed that they are crucial for spectral tuning and energy storage in photocycle intermediates. However, these subtle structural features are often beyond the grasp of structural biology. This issue is strikingly exemplified by photoactive yellow protein: its 14 independently determined crystal structures exhibit considerable differences in the dihedral angles defining the chromophore geometry, even though most of these are at excellent resolution. Here we developed a strategy to verify cofactor distortions in crystal structures by using quantum chemical calculations and chiroptical spectroscopy, particularly Raman optical activity and electronic circular dichroism spectroscopies. Based on this approach, we identify seven crystal structures with the chromophore geometries inconsistent with the experimentally observed data. The strategy implemented here promises to be widely applicable to uncovering cofactor distortions at active sites and to studies of reaction intermediates.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takahito Shingae
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Jie Ren
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Shojiro Haraguchi
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takeshi Hanamoto
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
3
|
van Wilderen LJGW, Blankenburg L, Bredenbeck J. Femtosecond-to-millisecond mid-IR spectroscopy of Photoactive Yellow Protein uncovers structural micro-transitions of the chromophore's protonation mechanism. J Chem Phys 2022; 156:205103. [DOI: 10.1063/5.0091918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Protein structural dynamics can span many orders of magnitude in time. Photoactive Yellow Protein's (PYP) reversible photocycle encompasses picosecond isomerization of the light-absorbing chromophore as well as large scale protein backbone motions occurring on a millisecond timescale. Femtosecond-to-millisecond time-resolved mid-Infrared (IR) spectroscopy is employed here to uncover structural details of photocycle intermediates up to chromophore protonation and the first structural changes leading to formation of the partially-unfolded signalling state pB. The data show that a commonly thought stable transient photocycle intermediate is actually formed after a sequence of several smaller structural changes. We provide residue-specific spectroscopic evidence that protonation of the chromophore on a hundreds of microseconds timescale is delayed with respect to deprotonation of the nearby E46 residue. That implies that the direct proton donor is not E46 but most likely a water molecule. Such details may assist ongoing photocycle and protein folding simulation efforts on the complex and wide time-spanning photocycle of the model system PYP.
Collapse
|
4
|
Kuramochi H, Takeuchi S, Kamikubo H, Kataoka M, Tahara T. Skeletal Structure of the Chromophore of Photoactive Yellow Protein in the Excited State Investigated by Ultraviolet Femtosecond Stimulated Raman Spectroscopy. J Phys Chem B 2021; 125:6154-6161. [PMID: 34102843 DOI: 10.1021/acs.jpcb.1c02828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied ultrafast structural dynamics of photoactive yellow protein (PYP) using ultraviolet femtosecond stimulated Raman spectroscopy. By employing the Raman pump and probe pulses in the ultraviolet region, resonantly enhanced, rich vibrational features of the excited-state chromophore were observed in the fingerprint region. In contrast to the marked spectral change reported for the excited-state chromophore in solution, in the protein, all of the observed Raman bands in the fingerprint region did not show any noticeable spectral shifts nor band shape changes during the excited-state lifetime of PYP. This indicates that the significant skeletal change does not occur on the chromophore in the excited state of PYP and that the trans conformation is retained in its lifetime. Based on the femtosecond Raman data of PYP obtained so far, we discuss a comprehensive picture of the excited-state structural dynamics of PYP.
Collapse
Affiliation(s)
- Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Mikio Kataoka
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
5
|
Konold PE, Arik E, Weißenborn J, Arents JC, Hellingwerf KJ, van Stokkum IHM, Kennis JTM, Groot ML. Confinement in crystal lattice alters entire photocycle pathway of the Photoactive Yellow Protein. Nat Commun 2020; 11:4248. [PMID: 32843623 PMCID: PMC7447820 DOI: 10.1038/s41467-020-18065-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 07/31/2020] [Indexed: 11/27/2022] Open
Abstract
Femtosecond time-resolved crystallography (TRC) on proteins enables resolving the spatial structure of short-lived photocycle intermediates. An open question is whether confinement and lower hydration of the proteins in the crystalline state affect the light-induced structural transformations. Here, we measured the full photocycle dynamics of a signal transduction protein often used as model system in TRC, Photoactive Yellow Protein (PYP), in the crystalline state and compared those to the dynamics in solution, utilizing electronic and vibrational transient absorption measurements from 100 fs over 12 decades in time. We find that the photocycle kinetics and structural dynamics of PYP in the crystalline form deviate from those in solution from the very first steps following photon absorption. This illustrates that ultrafast TRC results cannot be uncritically extrapolated to in vivo function, and that comparative spectroscopic experiments on proteins in crystalline and solution states can help identify structural intermediates under native conditions. Protein structural dynamics can be studied by time-resolved crystallography (TRC) and ultrafast transient spectroscopic methods. Here, the authors perform electronic and vibrational transient absorption measurements to characterise the full photocycle of Photoactive Yellow Protein (PYP) both in the crystalline and solution state and find that the photocycle kinetics and structural intermediates of PYP deviate in the crystalline state, which must be taken into consideration when planning TRC experiments.
Collapse
Affiliation(s)
- Patrick E Konold
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Enis Arik
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Jörn Weißenborn
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Jos C Arents
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park, 1098, XH, Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park, 1098, XH, Amsterdam, The Netherlands
| | - Ivo H M van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - John T M Kennis
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Marie Louise Groot
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Rivera JJ, Liang JH, Shimamura GR, Shafaat HS, Kim JE. Raman and Quantum Yield Studies of Trp48- d5 in Azurin: Closed-Shell and Neutral Radical Species. J Phys Chem B 2019; 123:6430-6443. [PMID: 31313925 DOI: 10.1021/acs.jpcb.9b04655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isotopologues are valuable vibrational probes that shift features in a vibrational spectrum while preserving the electronic structure of the molecule. We report the vibrational and electronic spectra of perdeuterated tryptophan in solution (l-Trp-d5), as Trp48-d5 in azurin, and as the photogenerated neutral tryptophan radical, Trp48-d5•, in azurin. The UV resonance Raman bands of the perdeuterated closed-shell tryptophan in solution and in azurin are lower in frequency relative to the protiated counterpart. The observed decrease in frequencies of l-Trp-d5 bands relative to l-Trp-h5 enables the analysis of vibrational markers of other amino acids, e.g., phenylalanine, that overlap with some modes of l-Trp-h5. The Raman intensities vary between l-Trp-d5 and l-Trp-h5; these differences likely reflect modifications in normal mode composition upon perdeuteration. Analysis of the W3, W6, and W17 modes suggests that the W3 mode retains its utility as a conformational marker; however, the H-bond markers W6 and W17 appear to be less sensitive upon perdeuteration. The neutral tryptophan radical, Trp48-d5•, was generated in azurin with a slightly lower radical quantum yield than for Trp48-h5•. The visible resonance Raman spectrum of Trp48-d5• is different from that of Trp48-h5•, especially in terms of relative intensities, and all assignable peaks decreased in frequency upon perdeuteration. The absorption and emission spectra of the perdeuterated closed-shell and radical species exhibited hypsochromic shifts of less than 1 nm relative to the protiated species. The data presented here indicate that l-Trp-d5 is a valuable probe of vibrational structure, with minimal modification of photoreactivity and photophysics compared to l-Trp-h5.
Collapse
Affiliation(s)
- Joel J Rivera
- Department of Chemistry and Biochemistry , University of California at San Diego , La Jolla , California 92093-0021 , United States
| | - Justine H Liang
- Department of Chemistry and Biochemistry , University of California at San Diego , La Jolla , California 92093-0021 , United States
| | - Gregory R Shimamura
- Department of Chemistry and Biochemistry , University of California at San Diego , La Jolla , California 92093-0021 , United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry , University of California at San Diego , La Jolla , California 92093-0021 , United States
| | - Judy E Kim
- Department of Chemistry and Biochemistry , University of California at San Diego , La Jolla , California 92093-0021 , United States
| |
Collapse
|
7
|
Kuramochi H, Takeuchi S, Kamikubo H, Kataoka M, Tahara T. Fifth-order time-domain Raman spectroscopy of photoactive yellow protein for visualizing vibrational coupling in its excited state. SCIENCE ADVANCES 2019; 5:eaau4490. [PMID: 31187055 PMCID: PMC6555629 DOI: 10.1126/sciadv.aau4490] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 04/26/2019] [Indexed: 05/15/2023]
Abstract
We report fifth-order time-domain Raman spectroscopy of photoactive yellow protein (PYP), with the aim to visualize vibrational coupling in its excited state. After the ultrashort actinic pump pulse prepared the vibrational coherence and population in the excited state, the evolving vibrational structure was tracked by time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses. The obtained fifth-order time-domain Raman data were translated to a two-dimensional (2D) frequency-frequency correlation map, which visualizes the correlation between low- and high-frequency vibrational modes of the excited state. The 2D map of PYP reveals a cross peak, indicating the coupling between the phenolic C─O stretch mode of the chromophore and the low-frequency modes (~160 cm-1), assignable to the intermolecular motions involving the surrounding hydrogen-bonded amino acids. The unveiled coupling suggests the importance of the low-frequency vibrational motion in the primary photoreaction of PYP, highlighting the unique capability of this spectroscopic approach for studying ultrafast reaction dynamics.
Collapse
Affiliation(s)
- Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
- Corresponding author. (S.T.); (T.T.)
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Mikio Kataoka
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
- Corresponding author. (S.T.); (T.T.)
| |
Collapse
|
8
|
Spectroscopic ruler for measuring active-site distortions based on Raman optical activity of a hydrogen out-of-plane vibration. Proc Natl Acad Sci U S A 2018; 115:8671-8675. [PMID: 30104345 DOI: 10.1073/pnas.1806491115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Photoactive yellow protein (PYP), from the phototrophic bacterium Halorhodospira halophila, is a small water-soluble photoreceptor protein and contains p-coumaric acid (pCA) as a chromophore. PYP has been an attractive model for studying the physical chemistry of protein active sites. Here, we explore how Raman optical activity (ROA) can be used to extract quantitative information on distortions of the pCA chromophore at the active site in PYP. We use 13C8-pCA to assign an intense signal at 826 cm-1 in the ROA spectrum of PYP to a hydrogen out-of-plane vibration of the ethylenic moiety of the chromophore. Quantum-chemical calculations based on density functional theory demonstrate that the sign of this ROA band reports the direction of the distortion in the dihedral angle about the ethylenic C=C bond, while its amplitude is proportional to the dihedral angle. These results document the ability of ROA to quantify structural deformations of a cofactor molecule embedded in a protein moiety.
Collapse
|
9
|
Probing the early stages of photoreception in photoactive yellow protein with ultrafast time-domain Raman spectroscopy. Nat Chem 2017. [PMID: 28644485 DOI: 10.1038/nchem.2717] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unveiling the nuclear motions of photoreceptor proteins in action is a crucial goal in protein science in order to understand their elaborate mechanisms and how they achieve optimal selectivity and efficiency. Previous studies have provided detailed information on the structures of intermediates that appear during the later stages (>ns) of such photoreception cycles, yet the initial events immediately after photoabsorption remain unclear because of experimental challenges in monitoring nuclear rearrangements on ultrafast timescales, including protein-specific low-frequency motions. Using time-domain Raman probing with sub-7-fs pulses, we obtain snapshot vibrational spectra of photoactive yellow protein and a mutant with high sensitivity, providing insights into the key responses that drive photoreception. Our data show a drastic intensity drop of the excited-state marker band at 135 cm-1 within a few hundred femtoseconds, suggesting a rapid weakening of the hydrogen bond that anchors the chromophore. We also track formation of the first ground-state intermediate over the first few picoseconds and fully characterize its vibrational structure, revealing a substantially-twisted cis conformation.
Collapse
|
10
|
Haraguchi S, Hara M, Shingae T, Kumauchi M, Hoff WD, Unno M. Experimental Detection of the Intrinsic Difference in Raman Optical Activity of a Photoreceptor Protein under Preresonance and Resonance Conditions. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/anie.201505466] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shojiro Haraguchi
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840‐8502 (Japan)
| | - Miwa Hara
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078 (USA)
| | - Takahito Shingae
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840‐8502 (Japan)
| | - Masato Kumauchi
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078 (USA)
| | - Wouter D. Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078 (USA)
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840‐8502 (Japan)
| |
Collapse
|
11
|
Haraguchi S, Hara M, Shingae T, Kumauchi M, Hoff WD, Unno M. Experimental Detection of the Intrinsic Difference in Raman Optical Activity of a Photoreceptor Protein under Preresonance and Resonance Conditions. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Nakamura R, Hamada N. Vibrational Energy Flow in Photoactive Yellow Protein Revealed by Infrared Pump–Visible Probe Spectroscopy. J Phys Chem B 2015; 119:5957-61. [DOI: 10.1021/jp512994q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryosuke Nakamura
- Science
and Technology Entrepreneurship
Laboratory, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Norio Hamada
- Science
and Technology Entrepreneurship
Laboratory, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Creelman M, Kumauchi M, Hoff WD, Mathies RA. Chromophore Dynamics in the PYP Photocycle from Femtosecond Stimulated Raman Spectroscopy. J Phys Chem B 2014; 118:659-67. [DOI: 10.1021/jp408584v] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mark Creelman
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Masato Kumauchi
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Wouter D. Hoff
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Richard A. Mathies
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Naseem S, Laurent AD, Carroll EC, Vengris M, Kumauchi M, Hoff WD, Krylov AI, Larsen DS. Photo-isomerization upshifts the pKa of the Photoactive Yellow Protein chromophore to contribute to photocycle propagation. J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2013.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Shingae T, Kubota K, Kumauchi M, Tokunaga F, Unno M. Raman Optical Activity Probing Structural Deformations of the 4-Hydroxycinnamyl Chromophore in Photoactive Yellow Protein. J Phys Chem Lett 2013; 4:1322-1327. [PMID: 26282147 DOI: 10.1021/jz400454j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Many biological cofactors, such as light-absorbing chromophores in photoreceptors, contain a π-electron system and are planar molecules. These cofactors are, however, usually nonplanar within a protein environment, and such structural distortions have been shown to be functionally important. Because the nonplanar structure makes the molecule chiral, Raman optical activity (ROA) provides a wealth of stereochemical information about the structural and conformational details of cofactors. The present study applied a near-infrared excited ROA to photoactive yellow protein, a blue light receptor. We successfully obtained the ROA spectra of the 4-hydroxycinnamyl chromophore embedded in a protein environment. Furthermore, calculations of the ROA spectra utilizing density functional theory provide detailed structural information, such as data on out-of-plane distortions of the chromophore. The structural information obtained from the ROA spectra includes the positions of hydrogen atoms, which are usually not detected in the crystal structures of biological samples.
Collapse
Affiliation(s)
- Takahito Shingae
- †Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Kensuke Kubota
- †Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Masato Kumauchi
- ‡Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Fumio Tokunaga
- §Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Masashi Unno
- †Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
- ∥PRESTO, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
16
|
Liu J, Yabushita A, Taniguchi S, Chosrowjan H, Imamoto Y, Sueda K, Miyanaga N, Kobayashi T. Ultrafast Time-Resolved Pump–Probe Spectroscopy of PYP by a Sub-8 fs Pulse Laser at 400 nm. J Phys Chem B 2013; 117:4818-26. [DOI: 10.1021/jp4001016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jun Liu
- Advanced Ultrafast Laser Research
Center, University of Electro-Communications, Chofugaoka 1-5-1, Chofu, Tokyo 182-8585 Japan
- State Key Laboratory of High
Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Core Research for Evolutional
Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Atsushi Yabushita
- Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road,
Hsinchu 300, Taiwan
| | - Seiji Taniguchi
- Institute
for Laser Technology, Osaka University,
Yamadaoka 2-6, Suita Osaka, 565-0871
Japan
| | - Haik Chosrowjan
- Institute
for Laser Technology, Osaka University,
Yamadaoka 2-6, Suita Osaka, 565-0871
Japan
| | - Yasushi Imamoto
- Department of Biophysics,
Graduate
School of Science, Kyoto University, Kitashirakawa-Oiwake,
Sakyo, Kyoto 606-8502 Japan
| | - Keiichi Sueda
- Institute of Laser Engineering, Osaka University, Yamadakami 2-6, Suita 565-0871, Ibaraki
567-0047, Japan
| | - Noriaki Miyanaga
- Institute of Laser Engineering, Osaka University, Yamadakami 2-6, Suita 565-0871, Ibaraki
567-0047, Japan
| | - Takayoshi Kobayashi
- Advanced Ultrafast Laser Research
Center, University of Electro-Communications, Chofugaoka 1-5-1, Chofu, Tokyo 182-8585 Japan
- Core Research for Evolutional
Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road,
Hsinchu 300, Taiwan
- Institute of Laser Engineering, Osaka University, Yamadakami 2-6, Suita 565-0871, Ibaraki
567-0047, Japan
| |
Collapse
|
17
|
Nakamura R, Hamada N, Abe K, Yoshizawa M. Structural Evolution in Photoactive Yellow Protein Studied by Femtosecond Stimulated Raman Spectroscopy. EPJ WEB OF CONFERENCES 2013. [DOI: 10.1051/epjconf/20134107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Nakamura R, Hamada N, Abe K, Yoshizawa M. Ultrafast hydrogen-bonding dynamics in the electronic excited state of photoactive yellow protein revealed by femtosecond stimulated Raman spectroscopy. J Phys Chem B 2012; 116:14768-75. [PMID: 23210980 DOI: 10.1021/jp308433a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ultrafast structural dynamics in the electronic excited state of photoactive yellow protein (PYP) is studied by femtosecond stimulated Raman spectroscopy. Stimulated Raman spectra in the electronic excited state, S(1), can be obtained by using a Raman pump pulse in resonance with the S(1)-S(0) transition. This is confirmed by comparing the experimental results with numerical calculations based on the density matrix treatment. We also investigate the hydrogen-bonding network surrounding the wild-type (WT)-PYP chromophore in the ground and excited states by comparing its stimulated Raman spectra with those of the E46Q-PYP mutant. We focus on the relative intensity of the Raman band at 1555 cm(-1), which includes both vinyl bond C═C stretching and ring vibrations and is sensitive to the hydrogen-bonding network around the phenolic oxygen of the chromophore. The relative intensity for the WT-PYP decreases after actinic excitation within the 150 fs time resolution and reaches a similar intensity to that for E46Q-PYP. These observations indicate that the WT-PYP hydrogen-bonding network is immediately rearranged in the electronic excited state to form a structure similar to that of E46Q-PYP.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- Science and Technology Entrepreneurship Laboratory, Osaka University, Suita, Osaka, Japan.
| | | | | | | |
Collapse
|
19
|
Singhal K, Bhatt K, Kang Z, Hoff W, Xie A, Kalkan AK. Structural Dynamics of a Single Photoreceptor Protein Molecule Monitored With Surface-Enhanced Raman Scattering Substrates. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-1077-l10-04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ABSTRACTPhotoactive yellow protein (PYP) is a small cytosolic photoreceptor that actuates the negative phototactic response in its host organism Halorhodospira halophila. It has an optical absorption maximum at 446 nm (blue light). We report an initial study of the photocycle of PYP at the single molecule level using “high enhancement factor” surface-enhanced Raman scattering (SERS)-active nanostructures with 514 nm laser excitation. The SERS-active “nanometal-on-semiconductor” structures are prepared employing a redox technique on thin germanium films, coated on glass slides. Single molecule spectra are observed in terms of sudden appearance of discernable Raman peaks with spectral fluctuations. The single molecule spectra capture protonation, photo-isomerization, and H-bond breaking - the steps that are instrumental in the photocycle of PYP. This is indicative of single PYP molecules diffusing to high-enhancement-factor SERS sites, and undergoing photo-cycle under 514 nm excitation.
Collapse
|
20
|
Joshi CP, Otto H, Hoersch D, Meyer TE, Cusanovich MA, Heyn MP. Strong hydrogen bond between glutamic acid 46 and chromophore leads to the intermediate spectral form and excited state proton transfer in the Y42F mutant of the photoreceptor photoactive yellow protein. Biochemistry 2009; 48:9980-93. [PMID: 19764818 DOI: 10.1021/bi9012897] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the Y42F mutant of photoactive yellow protein (PYP) the photoreceptor is in an equilibrium between two dark states, the yellow and intermediate spectral forms, absorbing at 457 and 390 nm, respectively. The nature of this equilibrium and the light-induced protonation and structural changes in the two spectral forms were characterized by transient absorption, fluorescence, FTIR, and pH indicator dye experiments. In the yellow form, the oxygen of the deprotonated p-hydroxycinnamoyl chromophore is linked by a strong low-barrier hydrogen bond to the protonated carboxyl group of Glu46 and by a weaker one to Thr50. Using FTIR, we find that the band due to the carbonyl of the protonated side chain of Glu46 is shifted from 1736 cm(-1) in wild type to 1724 cm(-1) in the yellow form of Y42F, implying a stronger hydrogen bond with the deprotonated chromophore in Y42F. The FTIR data suggest moreover that in the intermediate spectral form the chromophore is protonated and Glu46 deprotonated. Flash spectroscopy (50 ns-10 s) shows that the photocycles of the two forms are essentially the same except for a transition around 5 mus that has opposite signs in the two forms and is due to the chemical relaxation between the two dark states. The two cycles are coupled, likely by excited state proton transfer. The Y42F cycle differs from wild type by the occurrence of a new intermediate with protonated chromophore between the usual I(1) and I(2) intermediates which we call I(1)H (370 nm). Transient fluorescence measurements indicate that in I(1)H the chromophore retains the orientation it had in I(1). Transient proton uptake occurs with a time constant of 230 mus and a stoichiometry of 1. No proton uptake was associated however with the formation of the I(1)H intermediate and the relaxation of the yellow/intermediate equilibrium. These protonation changes of the chromophore thus occur intramolecularly. The chromophore-Glu46 hydrogen bond in Y42F is shorter than in wild type, since the adjacent chromophore-Y42 hydrogen bond is replaced by a longer one with Thr50. This facilitates proton transfer from Glu46 to the chromophore in the dark by lowering the barrier, leading to the protonation equilibrium and causing the rapid light-induced proton transfer which couples the cycles.
Collapse
Affiliation(s)
- Chandra P Joshi
- Biophysics Group, Department of Physics, Freie Universitat Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Singhal K, Kalkan AK. Surface-Enhanced Raman Scattering Captures Conformational Changes of Single Photoactive Yellow Protein Molecules under Photoexcitation. J Am Chem Soc 2009; 132:429-31. [DOI: 10.1021/ja9028704] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kushagra Singhal
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater Oklahoma 74078
| | - A. Kaan Kalkan
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater Oklahoma 74078
| |
Collapse
|
22
|
Coto PB, Roca-Sanjuán D, Serrano-Andrés L, Martín-Pendás A, Martí S, Andrés J. Toward Understanding the Photochemistry of Photoactive Yellow Protein: A CASPT2/CASSCF and Quantum Theory of Atoms in Molecules Combined Study of a Model Chromophore in Vacuo. J Chem Theory Comput 2009; 5:3032-8. [DOI: 10.1021/ct900401z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- P. B. Coto
- Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Apdo. 22085, ES-46071, Valencia, Spain, Departamento de Química-Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006, Oviedo, Spain, Departamento de Química-Física y Analítica, Universidad Jaume I, 224, 12071, Castellón, Spain
| | - D. Roca-Sanjuán
- Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Apdo. 22085, ES-46071, Valencia, Spain, Departamento de Química-Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006, Oviedo, Spain, Departamento de Química-Física y Analítica, Universidad Jaume I, 224, 12071, Castellón, Spain
| | - L. Serrano-Andrés
- Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Apdo. 22085, ES-46071, Valencia, Spain, Departamento de Química-Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006, Oviedo, Spain, Departamento de Química-Física y Analítica, Universidad Jaume I, 224, 12071, Castellón, Spain
| | - A. Martín-Pendás
- Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Apdo. 22085, ES-46071, Valencia, Spain, Departamento de Química-Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006, Oviedo, Spain, Departamento de Química-Física y Analítica, Universidad Jaume I, 224, 12071, Castellón, Spain
| | - S. Martí
- Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Apdo. 22085, ES-46071, Valencia, Spain, Departamento de Química-Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006, Oviedo, Spain, Departamento de Química-Física y Analítica, Universidad Jaume I, 224, 12071, Castellón, Spain
| | - J. Andrés
- Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Apdo. 22085, ES-46071, Valencia, Spain, Departamento de Química-Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006, Oviedo, Spain, Departamento de Química-Física y Analítica, Universidad Jaume I, 224, 12071, Castellón, Spain
| |
Collapse
|
23
|
Kikuchi S, Unno M, Zikihara K, Tokutomi S, Yamauchi S. Vibrational assignment of the flavin-cysteinyl adduct in a signaling state of the LOV domain in FKF1. J Phys Chem B 2009; 113:2913-21. [PMID: 19708118 DOI: 10.1021/jp808399f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LOV domains belong to the PAS domain superfamily, which are found in a variety of sensor proteins in organism ranging from archaea to eukaryotes, and they noncovalently bind a single flavin mononucleotide as a chromophore. We report the Raman spectra of the dark state of LOV domain in FKF1 from Arabidopsis thaliana. Spectra have been also measured for the signaling state, where a cysteinyl-flavin adduct is formed upon light irradiation. Most of the observed Raman bands are assigned on the basis of normal mode calculations using a density functional theory. We also discuss implication for the analysis of the infrared spectra of LOV domains. The comprehensive assignment provides a satisfactory framework for future investigations of the photocycle mechanism in LOV domains by vibrational spectroscopy.
Collapse
Affiliation(s)
- Sadato Kikuchi
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | | | | | | | | |
Collapse
|
24
|
Nakamura R, Hamada N, Ichida H, Tokunaga F, Kanematsu Y. Transient Vibronic Structure in Ultrafast Fluorescence Spectra of Photoactive Yellow Protein. Photochem Photobiol 2008; 84:937-40. [DOI: 10.1111/j.1751-1097.2008.00329.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Nakamura R, Hamada N, Ichida H, Tokunaga F, Kanematsu Y. Coherent oscillations in ultrafast fluorescence of photoactive yellow protein. J Chem Phys 2008; 127:215102. [PMID: 18067379 DOI: 10.1063/1.2802297] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ultrafast photoinduced dynamics of photoactive yellow protein in aqueous solution were studied at room temperature by femtosecond fluorescence spectroscopy using an optical Kerr-gate technique. Coherent oscillations of the wave packet were directly observed in the two-dimensional time-energy map of ultrafast fluorescence with 180 fs time resolution and 5 nm spectral resolution. The two-dimensional map revealed that four or more oscillatory components exist within the broad bandwidth of the fluorescence spectrum, each of which is restricted in the respective narrow spectral region. Typical frequencies of the oscillatory modes are 50 and 120 cm(-1). In the landscape on the map, the oscillatory components were recognized as the ridges which were winding and descending with time. The amplitude of the oscillatory and winding behaviors is a few hundred cm(-1), which is the same order as the frequencies of the oscillations. The mean spectral positions of the oscillatory components in the two-dimensional map are well explained by considering the vibrational energies of intramolecular modes in the electronic ground state of the chromophore. The entire view of the wave packet oscillations and broadening in the electronic excited state, accompanied by fluorescence transitions to the vibrational sublevels belonging to the electronic ground state, was obtained.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- JST-CREST, Venture Business Laboratory, Center for Advanced Science and Innovation, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
26
|
Putschögl M, Zirak P, Penzkofer A. Absorption and emission behaviour of trans-p-coumaric acid in aqueous solutions and some organic solvents. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2007.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|