1
|
Mysovsky AS, Bogdanov AI. Seamless Multilayer─A Novel Total Energy Partition Scheme for Embedded and Hybrid Calculations. J Chem Theory Comput 2023. [PMID: 37973151 DOI: 10.1021/acs.jctc.3c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
In this paper, we provide general formulation of a multilayer approach, covering both additive and subtractive quantum mechanics/molecular mechanics (QM/MM) as special cases. After that, we suggest a novel definition of QM/MM total energy based on the consideration of a system divided into three layers. In a simplified form, it is E = E Q M ( 1 + 2 ) - E Q M ( 2 ) + E M M ( 2 + 3 ) , where layers 1, 2, and 3 represent inner QM, outer QM, and classical MM regions, respectively. The novel formulation is also not limited by only QM/MM combination of methods─in fact, any computational methods can be combined in a hybrid calculation. In this paper, we call the new approach seamless multilayer. Test calculations performed for silica and boric oxide show that the new approach requires no QM/MM interface parameterization as well as no or very simple correction terms for boundary atoms. This can greatly facilitate QM/MM studies of covalent inorganic solids. However, test calculations of α-Al2O3 show that for ionic compounds, the new method requires some additional development.
Collapse
Affiliation(s)
- Andrey S Mysovsky
- A.P. Vinogradov Institute of Geochemistry SB RAS, 1a Favorsky Street, 664033 Irkutsk, Russia
- Institute of Quantum Physics, Irkutsk National Research Technical University, 83 Lermontov Street, 664074 Irkutsk, Russia
| | - Alexander I Bogdanov
- A.P. Vinogradov Institute of Geochemistry SB RAS, 1a Favorsky Street, 664033 Irkutsk, Russia
| |
Collapse
|
2
|
Csizi K, Reiher M. Universal
QM
/
MM
approaches for general nanoscale applications. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2023. [DOI: 10.1002/wcms.1656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Markus Reiher
- Laboratorium für Physikalische Chemie ETH Zürich Zürich Switzerland
| |
Collapse
|
3
|
Li TE, Hammes-Schiffer S. QM/MM Modeling of Vibrational Polariton Induced Energy Transfer and Chemical Dynamics. J Am Chem Soc 2023; 145:377-384. [PMID: 36574620 DOI: 10.1021/jacs.2c10170] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vibrational strong coupling (VSC) provides a novel means to modify chemical reactions and energy transfer pathways. To efficiently model chemical dynamics under VSC in the collective regime, herein a hybrid quantum mechanical/molecular mechanical (QM/MM) cavity molecular dynamics (CavMD) scheme is developed and applied to an experimentally studied chemical system. This approach can achieve linear scaling with respect to the number of molecules for a dilute solution under VSC by assuming that each QM solute molecule is surrounded by an independent MM solvent bath. Application of this approach to a dilute solution of Fe(CO)5 in n-dodecane under VSC demonstrates polariton dephasing to the dark modes and polariton-enhanced molecular nonlinear absorption. These simulations predict that strongly exciting the lower polariton may provide an energy transfer pathway that selectively excites the equatorial CO vibrations rather than the axial CO vibrations. Moreover, these simulations also directly probe the cavity effect on the dynamics of the Fe(CO)5 Berry pseudorotation reaction for comparison to recent two-dimensional infrared spectroscopy experiments. This theoretical approach is applicable to a wide range of other polaritonic systems and provides a tool for exploring the use of VSC for selective infrared photochemistry.
Collapse
Affiliation(s)
- Tao E Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | |
Collapse
|
4
|
Giudetti G, Polyakov I, Grigorenko BL, Faraji S, Nemukhin AV, Krylov AI. How Reproducible Are QM/MM Simulations? Lessons from Computational Studies of the Covalent Inhibition of the SARS-CoV-2 Main Protease by Carmofur. J Chem Theory Comput 2022; 18:5056-5067. [PMID: 35797455 DOI: 10.1021/acs.jctc.2c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work explores the level of transparency in reporting the details of computational protocols that is required for practical reproducibility of quantum mechanics/molecular mechanics (QM/MM) simulations. Using the reaction of an essential SARS-CoV-2 enzyme (the main protease) with a covalent inhibitor (carmofur) as a test case of chemical reactions in biomolecules, we carried out QM/MM calculations to determine the structures and energies of the reactants, the product, and the transition state/intermediate using analogous QM/MM models implemented in two software packages, NWChem and Q-Chem. Our main benchmarking goal was to reproduce the key energetics computed with the two packages. Our results indicate that quantitative agreement (within the numerical thresholds used in calculations) is difficult to achieve. We show that rather minor details of QM/MM simulations must be reported in order to ensure the reproducibility of the results and offer suggestions toward developing practical guidelines for reporting the results of biosimulations.
Collapse
Affiliation(s)
- Goran Giudetti
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Igor Polyakov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Shirin Faraji
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, 9747 AG The Netherlands
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| |
Collapse
|
5
|
Dürr SL, Bohuszewicz O, Berta D, Suardiaz R, Jambrina PG, Peter C, Shao Y, Rosta E. The Role of Conserved Residues in the DEDDh Motif: the Proton-Transfer Mechanism of HIV-1 RNase H. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Simon L. Dürr
- Department of Chemistry, King’s College London, London SE1 1DB, U.K
- Department of Chemistry, University of Konstanz, Konstanz 78457, Germany
| | - Olga Bohuszewicz
- Department of Chemistry, King’s College London, London SE1 1DB, U.K
| | - Dénes Berta
- Department of Physics and Astronomy, University College London; London WC1E 6BT, U.K
| | - Reynier Suardiaz
- Department of Chemistry, King’s College London, London SE1 1DB, U.K
| | | | - Christine Peter
- Department of Chemistry, University of Konstanz, Konstanz 78457, Germany
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| | - Edina Rosta
- Department of Chemistry, King’s College London, London SE1 1DB, U.K
- Department of Physics and Astronomy, University College London; London WC1E 6BT, U.K
| |
Collapse
|
6
|
Pan X, Nam K, Epifanovsky E, Simmonett AC, Rosta E, Shao Y. A simplified charge projection scheme for long-range electrostatics in ab initio QM/MM calculations. J Chem Phys 2021; 154:024115. [PMID: 33445891 DOI: 10.1063/5.0038120] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In a previous work [Pan et al., Molecules 23, 2500 (2018)], a charge projection scheme was reported, where outer molecular mechanical (MM) charges [>10 Å from the quantum mechanical (QM) region] were projected onto the electrostatic potential (ESP) grid of the QM region to accurately and efficiently capture long-range electrostatics in ab initio QM/MM calculations. Here, a further simplification to the model is proposed, where the outer MM charges are projected onto inner MM atom positions (instead of ESP grid positions). This enables a representation of the long-range MM electrostatic potential via augmentary charges (AC) on inner MM atoms. Combined with the long-range electrostatic correction function from Cisneros et al. [J. Chem. Phys. 143, 044103 (2015)] to smoothly switch between inner and outer MM regions, this new QM/MM-AC electrostatic model yields accurate and continuous ab initio QM/MM electrostatic energies with a 10 Å cutoff between inner and outer MM regions. This model enables efficient QM/MM cluster calculations with a large number of MM atoms as well as QM/MM calculations with periodic boundary conditions.
Collapse
Affiliation(s)
- Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, Oklahoma 73019, USA
| | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Evgeny Epifanovsky
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | - Andrew C Simmonett
- National Institutes of Health-National Heart, Lung and Blood Institute, Laboratory of Computational Biology, Bethesda, Maryland 20892, USA
| | - Edina Rosta
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, Oklahoma 73019, USA
| |
Collapse
|
7
|
Kjellsson L, Nanda KD, Rubensson JE, Doumy G, Southworth SH, Ho PJ, March AM, Al Haddad A, Kumagai Y, Tu MF, Schaller RD, Debnath T, Bin Mohd Yusof MS, Arnold C, Schlotter WF, Moeller S, Coslovich G, Koralek JD, Minitti MP, Vidal ML, Simon M, Santra R, Loh ZH, Coriani S, Krylov AI, Young L. Resonant Inelastic X-Ray Scattering Reveals Hidden Local Transitions of the Aqueous OH Radical. PHYSICAL REVIEW LETTERS 2020; 124:236001. [PMID: 32603165 DOI: 10.1103/physrevlett.124.236001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 05/06/2023]
Abstract
Resonant inelastic x-ray scattering (RIXS) provides remarkable opportunities to interrogate ultrafast dynamics in liquids. Here we use RIXS to study the fundamentally and practically important hydroxyl radical in liquid water, OH(aq). Impulsive ionization of pure liquid water produced a short-lived population of OH(aq), which was probed using femtosecond x-rays from an x-ray free-electron laser. We find that RIXS reveals localized electronic transitions that are masked in the ultraviolet absorption spectrum by strong charge-transfer transitions-thus providing a means to investigate the evolving electronic structure and reactivity of the hydroxyl radical in aqueous and heterogeneous environments. First-principles calculations provide interpretation of the main spectral features.
Collapse
Affiliation(s)
- L Kjellsson
- Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden
| | - K D Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, USA
| | - J-E Rubensson
- Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden
| | - G Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - S H Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - P J Ho
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - A M March
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - A Al Haddad
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Y Kumagai
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - M-F Tu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - R D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - T Debnath
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 639798
| | - M S Bin Mohd Yusof
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 639798
| | - C Arnold
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, 20146 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, 22607 Hamburg, Germany
| | - W F Schlotter
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - S Moeller
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - G Coslovich
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J D Koralek
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M P Minitti
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M L Vidal
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - M Simon
- Sorbonne Université and CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, 75252 Paris Cedex 05, France
| | - R Santra
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, 20146 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, 22607 Hamburg, Germany
| | - Z-H Loh
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 639798
| | - S Coriani
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - A I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, USA
| | - L Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
8
|
Paul S, Paul TK, Taraphder S. Orthogonal order parameters to model the reaction coordinate of an enzyme catalyzed reaction. J Mol Graph Model 2019; 90:18-32. [PMID: 30959266 DOI: 10.1016/j.jmgm.2019.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/01/2019] [Accepted: 03/26/2019] [Indexed: 01/03/2023]
Abstract
The choice of suitable collective variables in formulating an optimal reaction coordinate is a challenging task for activated transitions between a pair of stable states especially when dealing with biochemical changes such as enzyme catalyzed reactions. A detailed benchmarking study is carried out on the choice of collective variables that can distinguish between the stable states unambiguously. We specifically address the issue if these variables may be directly used to model the optimal reaction coordinate, or if it would be better to use their orthogonalized counterparts. The proposed computational scheme is applied to the rate determining intramolecular proton transfer step in the enzyme human carbonic anhydrase II. The optimum reaction coordinate is determined with and without orthogonalization of the collective variables pertinent to a key conformational fluctuation and the actual proton transfer step at the active site of the enzyme. Suitability of the predicted reaction coordinates in different processes is examined in terms of the free energy profile projected along the reaction coordinate, the rate constant of transition and the underlying molecular mechanism of barrier crossing. Our results indicate that a better agreement with earlier simulation and experimental data is obtained when the orthogonalized collective variables are used to model the reaction coordinate.
Collapse
Affiliation(s)
- Sanjib Paul
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Tanmoy Kumar Paul
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Srabani Taraphder
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India.
| |
Collapse
|
9
|
Duster AW, Wang C, Garza CM, Miller DE, Lin H. Adaptive quantum/molecular mechanics: what have we learned, where are we, and where do we go from here? WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1310] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Adam W. Duster
- Chemistry Department University of Colorado Denver Denver CO USA
| | - Chun‐Hung Wang
- Chemistry Department University of Colorado Denver Denver CO USA
| | | | | | - Hai Lin
- Chemistry Department University of Colorado Denver Denver CO USA
| |
Collapse
|
10
|
Gurunathan PK, Acharya A, Ghosh D, Kosenkov D, Kaliman I, Shao Y, Krylov AI, Slipchenko LV. Extension of the Effective Fragment Potential Method to Macromolecules. J Phys Chem B 2016; 120:6562-74. [PMID: 27314461 DOI: 10.1021/acs.jpcb.6b04166] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effective fragment potential (EFP) approach, which can be described as a nonempirical polarizable force field, affords an accurate first-principles treatment of noncovalent interactions in extended systems. EFP can also describe the effect of the environment on the electronic properties (e.g., electronic excitation energies and ionization and electron-attachment energies) of a subsystem via the QM/EFP (quantum mechanics/EFP) polarizable embedding scheme. The original formulation of the method assumes that the system can be separated, without breaking covalent bonds, into closed-shell fragments, such as solvent and solute molecules. Here, we present an extension of the EFP method to macromolecules (mEFP). Several schemes for breaking a large molecule into small fragments described by EFP are presented and benchmarked. We focus on the electronic properties of molecules embedded into a protein environment and consider ionization, electron-attachment, and excitation energies (single-point calculations only). The model systems include chromophores of green and red fluorescent proteins surrounded by several nearby amino acid residues and phenolate bound to the T4 lysozyme. All mEFP schemes show robust performance and accurately reproduce the reference full QM calculations. For further applications of mEFP, we recommend either the scheme in which the peptide is cut along the Cα-C bond, giving rise to one fragment per amino acid, or the scheme with two cuts per amino acid, along the Cα-C and Cα-N bonds. While using these fragmentation schemes, the errors in solvatochromic shifts in electronic energy differences (excitation, ionization, electron detachment, or electron-attachment) do not exceed 0.1 eV. The largest error of QM/mEFP against QM/EFP (no fragmentation of the EFP part) is 0.06 eV (in most cases, the errors are 0.01-0.02 eV). The errors in the QM/molecular mechanics calculations with standard point charges can be as large as 0.3 eV.
Collapse
Affiliation(s)
| | - Atanu Acharya
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| | - Debashree Ghosh
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory , Pune 411008, Maharashtra, India
| | - Dmytro Kosenkov
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
- Department of Chemistry and Physics, Monmouth University , West Long Branch, New Jersey 07764, United States
| | - Ilya Kaliman
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| | - Yihan Shao
- Q-Chem Inc. , 6601 Owens Drive, Suite 105 Pleasanton, California 94588, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| | - Lyudmila V Slipchenko
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
11
|
Pezeshki S, Lin H. Recent developments in QM/MM methods towards open-boundary multi-scale simulations. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.911870] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Krylov AI, Gill PM. Q-Chem: an engine for innovation. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2012. [DOI: 10.1002/wcms.1122] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Pezeshki S, Lin H. Adaptive-Partitioning Redistributed Charge and Dipole Schemes for QM/MM Dynamics Simulations: On-the-fly Relocation of Boundaries that Pass through Covalent Bonds. J Chem Theory Comput 2011; 7:3625-34. [DOI: 10.1021/ct2005209] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Soroosh Pezeshki
- Chemistry Department, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - Hai Lin
- Chemistry Department, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| |
Collapse
|
14
|
Zimmerman PM, Head-Gordon M, Bell AT. Selection and Validation of Charge and Lennard-Jones Parameters for QM/MM Simulations of Hydrocarbon Interactions with Zeolites. J Chem Theory Comput 2011; 7:1695-703. [DOI: 10.1021/ct2001655] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul M. Zimmerman
- Department of Chemistry, University of California, Berkeley, California 94720-1461, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720-1461, United States
| | - Alexis T. Bell
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720-1462, United States
| |
Collapse
|
15
|
Tu Y, Laaksonen A. Implementing Quantum Mechanics into Molecular Mechanics—Combined QM/MM Modeling Methods. ADVANCES IN QUANTUM CHEMISTRY 2010. [DOI: 10.1016/s0065-3276(10)59001-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Abstract
Combined quantum-mechanics/molecular-mechanics (QM/MM) approaches have become the method of choice for modeling reactions in biomolecular systems. Quantum-mechanical (QM) methods are required for describing chemical reactions and other electronic processes, such as charge transfer or electronic excitation. However, QM methods are restricted to systems of up to a few hundred atoms. However, the size and conformational complexity of biopolymers calls for methods capable of treating up to several 100,000 atoms and allowing for simulations over time scales of tens of nanoseconds. This is achieved by highly efficient, force-field-based molecular mechanics (MM) methods. Thus to model large biomolecules the logical approach is to combine the two techniques and to use a QM method for the chemically active region (e.g., substrates and co-factors in an enzymatic reaction) and an MM treatment for the surroundings (e.g., protein and solvent). The resulting schemes are commonly referred to as combined or hybrid QM/MM methods. They enable the modeling of reactive biomolecular systems at a reasonable computational effort while providing the necessary accuracy.
Collapse
Affiliation(s)
- Hans Martin Senn
- Department of Chemistry, WestCHEM and University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
17
|
|
18
|
Xiao C, Zhang Y. Design-atom approach for the quantum mechanical/molecular mechanical covalent boundary: a design-carbon atom with five valence electrons. J Chem Phys 2007; 127:124102. [PMID: 17902888 PMCID: PMC2773247 DOI: 10.1063/1.2774980] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A critical issue underlying the accuracy and applicability of the combined quantum mechanical/molecular mechanical (QM/MM) methods is how to describe the QM/MM boundary across covalent bonds. Inspired by the ab initio pseudopotential theory, here we introduce a novel design atom approach for a more fundamental and transparent treatment of this QM/MM covalent boundary problem. The main idea is to replace the boundary atom of the active part with a design atom, which has a different number of valence electrons but very similar atomic properties. By modifying the Troullier-Martins scheme, which has been widely employed to construct norm-conserving pseudopotentials for density functional calculations, we have successfully developed a design-carbon atom with five valence electrons. Tests on a series of molecules yield very good structural and energetic results and indicate its transferability in describing a variety of chemical bonds, including double and triple bonds.
Collapse
Affiliation(s)
- Chuanyun Xiao
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | |
Collapse
|